
A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS

TONY FENG

These are lecture notes for Math 270 as taught at UC Berkeley in Fall 2025, an idiosyn-
cractic course aimed at an idiosyncratic audience1 (by Machine Learning standards). The
notes survey modern developments in deep learning from and for the perspective of pure
mathematicians. The emphasis is on breadth rather than on depth, with each lecture giving
a superficial exposure to one major topic.

Contents

Part 1. Background 2
1. Introduction to Neural Networks 2
2. Information theory 13
3. Statistical inference 25
4. Optimization 36

Part 2. Architectures 46
5. Convolutional Neural Networks 46
6. Recurrent Neural Networks 58
7. Transformers 68

Part 3. Generative models 78
8. Large Language Models 78
9. Generative Adversarial Networks 88
10. Variational Autoencoders 90
11. Diffusion Models 96

Part 4. Reinforcement learning 106
12. Value function methods 106
13. Policy optimization 106
References 106

Date: October 19, 2025.
1The audience is imagined to have high mathematical sophistication, but little actual familiarity with the

mathematics relevant to machine learning (e.g., statistics and optimization). Topics in higher mathematics
(e.g., differential geometry) will occasionally be referenced, in a shallow but possibly enlightening way.

1

2 TONY FENG

Part 1. Background

1. Introduction to Neural Networks

1.1. Supervised learning. In supervised learning, we will consider the following basic
problem: we have a set of datapoints D = {(xi, yi)} which we want to model via a function
y = f(x).

Example 1.1.1 (Regression). If yi ∈ R, then we refer to the problem of modeling y = f(x)
as regression. An example might be predicting a house price from its size, number of
bedrooms, location, etc.

Example 1.1.2 (Classification). If yi is among a discrete set of classes, then we refer to
the problem of modeling y = f(x) as classification. An example might be to classify a
handwritten digit into one of the classes {0, 1, 2, . . . , 9}.

A priori, it is mysterious what shape the function f should take. To give a mathematical
metaphor, we need to choose an f from the “moduli space of reasonable functions”, which
however is some huge unknowable thing. Our approach will therefore to build a “nice chart”
to probe this moduli space. Concretely, this means parametrizing a class of functions fθ,
as θ varies in a parameter space. While in principle the parameter space could be pretty
general (e.g., a manifold), in practice we want it to be RN ; this is what makes it “nice”.

Given this setup, we will optimize θ, by defining a “loss function” LD(θ) that measures
the “error” of fθ on our given data D, and then (attempt to) minimize LD(θ) via gradient
descent.

Remark 1.1.3. The mapping θ 7→ fθ need not be injective, and will certainly never be
surjective in practical situations.

“Deep learning” refers to a specific type of chart into the space of functions, namely, the
parametrization of functions by neural networks. These are old constructions, inspired by
the structure of biological neurons, which have recently found dramatic success when scaled
to extreme sizes. This first lecture will explain the basic architecture and workflow of a
neural network.

1.2. Unsupervised learning. The adjective “supervised” in “supervised learning” refers to
the fact that for the xi in the data D, we know the corresponding “labels” yi which we are
trying to predict. Sometimes this data can be obtained naturally (e.g., in the housing price
example) but sometimes it has to be labeled manually (as in the handwriting classification
example), which places a serious limitation on data availability.

There is also “unsupervised learning”, whose goal is to discover patterns and structure in
data without having labels. Unsupervised learning naturally divides into further subfields,
depending on the precise objective. A classical example of an unsupervised learning problem
is clustering, which finds natural ways to group data into clusters. This can be approached
for example by the K-means clustering algorithm, which is not based on neural networks.
In Part 3, we will learn about the more modern topic of generative models. Here, the
data consists of samples D = {(xi)} from an unknown probability distribution P , and the
objective is to generate synthetic samples from P .

Example 1.2.1. OpenAI’s GPT models are generative models that do unsupervised learn-
ing to imitate human-generated text. Here P would be the probability distribution of (say)
natural language sentences, which comprise a thin slice in the space of all possible combi-
nations of letters.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 3

Unsupervised deep learning is assembled from the same fundamental building blocks
as in supervised deep learning, so in this section we will focus on supervised learning for
concreteness.

1.3. Linear regression. Before we talk about neural networks, we will talk about much
simpler special class of parametrized functions: linear functions. Let’s see how our paradigm
plays out in this toy case.

Suppose we have a collection of datapoints D = (xi ∈ Rp, yi ∈ R)ni=1 which we want to
model by a function y = f(x). If we demand that f is affine linear, then it must be of the
form

fW,b(x) = xW + b

where we call W ∈ Rp×1 and b ∈ R the weight and bias, respectively.

Remark 1.3.1. Mathematically, the bias can be simulated by a bias-free network by adding
an additional node at each layer which always outputs 1, and augmenting the weight matrix
to be

W̃ =

[
W
b

]
.

Indeed, we have [
x 1

]
W̃ =

[
x 1

] [W
b

]
= xW + b.

This trick means that the mathematics of affine linear functions is qualitatively unaffected
by whether or not we incorporate a bias, and we will exploit this at some points to simplify
notation.

For simplicity of notation, we will just restrict to the case b = 0. If y really is given exactly
by an affine-linear function of f(x), and if we also have enough independent datapoints, then
we can just solve for W . In practice, we would never expect to see exact linearity, so what
we really want is a “best approximation” to y by a linear function, and we will decide what
this means precisely. We want some way to quantify the “error” of fW on the dataset D;
we will then take the parameters W which minimize this error. Many choices are possible;
perhaps the most natural are the “Mean Absolute Error” (MAE)

MAED(W) =
1

n

n∑
i=1

|fW (xi)− yi|

and the “Mean Squared Error”

MSED(W) =
1

n

n∑
i=1

(fW (xi)− yi)
2.

We usual prefer the latter because it is more analytically convenient, and in this linear case
we can even solve for the optimal W cleanly in closed form.

1.3.1. Least squares regression. We want to find

Ŵ := argmin
W

MSED(W) = argmin
W

n∑
i=1

(yi − xiW)2.

4 TONY FENG

Let’s introduce some notation to express this in compact linear algebraic terms. Write

Y =


y1
y2
...
yn

 and X =


x1

x2

...
xn

 (1.3.1)

for the matrices obtained by stacking the yi (resp. xi) vertically. Recall that each yi ∈ R
and and each xi ∈ Rp. Now we can rewrite∑

(yi − xiW)2 =
1

n
||Y −XW ||22 =

1

n
(Y −XW)⊤(Y −XW). (1.3.2)

To find the optimal Ŵ , we will differentiate (1.3.2) with respect to W .

1.3.2. Optimal weights. Next, to find the optimal weights, let’s differentiate (1.3.2) with
respect to W :

∂

∂W
MSED(W, b) =

1

n

[
∂

∂W

(
(Y −XW)⊤

)
(Y −XW)

]
+

1

n

[
(Y −XW)⊤

∂

∂W

(
(Y −XW)

)]
=

1

n

[
−X⊤(Y −XW)

]
−
[
(Y −XW)⊤X

]
= −2 1

n
X⊤(Y −XW).

Hence the optimal weight Ŵ satisfies the equation

X⊤(Y −XW) = 0. (1.3.3)

If (X⊤X) is invertible, we can solve this for Ŵ :

Ŵ = (X⊤X)−1(X⊤Y).

Remark 1.3.2. What would it mean for (X⊤X) to be non-invertible? This happens
precisely when X fails to be injective as a linear transformation. Concretely, this means that
the features (column vectors) are linearly dependent ; in particular, this certainly happens if
the number of data points n is smaller than the number of features p. When this happens,
many different choices of weights W lead to the same function fW , so there clearly cannot
be a unique optimum Ŵ .

1.3.3. Geometric intuition. In retrospect, the equation (1.3.3) is geometrically obvious. In-
deed, the space of all honest linear predictions on the feature values of the data is precisely
the column span of X. Among such linear predictions, the “closest” one to Y is the XŴ
which satisfies the property that Y − XŴ is perpendicular to the column space of X. In
other words, this is precisely the condition that

X⊤(Y −XŴ) = 0.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 5

Figure 1.4.1. A classification problem with two classes, labeled yellow
and purple. The decision boundary is meant to be a circle of radius 1
around the origin, which cannot be captured by a linear function. This
figure was generated during the MLWM Week 1 Workshop Colab.

1.4. Neural networks. The level sets of affine linear functions are affine hyperplanes, so
it is clear that some functions cannot be well approximated by affine linear functions. As a
toy example, consider for example the classification problem depicted in Figure 1.4.1.

Neural networks are essentially a generalization of linear approximation where we allow
fθ to be a piecewise linear2 function. It is at least intuitively clear that this class of functions
is expressive enough to well approximate any reasonable f . More precisely, a neural network
computes a composition of functions of the form

x
g1

−→ z1
h1

−→ a1
g2

−→ z2
h2

−→ a2 → · · · hL−1

−−−→ zL−1 gL

−−→ y (1.4.1)

where each gℓ is an affine linear transformation and each hℓ is a non-linear “activation
function” such as in §1.4.2.3

Remark 1.4.1. When there are no hidden layers, i.e., L = 1, then (1.4.1) collapses back
down to linear approximation, which as we’ve seen has limited expressivity. On the other
hand, there are “Universal Approximation” theorems such as [iF89], which assert that as soon
as there is at least one hidden layer with any non-polynomial activation, then any continuous
function of the input can be approximated to arbitrary precision on any compact domain
by a function of this form.4

2This is literally true if we our activation function is ReLU, which is the common choice, but not literally
true with all activation functions (e.g., sigmoid or tanh).

3Whether the last function involves an “activation” depends on the problem – for regression the last
function gL would typically be linear, as we wrote in (1.4.1), while for classification the last function would
be a non-linearity, so (1.4.1) would be further post-composed with an hL.

4As far as I know, however, such theoretical results have not been useful for predicting optimal architec-
tures to use in practice.

https://colab.research.google.com/drive/1gKPEny0nw5M733qDQNEO5tJpahYgd2vF?usp=sharing

6 TONY FENG

1.4.1. The anatomy of a neural network. A neural network is divided into layers.

The ℓth layer performs the computation

aℓ−1 gℓ

−→ zℓ
hℓ

−→ aℓ

Each zℓ and aℓ is a vector, whose ith component is computed by a single neuron (also known
as “perceptron”). The motivation for this structure comes from biology.

During the flow of input through a neural network, neuron i receives a vector aℓ−1
i of

input values, say of dimension nℓ−1
i . The “vanilla” case is where the layer is fully connected

(i.e., dense), in which case each neuron receives the output of every neuron in the previous
layer, so nℓ−1

i is the number of neurons in layer ℓ − 1 (and is independent of i); we shall
restrict ourselves to this case for ease of notation. The neuron itself includes the data of:

• weights5 wℓ
i ∈ Rnℓ−1

, and
• a bias bi ∈ R.

The neuron calculates a “pre-activation value”

zℓi = g(aℓ−1)i = aℓ−1wℓ
i + bi ∈ R. (1.4.2)

Finally, the neuron’s “post-activation value” is

aℓi = hi(z
ℓ
i) (1.4.3)

where hi is a non-linear “activation” function, of which some examples are given in §1.4.2.

Terminology 1.4.2. The depth of the neural network is the number of layers (denoted L
in (1.4.1)) and the width of a layer is its number of neurons (denoted nℓ above).

The parameters which are updated during training are the weight and bias parameters
wℓ = (wℓ

i)
nℓ

i=1 and bℓ = (bi)
nℓ

i=1. These are called “learnable parameters” to distinguish them
from hyperparameters such as width and depth, which are chosen in advance rather than
learned during training.

1.4.2. Activation functions. The activation functions h1, h2, . . . , hL are non-linear, and are
the only source of non-linearity in the neural network. They are given entrywise by applying
the same non-linear function to each entry, except possibly for hL which reparametrizes the
output to the desired form.

Example 1.4.3. The sigmoid function is

5We caution that our convention for weight matrices is the transpose of PyTorch’s convention, which
uses instead z = aW⊥.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 7

σ(x) =
1

1 + e−x

Observe that σ(x) is monotonically increasing and valued in (0, 1). Note that

σ(x) =
1

1 + e−x
= 1− σ(−x).

Example 1.4.4. The hyperbolic tangent function

tanh(x) =
ex − e−x

ex + e−x

is another candidate activation function, which has similar properties to the sigmoid func-
tion.

Both σ and tanh are examples of saturating non-linearity, meaning that they quickly level
off as |x| gets large. Consequently, if |x| is very large, then |σ′(x)| is very small, which means
that gradient descent can be very slow in such domains. This problem is exacerbated when
composing many such functions together, leading to the “vanishing gradients” problem for
deep neural networks.

Example 1.4.5. The ReLU (for “rectified linear unit”) function is

ReLU(x) =

{
0 x < 0

x x ≥ 0

Compared to the sigmoid function, ReLU is considered non-saturating, at least in the pos-
itive direction. (For a discussion of why saturation in the negative direction is mostly
innocuous, see Example 1.6.5.) There are variants of ReLU (like “leaky ReLU”) which ad-
dresses the left saturation, but the simple ReLU function has come to be the dominant
choice for non-linearities in deep neural networks, because it works well in practice and
scales well due to its simplicity.

Terminology 1.4.6. In linear regression, we called the entries of the input vectors “fea-
tures”. Since every layer of a neural network looks like linear regression, we continue to
refer to the values calculated by intermediate neurons as “features”, even though in practice
they can be hard to interpret concretely. (Other names for features in the hidden layers are
“representations” or “embeddings”.)

In deep networks, one can observe a hierarchical structure to features: in early layers,
the features are simple combinations of the input features, while later neurons track more
complex and subtle structure. Illustrative examples will be seen in the lectures on CNNs
and RNNs.

8 TONY FENG

Remark 1.4.7. Activation functions are trying to capture the intuition from biology that
neurons should “activate” when they recognize a feature. Consider for concreteness the
ReLU function a(x) = ReLU(zw + b). If zw + b < 0 then the neuron transmits no signal
and we interpret it as being “off”; otherwise it transmits the signal zw + b.

1.5. Learning. Returning to the template of §1.1, suppose we are given a training data set
D = {(xi, yi)}ni=1 for which we want to model yi = fθ(xi). We take θ to consist of all the
weights W and biases b of a neural network which computes fθ.

The point of Machine Learning is to find the optimal θ̂ from the data. How do we do
this? As we discussed in the toy example of Linear Regression (§1.3), we first need to settle
on a precise notion of optimality, by defining a measure of “error” on the data. This is called
the loss function. We will then try to find the θ that minimizes the loss function.

1.5.1. Loss function. For regression, the most common loss function is again the “mean
squared error”

LD(θ) = MSED(θ) =
1

n

n∑
i=1

(yi − fθ(xi))
2.

For classification problems, this does not apply in general since our outputs yi and fθ(xi)
are class labels instead of numbers. Even when the yi can be viewed as numbers, as in the
handwritten digit classification example, we probably do not want to think of them as such
because the numerical value does not necessarily reflect the notion of similarity that we are
pursuing. For example, for the purposes of handwriting classification, ‘3’ and ‘8’ are close
in terms of visual appearance, but they are relatively far apart numerically. On the other
hand, ‘3’ and ‘4’ are close numerically but not that close visually.

Instead for classification problems we refine the objective to something more quantitative:
a probability distribution on the possible classes. Then our neural network will actually
compute

Fθ(x, y) = (predicted probability of assigning class y to x).

From Fθ, we can easily extract

fθ(xi) = argmax
y

Fθ(xi, y).

Now how do we measure the error on a given datapoint (xi, yi)? A common choice is the
“cross-entropy”

L(xi,yi)(θ) = − lnFθ(xi, yi); (1.5.1)
we will discuss the mathematical justification for this in the lectures on Information The-
ory and Statistical Inference. As a sanity check, note that L(xi,yi)(θ) = 0 if Fθ(xi,−) is
concentrated on the correct label yi, and increases to ∞ as Fθ(xi,−) decreases to 0.

Remark 1.5.1. To ensure that Fθ(x,−) is a probability distribution, we need∑
y

Fθ(x, y) = 1. (1.5.2)

While it is clear that this can be enforced mathematically by imposing some constraint on
θ ∈ RN , this is awkward to do explicitly. Instead, it is better to reparametrize so that
θ ∈ RN remains unconstrained. For example, we can create a probability distribution out
of n arbitrary real numbers (u1, . . . , un) by applying the “softmax” function

(ui) 7→
(eui∑n

k=1 e
uk

)
.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 9

Thus, we enforce (1.5.2) by postcomposing with softmax in the last layer of the NN.

1.5.2. Gradient descent. The training objective is to find θ minimizing the loss function
LD : RN → R. We do this by sampling an initial point θ0, and then iteratively adjusting it
by gradient descent.

The Taylor approximation of a function L is

L(θ + ξ) ≈ L(θ) + dL(ξ) ≈ L(θ) + ⟨∇θ(L), ξ⟩.

By Cauchy–Schwarz, the inner product is maximized among unit vectors ξ when ξ is pro-
portional to a positive multiple ∇θ(L). This makes it clear that, to first order, −∇θ(L) is
the direction of “steepest descent” for L. Therefore, at each training step, we calculate

∇θ(LD) =
1

n

n∑
i=1

(∇θL(xi,yi)),

and then make an update of the form

θ 7→ θ − η∇θ(LD). (1.5.3)

(In computer science notation, this translates to “θ ← θ − η∇θ(LD)”). The insistence on
parameter space RN is to ensure that the update (1.5.3) stays in the parameter space.

Remark 1.5.2. Actually, in practice we would not use the entire dataset for (1.5.3), as this
would be too slow to compute, especially for large datasets. Since the loss is additive over
datapoints, we can obtain an unbiased estimator for the gradient (up to scalar multiple) by
picking a random datapoint (xi, yi) and using ∇θ(L(xi,yi)) instead of ∇θ(LD). This is fast,
but it has the downside of being very noisy. In practice, we would do something in between:
pick a random batch B ⊂ D, and average the gradient over that batch.

The hyperparameter η in (1.5.3) is called the learning rate. Note that the learning rate is
not a unitless quantity, which means that its numerical value is not intrinsically meaningful,
and in practice it needs to be tuned consistently with the normalizations of the input and
output.

Example 1.5.3. A common way to normalize the input is by the “Z-score”, which is the
number of standard deviations from mean (calculated empirically). However, this is really
only appropriate for data which is approximately normally distributed data. Sometimes we
instead linearly scale to a given desired range such as [−1, 1], or apply one of these scaling
functions after some transformation (such as the logarithm function), depending on the
data. With Z-score normalization, it is common to see a learning rate around 10−2.

The intuition is that a learning rate which is too large will oscillate too much and not be
able to take good steps, while a learning rate which is too small will converge too slowly. In
practice, sophisticated neural networks will use a learning rate scheduler that adjusts the
learning rate during training, for example by a formula (linear, exponential, or power law
decay), or adaptively (e.g., starting at 0.1 and decreasing multiplicatively by a factor of 0.1
when the validation loss flattens sufficiently).

1.5.3. Train/validation/test split. When training a neural network in practice, the data is
split randomly into “training data” (around 80%), “validation data” (around 10%), and “test
data” (around 10%). The training data is used for gradient descent on the model weights,
and the validation data is used for things like model selection, hyperparameter tuning, and
early stopping (a regularization method). Finally, the test data is used only at the end, to

10 TONY FENG

test that the neural network can generalize to unseen examples, as opposed to “memorizing”
the training examples.

A training epoch is one full cycle of passing over the training data. During each epoch, the
training data is broken up into batches of B samples, and the gradient update is averaged
over the batch. This averaging addresses the noisiness of individual datapoints. For a typical
(small to medium) neural network, B is typically on the order of 100 to 1000. But for a
large language model, a pre-training batch size would be much larger, e.g., on the order of
106 for GPT-3.

The number of epochs depends on the size and complexity of the network, but is usually
on the order of 1-100. Large Language Models (LLMs) are an exception: they do not
pass (during the pre-training phase) multiple times through the training data6 (in fact, the
training phase involves deduplication on data, so that not even the whole training set is
used). This is because the training data is so large to begin with that there has (until now)
been enough fresh data, and LLMs have so many parameters that they could overfit to data.

1.6. Backpropagation. The key to the neural network architecture is an efficient algo-
rithm to implement gradient descent, called backpropagation. To describe it, we begin by
setting up the notation.

1.6.1. Setup. We assume a neural network of the form (1.4.1),

x
g1

−→ z1
h1

−→ a1
g2

−→ z2
h2

−→ a2 → · · · hL−1

−−−→ aL−1 gL

−−→ zL.

For each ℓ = 1, 2, . . . , L, let nℓ be the number of neurons in the ℓth layer and hℓ : Rnℓ → Rnℓ

be the activation function at the ℓth layer. The function gℓ is given by

zℓ = gℓ(aℓ−1) = aℓ−1W ℓ (1.6.1)

where W ℓ is a matrix of dimension nℓ−1 × nℓ.
The loss on input (x, y) is

L(y, zL) = L(y, (hL−2(. . . h1(z1)W 1)W 2 . . .)WL). (1.6.2)
Remark 1.6.1. Here we assume that each layer is fully connected; any other case is math-
ematically specialized from this one by forcing some weights to be zero. We also assume
that there are no biases, which again is mathematically fully general by Remark 1.3.1.
1.6.2. Loss gradient with respect to weights. In the update steps, we change the parameter
WL by some multiple (called the learning rate) of the gradient − ∂L

∂WL . Backpropagation is
a way to calculate this efficiently using the chain rule. Note that L only depends on W ℓ

through zℓ, so we have
∂L
∂W ℓ

=
∂L
∂zℓ
◦ ∂zℓ

∂W ℓ
. (1.6.3)

From (1.6.1), we see that ∂zℓ

∂W ℓ is left multiplication by aℓ−1. Therefore,
∂L
∂W ℓ

=
∂L
∂zℓ︸︷︷︸
nℓ×1

◦ aℓ−1︸︷︷︸
1×nℓ−1

(1.6.4)

Therefore, the gradient is the transpose of (1.6.4),

∇W ℓ(L) = (aℓ−1)⊤∇zℓ(L). (1.6.5)

6As we will see in §8, this is not literally true: for GPT-3, the training data is stratified by quality, and
higher quality data does get seen more than once during training

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 11

Note that this is an nℓ−1 × nℓ matrix. The vector aℓ−1 is stored in memory on the forward
pass through the network, so that it can be used here to compute ∇W ℓ(L).

1.6.3. Digression on the gradient. In multivariable calculus, one usually sees the gradient
of a function f : RN → R defined as the “transpose of the derivative”. Because of our
convention that zℓ and aℓ are row vectors, the gradient would then be a N × 1 “column
vector”. However, the convention is that the gradient of a scalar-valued function L with
respect to a tensor W has the same shape as W . This is desirable because ∇W (L) then lies
in the same ambient space as W , and it is then easy to interpret the ∇W (L) as a direction
of “steepest descent” for W .

In particular, if W is an m× n matrix of variables, then by ∇W (L) we mean the m× n
matrix such that

∇W (L)ij =
∂L
∂Wij

. (1.6.6)

However, because we are mathematicians we prefer to formulate the notion of gradient
in a coordinate-free way. The correct general context is that of a Riemannian manifoldM.
This means that M is equipped with a Riemannian metric, which is a “smoothly varying”
choice of inner product on each each tangent space; we won’t use anything other than these
individual inner products, so we will not be more precise.

Example 1.6.2. We will describe a canonical Riemannian metric onM = Hom(Rn,Rm).
SinceM is a vector space, its tangent spaces at all points p ∈M are canonically identified
with Hom(Rn,Rm), which can then be identified back with M itself. On this space, we
have an inner product

⟨A,B⟩ := Tr(A⊤B); (1.6.7)

this is positive-definite (i.e., ⟨A,A⟩ ≥ 0 with equality if and only if A = 0), since A⊤A itself
defines a positive-definite form on Rn.

Remark 1.6.3. Recall some elementary linear algebra: suppose V is any finite-dimensional
R-vector space equipped with a non-degenerate bilinear pairing. Then any linear functional
f : V → R is uniquely represented as pairing with an element of V , namely the pre-image
of f under the isomorphism V

∼−→ V ∗ coming from the self-duality.

LetM be a Riemannian manifold and f :M→ R a smooth function. Then the derivative
of f at p ∈M is a linear transformation

dfp : TpM→ Tf(p)R = R.

The map dfp is a synonym for ∂f
∂p .

Definition 1.6.4. The gradient ∇pf of f : M → R at p ∈ M is the element of TpM
that represents the linear functional dfp in the sense of Remark 1.6.3. In other words, it is
characterized by the property that

⟨∇fp, ξ⟩ = dfp(ξ) for all ξ ∈ Tp(M).

This definition clarifies that the derivative dfp is a linear functional on the tangent space,
while the gradient is an actual element of the tangent space.

12 TONY FENG

1.6.4. Loss gradient with respect to features. In (1.6.5), we saw how to calculate ∇W ℓ(L) in
terms of ∇zℓ(L). Since L only depends on zℓ through zℓ+1, we can calculate this recursively
using the chain rule.

∂L
∂zℓ

=
∂L

∂zℓ+1

∂zℓ+1

∂aℓ
∂aℓ

∂zℓ
. (1.6.8)

Note that ∂aℓ/∂zℓ has the form diag(dhℓ(zℓ)), a diagonal (in particular, symmetric) ni × ni

matrix. Since zℓ+1 = aℓW ℓ+1, ∂zℓ+1/∂aℓ is right multiplication by W ℓ+1. However, these
expressions cannot be inserted mindlessly into (1.6.8) as the matrix multiplication

∂L
∂zℓ+1︸ ︷︷ ︸
nℓ+1×1

W ℓ+1︸ ︷︷ ︸
nℓ×nℓ+1

∂aℓ

∂zℓ︸︷︷︸
nℓ×nℓ

does not make sense. When confused about derivatives of tensor-valued functions of tensors,
one can lean back on the formalism of §1.6.3. First, for a tangent vector dzℓ to zℓ,

∂aℓ

∂zℓ
(dzℓ) = dzℓ ⊙ dhℓ(zℓ)

where ⊙ is the Hadamard product (meaning that multiplication is calculated entrywise) and
for ReLU, we have7

dhℓ(zℓ)i =

{
1 zℓi ≥ 0

0 otherwise.
Next, we apply

∂zℓ+1

∂aℓ

(
dzℓ ⊙ dhℓ(zℓ)

)
=
(
dzℓ ⊙ dhℓ(zℓ)

)
W ℓ+1

Using cyclicity of the trace, we find that
∂L
∂zℓ

=
∂L

∂zℓ+1

((
dzℓ ⊙ dhℓ(zℓ)

)
W ℓ+1

)
=
〈
∇zℓ+1(L),

(
dzℓ ⊙ dhℓ(zℓ)

)
W ℓ+1

〉
= Tr

(
∇zℓ+1(L)⊤

(
dzℓ ⊙ dhℓ(zℓ)

)
W ℓ+1

)
= Tr

([
dhℓ(dzℓ)⊙

(
W ℓ+1∇zℓ+1(L)⊤

)]
dzℓ
)

=

〈[
∇zℓ+1(L)(W ℓ+1)

]⊤
⊙ dhℓ(dzℓ),dzℓ

〉
which implies that

∇zℓ(L) =
[
∇zℓ+1(L)(W ℓ+1)⊤

]
⊙ dhℓ(dzℓ). (1.6.9)

Note that this recursive formula can be computed from left to right, in which case it only
ever involves multiplying a matrix times a vector, which saves a dimension compared to
matrix multiplication.

Example 1.6.5. Consider a NN with ReLU activations. Since ReLU′(x) = 0 if x < 0, a
neuron which is off has a local gradient dhℓ(zℓ)i = 0, so its weights will not update during
backpropagation. Why is this reasonable?

Let’s tell a story for concreteness: imagine we have a Neural Network that tries to classify
mathematical proofs as Correct or Incorrect. Our particular neuron might be trying to detect

7ignoring the case zℓi = 0 at which hℓ is non-differentiable

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 13

if the proof is using the method of “handwaving”. Thus the inputs z might be tracking words
in the proof, and then zw picks out (say) the phrases “obvious”, “clear”, “well-known”, “easy
to see”, or “left to the reader”.

Suppose these phrases don’t appear in a given input, so the neuron in question does
not activate during inference. If the end prediction is wrong, then it shouldn’t cause us to
update the weights of the neuron itself, since the prediction didn’t use that feature anyway.

Example 1.6.6. For completeness, we analyze the base case ∇zL(L). This depends on the
exact form of the loss function.

For regression, it is typical to take the MSE loss

L(y, zL) = ||zL − y||22,
so that δL = ∇zL(L) = zL − y.

For classification, recall that from zL we obtain an estimated probability distribution
p̂ = SoftMax(zL), and then take the cross-entropy loss. Therefore,

L(y, zL) = −
∑
i

yi ln
(ez

L
i∑

k e
zL
k

)
= −

∑
i

yiz
L
i + ln

∑
k

ez
L
k .

Some algebra reveals that the gradient of ln
∑

k e
zL
k is simply p̂, so that

∇zL(L) = p̂− y.

1.6.5. Backpropagation algorithm. Putting everything together, we arrive at the Backprop-
agation Algorithm.

(1) Recursively compute ∇zL(L),∇zL−1(L), . . . ,∇z1(L) according (1.6.9) and the fol-
lowing discussion.

(2) Compute ∇W ℓ(L) = (aℓ−1)⊤∇zℓ(L) for ℓ = L,L− 1, . . . , 1.
(3) Update W ℓ ←W ℓ − η∇W ℓ(L), where η is the learning rate.

1.7. Regularization. A perennial theme in Machine Learning is the problem of overfitting,
which refers to when the model adapts too specifically to the training data, and is then
unable to generalize to new examples.

Generally speaking, overfitting occurs when the training data is too small relative to size
of the model (measured by its number of parameters). Ideally, one would like to increase
training data, but this may not be feasible. For fixed training data, there are measures
called regularization in order to combat overfitting. Some examples include:

• Introduce an additional term into the loss objective to “penalize” complexity, such
as adding +0.01||W || for some norm on the vector of weights W (usually the L2

norm or the L1 norm).
• “Early stopping”: stop training when the validation loss levels off, even if the training

loss is improving.
• “Dropout”: randomly drop a proportion of the neurons during training.

We will discuss these further in §4.1 below. In many ways, the description of neural network
training given in this first lecture is oversimplified, and will be corrected in §4.

2. Information theory

We will summarize some ideas from information theory, which began with Claude Shan-
non as a “mathematical theory of communication” [Sha48]. Historically, information theory
has had important applications to coding and compression, which we will touch on. It is

14 TONY FENG

not clear a priori why this has anything to do with machine learning, but ultimately we
will see a connection between compression and generative sequence modeling, which helps
to explain why the concepts of information theory play an important role in (for example)
generative AI.

Convention: we use ln for the natural logarithm and log = log2 for the base 2 logarithm.

2.1. Information. Suppose we want to capture the concept of “information” mathemati-
cally. For concreteness, let’s begin by thinking about the amount of information conveyed
in a written message. Naively, you might first try to measure information by the length of
the message, but it is clear that this fails to capture important features of information.

Example 2.1.1. The English language has a lot of redundancy. Consider the following
MathOverflow comment8:

Paper I considers surface fibered in geom. integral curves over
proj. line, generic fiber smooth and at worst nodal fibers; subsumed
by Grothendieck’s relative Picard schemes (for any proj. flat family
of geom. int. schemes), really its relative id. component (makes
sense since Pic smooth for relative curves); see FGA Explained.
II is special case of description of ℓ-adic repns for ab. variety
over Frac(dvr) when Neron model has sst reduction, III grinds out
n-torsion Galois repn for “generic” ell. curve over k(j); II &
III subsumed by Neron models (didn’t exist!).

This is a heavily compressed message, yet it can (to a reader educated in algebraic geometry)
be understood and completely uncompressed.

Slogan 2.1.2. Shannon’s key idea is that the information in a message can be measured
by how surprising the message is.

In turn, we can think of “surprise” as a synonym for “unlikely”. To quantify this precisely,
we work in the context of a probability ensemble (Ω, P). In this notation, Ω is our outcome
space (sometimes called sample space), and P is the probability function on it. For simplicity,
we focus our discussion on the case of discrete probability distributions; the reader should
be able to easily extrapolate to the continuous case.

Definition 2.1.3. Let A ⊂ Ω be an event. The Shannon information of A is

I(A) := log(1/P (A)) = − logP (A). (2.1.1)

Note that I(A) ≥ 0, as any event carries non-negative information. The more improbable
the event, the higher the information it carries.

Example 2.1.4. The probability that we have the same birthday (let’s ignore the issue of
leap years) is 1/365, which is much smaller than the probability 364/365 that we do not
have the same birthday. Indeed, if I tell you “We do not have the same birthday”, then you
learn little information about my birthday. But if I tell you “We have the same birthday”,
then you learn a lot about my birthday.

Example 2.1.5. Suppose you are reading a message that starts Harry Potte. Then you
know the last character with extremely high probability, so when the r comes, it conveys
very little additional information.

8Brian Conrad, MathOverflow comment.

https://mathoverflow.net/questions/36979/some-arithmetic-terminology-universal-domain-specialization-chow-point

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 15

Remark 2.1.6. The natural unit of information is bits. Indeed, information is a measure of
how many bits are required to convey a message. Consider for example a uniform distribution
on n elements. Since n elements can be enumerated using log(n) bits, to specify a sample
from this distribution requires log(n) bits.

2.2. Entropy. Shannon goes on in [Sha48] to define the notion of entropy. This is closely
related to the concept of “Boltzmann–Gibbs energy” in statistical physics, and it appears
that Shannon was aware of this notion, and inspired by it.

Slogan 2.2.1. The (Shannon) entropy of a random system is the expected amount of in-
formation in it.

For example, the entropy of a discrete probability ensemble (Ω, P) is

H(Ω) = E[log(1/P)] =
∑
ω∈Ω

P (ω) log(1/P (ω)) = −
∑
ω∈Ω

P (ω) logP (ω). (2.2.1)

More generally, we define the entropy of a random variable.

Definition 2.2.2. Let X : Ω→ R be a random variable. Then the entropy of X is

H(X) := E[− logP (X)] = −
∑
x

P (X = x) logP (X = x).

Example 2.2.3. The entropy of an English letter is estimated to be roughly 4.11 bits,
because of the non-uniform distribution of letters. On the other hand, the entropy of the
uniform distribution on 26 elements is log(26) ≈ 4.7.

Example 2.2.4. Let X be a Bernoulli random variable with parameter p. Then

H(X) = −p log p− (1− p) log(1− p),

which is graphed below as a function of p.

We can think of X as the outcome of a biased coin flip which comes up heads with probability
p. For p = 1/2, we see that H(X) = 1, which makes sense because then X carries the
information of exactly one bit. As p → 0 or p → 1 the entropy decreases to 0, because X
approaches a deterministic value, hence carries less and less information.

Exercise 2.2.5. Show that if X and Y are independent random variables, then the entropy
of the joint distribution (X,Y) satisfies

H(X,Y) = H(X) +H(Y).

Remark 2.2.6 (Perplexity). A mathematically equivalent notion to entropy is perplexity
(after which Perplexity AI is named). The perplexity of a random variable X is simply
2H(X). While entropy is measured by bits, perplexity captures the number of possibilities,
e.g., the perplexity of a uniform random variable on N elements is N .

16 TONY FENG

2.3. Why this formula for entropy? We will see that entropy is a key quantity which
shows up in many applications. However, the formula (2.2.1) is perhaps unintuitive at first.
How could we have discovered it?

First let’s think about the definition of information, (2.1.1). Why does the logarithm
come up there? The key observation is that the information conveyed by the message
X1, X2 should be the same as the information conveyed by sending X1, followed by sending
X2. Thus, once we accept that information I(·) is a function of probability, it should satisfy

I(P (X1, X2)) = I(P (X1)) + I(P (X2|X1)).

Given that P (X1, X2) = P (X2|X1)P (X1), it is natural to take I to be the logarithm func-
tion.

Example 2.3.1. Suppose a discrete random variable X takes values 0, 1, 2 with P (X =
0) = 1/2 and P (X = 1) = P (X = 2) = 0.25. Then the entropy of X is

H(X) = 0.5 log(2) + 0.25 log(4) + 0.25 log(4) = 1.5.

Now let’s imagine that X arises via a different “origin story”, and verify that we get the
same answer. Say we flip a fair coin, and if it comes up H, then X = 0. Otherwise, we flip
again, and if the second flip is H then we set X = 1, otherwise X = 2.

0

0.5

1

0.5

2

0.5

0.5

Then X is a coin flip plus a 0.5 chance of another coin flip, so H(X) = 1 + 0.5× 1 = 1.5.

This example illustrates the “decomposability” of the entropy: if we “decompose” a ran-
dom variable into sequences of random variables, then the entropy adds.

More generally, suppose that we have a discrete probability distribution {p1, . . . , pn}.
Then the entropy of the distribution should have the form H(p1, . . . , pn), and the general-
ization of the “decomposibility” property is expressed as

H(p1, . . . , pn) = H(p1, 1− p1) + (1− p1)H(
p2

1− p1
, . . . ,

pn
1− p1

) (2.3.1)

Proposition 2.3.2 (Khinchin). There is a unique up to scalar function H(p) over finite
probability distributions p = {p1, . . . , pn}, satisfying the following properties.

(1) (Continuity) For any fixed n, H is continuous in the pi.
(2) (Increasing in the size of the uniform distribution) H(1n , . . . ,

1
n) is increasing as a

function of n.
(3) (Decomposability) H satisfies the identity (2.3.1).

The function H(p) is given by (a scalar multiple of) the Shannon entropy −
∑

pi log(pi).

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 17

Proof. Let us first focus on the uniform distribution, and abbreviate Hr := H(1r , . . . ,
1
r) for

any r ≥ 1. Then by decomposability of the entropy, we have Hrn = nHr.

1/r

. . .

1/r

1/r

. . .

1/r

. . .

1/r

1/r

We will show that Hr ∝ log r. For any n ≥ 1, we can find m ≥ 1 such that 2m < rn < 2m+1,
so that

m < n log(r) < m+ 1

or

m

n
< log(r) <

m

n
+

1

n
.

By monotonicity, we have

mH2 < nHr < (m+ 1)H2

hence

m

n
H2 < Hr <

m+ 1

n
H2 =⇒ m

n
≤ Hr

H2
<

m+ 1

n
.

As n→∞, we have m/n→ log(r), so we conclude that Hr = H2 log(r).
Since the proof asks for uniqueness up to scalars, we may normalize so that H2 = 1; our

goal is then to show that

H(p1, . . . , pn) = −
∑
i

pi log(pi).

By continuity, it will suffice to do this when the pi ∈ Q are all rational. We may then
assume that each pi = ai/N for some common denominator N ∈ Z, where each ai is a
positive integer. We may then further refine this distribution into the uniform one on N
elements, by breaking the ith outcome (which has probability ai/N) into ai sub-outcomes

18 TONY FENG

with the uniform distribution.

Then by decomposability of entropy, we obtain

H
(a1
N

, . . . ,
an
N

)
+

a1
N

H
(1

a1
, . . . ,

1

a1

)
+ . . .+

an
N

H
(1

an
, . . . ,

1

an

)
= H

(1

N
, . . . ,

1

N

)
.

As we have already analyzed the uniform case, we know that H(1
ai
, . . . , 1

ai
) = Hai

= log(ai).
Hence we may solve

H
(a1
N

, . . . ,
an
N

)
= log(N)−

∑
i

ai
N

log(ai) = −
∑
i

ai
N

log
(ai
N

)
,

as desired.
□

2.4. Conditional entropy. Let (Ω, P) be a probability ensemble and let X and Y be
discrete random variables Ω. Then the conditional entropy H(X|Y) of X given Y is defined
as

H(X|Y) = −
∑
y

P (Y = y)
∑
x

P (X = x|Y = y) logP (X = x|Y = y)

Note that the inner sum is the entropy of the random variable (X|Y = y). Intuitively, the
conditional entropy H(X|Y) measures the expected “new” information in X if Y is given.

Example 2.4.1. If X and Y are independent, then upon substituting P (X = x, Y = y) =
P (X = x)P (Y = y) we find that

H(X|Y) = −
∑
y

P (Y = y)
∑
x

P (X = x) logP (X = x)

= −
∑
x

P (X = x) logP (X = x) = H(X),

as expected.

2.4.1. Mutual information. Let X,Y be random variables on a common outcome space. The
mutual information between X and Y is

I(X;Y) := H(X)−H(X|Y).

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 19

Intuitively, I(X;Y) is the (expected) amount of information about X already present in Y ,
and the identity H(X) = I(X;Y) + H(X|Y) decomposes the entropy of X into the part
which is already present in Y , plus the part which is not in Y .

This intuition suggests that I(X;Y) = I(Y ;X), which is true. To see this, we invoke the
“chain rule” for entropy,

H(X,Y) = H(Y) +H(X|Y). (2.4.1)
Substituting this into the definition of mutual information, we see that

I(X;Y) = H(X) +H(Y)−H(X,Y),

which is manifestly symmetric in X and Y .

Proposition 2.4.2. For any two random variables X,Y , we have I(X;Y) ≥ 0.

Proof. The proof is rather non-trivial, and follows by combining Theorem 2.4.4 and Lemma
2.4.6 below. □

The following cartoon depicts the decomposition of H(X,Y) into conditional entropy and
mutual information.

2.4.2. KL divergence. For two probability distributions P and Q on Ω, the Kullback–Leibler
(KL) divergence is

KL(P || Q) =
∑
ω

P (ω) log
P (ω)

Q(ω)
.

Remark 2.4.3. There are some edge cases for when the probabilities appearing in this
formula vanish. Continuity dictates what to do in these cases; the answers are as follows.

• If P (ω) = 0, then the summand corresponding to ω is dropped from the formula.
• If Q(ω) = 0 but P (ω) ̸= 0, then KL(P || Q) =∞.

Theorem 2.4.4 (Gibbs’ inequality). Let P,Q be any two probability distributions on a
discrete sample space Ω. Then we have KL(P ||Q) ≥ 0, with equality if and only if P = Q.

Remark 2.4.5. Theorem 2.4.4 is taken as license to regard KL(P ||Q) as a notion of
“distance” between probability distributions P and Q. Note however that KL(P ||Q) ̸=
KL(Q||P), in contrast to usual notions of distance.

Proof. Let’s write

KL(P || Q) =
∑
ω

P (ω) log
P (ω)

Q(ω)
=
∑
ω

P (ω) ·
(
− log

Q(ω)

P (ω)

)
. (2.4.2)

20 TONY FENG

We recall Jensen’s inequality in the following form: if f : [a, b]→ R is a convex function and
X is any random variable valued in [a, b], then

E[f(X)] ≥ f(E[X]).

Note that function f(x) = − log(x) is convex, as f ′′(x) = 1/x2 ≥ 0. For the random variable
X(ω) = Q(ω)/P (ω), we may rewrite (2.4.2) as EP [f(X)], the expected value of f(X) with
respect to the probability distribution P .9 Then Jensen’s inequality says that

EP [f(X)] ≥ f(EP [X]) = f
(∑

ω

P (ω)
Q(ω)

P (ω)

)
= f

(∑
ω

Q(ω)
)
= − log(1) = 0,

giving the desired inequality. Moreover, equality holds if and only if Q(ω)/P (ω) is constant.
□

The next Lemma tells us that we can think of mutual information as the mutual informa-
tion between random variables X,Y as the KL divergence between their joint distribution
and the independent distribution. Combined with Theorem 2.4.4, it completes the proof of
Proposition 2.4.2.

Lemma 2.4.6. Let X,Y be random variables on Ω. Let PX,Y be the joint law of (X,Y) on
ΩX × ΩY , and let PX ⊗ PY be the product law, so that

PX,Y (x, y) = P (X = x, Y = y) and PX ⊗ PY (x, y) = P (X = x)P (Y = y).

Then
I(X;Y) = KL

(
PX,Y ∥PX ⊗ PY

)
.

Proof. By definition, we have

I(X;Y) = H(X)−H(X|Y)

= −
∑
x

P (X = x) logP (X = x) +
∑
x,y

P (Y = y)P (X = x|Y = y) logP (X = x|Y = y).

(2.4.3)

We can rewrite the first summand as

−
∑
x

P (X = x) logP (X = x) = −
∑
x,y

P (X = x, Y = y) logP (X = x).

We can rewrite the second summand as∑
x,y

P (Y = y)P (X = x|Y = y) logP (X = x|Y = y) =
∑
x,y

P (X = x, Y = y) log
P (X = x, Y = y)

P (Y = y)
.

Substituting these into the expression (2.4.3) for I(X;Y) and combining terms, we obtain

I(X;Y) =
∑
x,y

P (X = x, Y = y) log
(P (X = x, Y = y)

P (X = x)P (Y = y)

)
= KL

(
PX,Y ∥PX ⊗ PY

)
,

as desired. □

9We will write the proof under the assumption that P (ω) ̸= 0. The case where some P (ω) = 0 then
follows by continuity.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 21

2.5. Compression. Shannon’s original applications of information were to coding and com-
pression. This will give an intuitive interpretation to the entropy of a random variable, as
the natural limit to how much its outcomes can be “compressed” in expectation.

Example 2.5.1. Suppose we repeatedly flip a coin, which comes up heads with probability
p, and record the results of N flips. Let X = X1X2 . . . Xn be the outcomes, so the Xi are
i.i.d. Bernoulli random variables with parameter p. By Example 2.2.4 and Exercise 2.2.5,
we have

H(X) = nH(Xi) = n(−p log(p)− (1− p) log(1− p)). (2.5.1)
As a sanity check, let’s think about (2.5.1) in a couple of special cases. If p = 1/2, then
H(Xi) = 1. This makes sense, as we need 1 bit to convey the outcome of a uniformly
random bit. Correspondingly, we need H(X) = n to convey the outcomes of n independent
uniformly random bits.

As p tends to 0, the entropy H(X) decreases. Indeed, we expect the outcomes of the coin
flips will be mostly tails. In other words, we can expect X to be a “sparse vector”, and we
can imagine leveraging this to compress the results. Later, we will see precise schemes for
doing this efficiently.

2.5.1. Formal setup. Let’s try to make these ideas precise. Suppose we are communicating
using a (finite) “alphabet” A = {a1, a2, . . .} of symbols. Let A+ =

⋃
n≥1An be the set of

non-empty finite sequences of symbols from A, so for example {0, 1}+ is the set of finite bit
strings.

By a compression function, we mean a function

c : A+ → {0, 1}+,

which converts possible messages in our alphabet into bitstrings.
Now we will try to quantify how efficient a compression scheme is. Let X = (X1, X2, . . . , Xn)

be a random variable valued in An. For example, Xi could be the outcome of a biased coin
flip, as in Example 2.5.1. However, we imagine the Xi as not necessarily being independent.

Example 2.5.2. We could take A to be the English alphabet {a, b, ..., z}. Then
P (Xi = u) ≈ 2.8%, while P (Xi = u|Xi−1 = q) ≈ 100%.

Definition 2.5.3. For x1 . . . xn ∈ A+, we introduce the abbreviation

x1:n := (x1, x2, . . . , xn).

Define ℓc(x1:n) to be the length (i.e., number of bits) of c(x1:n) ∈ {0, 1}+.
For X = (X1, X2, . . . , Xn) a sequence of random variables valued in A, define the expected

length of c to be E[ℓc(X)].

Informally, E[ℓc(X)] is the expected number of bits to encode a length n message in the
alphabet A, and the goal of compression is to find a compression function c minimizing this.
In this context, the entropy of X finds an interpretation as the natural limit of the expected
length of any compression function c for X. Shannon’s Source Coding Theorem essentially
says that it is impossible to compress with expected length below the entropy, and that
there do exist codes (e.g., Huffman codes) which achieve

H(X) ≤ E[ℓc(X)] < H(X) + 1

Conversely, we will give an explicit construction to show that the entropy can essentially be
reached by a compression function.

22 TONY FENG

2.5.2. Arithmetic coding. One theoretically efficient compression scheme (which is even used
in practice!) is arithmetic coding. The main idea of arithmetic coding is to subdivide the
unit interval [0, 1] into subintervals, such that each outcome x = (x1, . . . , xn) gets assigned
to an interval Ix with P (X = x) = |Ix| (the size of Ix). The compression function then
returns the shortest binary expansion of a number lying in the interval Ix.

Example 2.5.4. Consider two independent flips of a biased coin with T probability 0.8.
There are four possible outcomes. We will assign them intervals in [0, 1] by the following rule.
We will build the intervals iteratively (with initial interval being all of [0, 1]), subdividing
so that the left 80% is labeled T and the right 20% is labeled H.

In the first iteration, we have two intervals,
(1) T ↔ [0.0, 0.8)
(2) H ↔ [0.8, 1.0).

In the next iteration, each of these is further subdivided, giving the intervals
(1) TT ↔ [0.0, 0.64).
(2) TH ↔ [0.64, 0.8).
(3) HT ↔ [0.8, 0.96).
(4) HH ↔ [0.96, 1.0].

The binary expansions of the endpoints are then
(1) 0.0 = 0.02
(2) 0.64 = 0.10 . . .2
(3) 0.8 = 0.110 . . .2
(4) 0.96 = 0.11110 . . .2
(5) 1.0 = 1.02.

Finally, we select the shortest binary expansion lying (strictly, let’s say, although we could
optimize this further) in each interval. This is found by looking at the first position where
the left and right endpoints differ for each interval. We end up with the encoding in the
following table:

Outcome Encoding Bits
TT .12 1
TH .112 2
HT .1112 3
HH .111112 5

Compared to the naive encoding where we just output 0 for T and 1 for H, we see that we
save one bit in the outcome TT, but have to send 3 extra bits for the outcome HH. Since
TT is much more likely than HH, this is a good tradeoff! Indeed, the expected length of
our encoding is

0.64× 1 + 0.16× 2 + 0.16× 3 + 0.04× 5 = 1.64

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 23

which already saves over the naive encoding that always requires 2 bits.

Why does this work? The point is that to convey a number in an interval I, we need
about log(1/|I|) bits. Thus, the more probable outcomes are assigned larger intervals, and
will require fewer bits to encode. The efficiency of arithmetic encoding is guaranteed by the
following Lemma.

Lemma 2.5.5. The expected length of an arithmetic code is at most H(X) + 2.

Proof. We claim that any interval I strictly contains a number whose binary expansion has
at most 1 + ⌈log(1/|I|)⌉ bits.

Indeed, let n = ⌈log(1/|I|)⌉. In other words, n is the smallest integer such that 1/|I| <
2n, or equivalently |I| > 2−n. We can subdivide the unit interval into 2n equally spaced
subintervals of length 2−n. Then the endpoints lies at the numbers whose binary expansions
have length exactly n, and so only require n bits to convey.

Since we arranged |I| > 2−n, there will be an endpoint lying in I. By increasing n by one
if necessary, we can always avoid the situation where the endpoint lies on the boundary of
I, proving the claim.

Thanks to this claim, we can bound the expected length of c(X) as∑
x

P (X = x)ℓ(c(X)) ≤
∑
x

P (X = x)
(
1 + ⌈log(1/|Ix|)⌉

)
≤
∑
x

P (X = x)
(
2 + log(1/|Ix|)

)
=
∑
x

P (X = x)
(
2 + log(1/P (X = x))

)
= 2 +H(X).

□

2.5.3. Relation to generative sequence models. Arithmetic coding requires the encoder and
decoder to both have access to the function that converts an outcome x1:n = x1x2 . . . xn

into an interval. In practice, this is implemented using a generative sequence model, which
is a model for the conditional probability functions

Pθ(xn|x1:n−1) := Pθ(xn|x1, . . . , xn−1), for all n. (2.5.2)

Given the generativee sequence model, we can construct the intervals by iteratively subdi-
viding as in Example 2.5.4.

Remark 2.5.6. ChatGPT, is a neural network trained to predict a conditional probability
function of the form (2.5.2). This suggests a mathematical equivalence between compression
and generative modeling.

24 TONY FENG

Arithmetic codes give one direction of this equivalence: passing from generative sequence
models to compression functions. To complete the equivalence, let’s see how to go the other
way. Assume that we are given a compression function c : A+ → {0, 1}+, so that the length
ℓc(x) is defined for x ∈ A+.

Define
∆ℓc(xn|x1:n−1) := ℓc(x1:n)− ℓc(x1:n−1)

to be the number of additional bits that the compression function uses to encode xn after
having already encoded x1:n−1. Then we define

Pθ(xn|x1:n−1) = 2−∆ℓc(xn|x1:n−1).

In other words, given a compressor, we should define − logP (xn|x1:n−1) to be the number
of additional bits required to encode xn given context x1:n−1. Looking back at Definition
2.1.3, we see that this is precisely the “information” of xn given x1:n−1. It is easy to check
that this reconstructs the sequence model from an arithmetic code.

Remark 2.5.7. Observe that in the loss function for classification (1.5.1), − logPθ(xn|x1:n−1)
would be exactly the “cross-entropy” loss for the model θ on the token xn appearing after
the sequence x1:n. Therefore, for a sequence model, minimizing cross-entropy loss can be
thought of equivalently as minimizing the expected length of the corresponding compressor.

Remark 2.5.8. The paper [DRD+24] investigates this equivalence empirically, by using
arithmetic codes built from LLMs to compress data, and comparing the efficiency to existing
standard compression functions. Their results show that the arithmetic codes compare well;
however, this does not account for the size of the LLMs, whose parameters require many
bits to express.

2.5.4. Infinitude of the primes. As a fun epilogue on the themes of this section, we will give
another argument for the infinitude of the prime numbers, from an information-theoretic
perspective.10

Theorem 2.5.9. There are infinitely many prime numbers.

Proof. Imagine that we are trying to compress a uniformly random integer in [1, . . . , N]. In
expectation, we need at least ⌈log(N)⌉ bits, since the number of bit strings of length ⌊log(N)⌋
is bounded above by 2log(N) = N . Furthermore, it is clear that there is an encoding that
achieves this bound (namely, the binary representation).

In the rest of the proof, we will ignore these rounding functions; the reader can easily
restore them as necessary.

Suppose for the sake of contradiction that there are only finitely many prime numbers
p1, . . . , pd. Any positive integer n ≥ 1 admits a unique prime factorization as a product

n =
∏
i

peii

for unique e1, . . . , ed ≥ 0. Furthermore, since each pi ≥ 2, each ei ≤ log(n). Hence ei can
be encoded with ≈ log(log(n)) bits, which means that each n can be encoded by specifying
the e1, . . . , ed, which takes ≈ d log(log(n)) bits. But this gives an encoding of the first N
natural numbers with O(log logN) bits, contradicting the first paragraph of the proof! □

10I learned this argument from a talk by Tadashi Tokieda, although he says that he did not originally
come up with it.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 25

3. Statistical inference

3.1. Central Limit Theorem. Let X1, X2, . . . be i.i.d. random variables with (finite)
mean µ.

Slogan 3.1.1. The Law of Large Numbers says that the random variables

Xn :=
X1 + . . .+Xn

n

converge to the mean µ as n→∞.

One precise formulation of Slogan 3.1.1 is that for any fixed ϵ > 0,

lim
n→∞

P (|Xn − µ| > ϵ) = 0.

(This is called the “Weak Law of Large numbers”; it gives a type of convergence called
convergence in probability.)

Given the Law of Large Numbers, it is natural to ask about the random fluctuation of
Xn around its mean µ. Suppose Xi has variance σ2. Recall that the Gaussian (or normal)
distribution with mean µ and variance σ2, denoted N (µ, σ2), has density function

f(x|µ, σ2) =
1√
2πσ2

e−
(x−µ)2

2σ2

Slogan 3.1.2. Suppose the Xi have finite mean σ2. The Central Limit Theorem says that

1√
n

n∑
i=1

(Xn − µ).

converges in distribution to a Gaussian distribution with mean 0 and variance σ2.

The Central Limit Theorem explains the “universality” of the Gaussian distribution:
it is the limiting behavior of the average of independent (identically distributed) random
variables. Note that Var(

∑n
i=1(Xn − µ)) =

∑n
i=1 Var(Xi − µ) = nσ2, hence why

√
n is the

correct normalization factor to see an interesting result. This is responsible for the famous
“square root cancellation” principle, asserting that an accumulation of n random fluctuations
in [−1, 1] can be expected to reach the order of magnitude of

√
n.

We will give a partial derivation of the Central Limit Theorem (one that is valid under
additional technical assumptions). Recall that the moment generating function of a random
variable X is the formal series

MX(t) = E[etX] = 1 + tE[X] +
t2

2
E[X2] + . . .+

tk

k!
E[Xk] + . . .

26 TONY FENG

Example 3.1.3. The moment generating function of X ∼ N (0, σ2) is

MX(t) =
1√
2πσ2

∫ ∞

−∞
etxe−

1
2σ2 x2

dx

=
1√
2πσ2

∫ ∞

−∞
e−

1
2σ2 (x2−2tσ2x) dx

=
1√
2πσ2

∫ ∞

−∞
e−

1
2σ2 ((x−tσ2)2−t2σ4) dx

= e
t2σ2

2 .

More generally, this implies by a translation argument that the moment generating function
of X ∼ N (µ, σ2) is

MX(t) = eµt+
σ2t2

2 .

This is essentially a characterization of the Gaussian distribution: the logarithm of its
moment generating function is a quadratic polynomial in t, of the form µt+ σ2t2

2 .

Now let’s derive the Central Limit Theorem under the assumption that X1, X2, . . . are
i.i.d. random variables with well-defined moment generating function11 MXi(t). Without
loss of generality, assume that µ = 0, so that

MXi
(t) = 1 +

σ2t2

2
+O(t3)

We have
M 1√

n

∑
Xi

(t) = E
[
e
t 1√

n

∑n
i=1 Xi

]
= E[etXi/

√
n]n = MXi(t/

√
n)n.

Taking logarithms, we then see that

lnMXn
(t) = n lnMXi

(t/
√
n) = n ln

(
1 +

σ2(t/
√
n)2

2
+O((t/

√
n)3)

)
Using the Taylor series of ln(1+x) = x− x2

2 + x3

3 − . . ., we find that all but the lowest order
term vanish as n→∞, so that

lim
n→∞

lnMXn
(t) =

σ2t2

2
,

indicating a Gaussian distribution. □

3.2. Estimators. Let P be a probability distribution.

Definition 3.2.1. A random sample from the distribution f(x) is a sequence of random
variables X1, . . . , Xn which are i.i.d. with distribution P .

Definition 3.2.2. A statistic of a random sample (X1, . . . , Xn) is a random variable of the
form W = T (X1, . . . , Xn) for some function T .

Example 3.2.3 (Sample mean). The sample mean of X1, . . . , Xn is the statistic

X :=
1

n
(X1 + . . . Xn).

Note the difference between the mean of the Xi, which is a number, and the sample mean,
which is itself a random variable.

11This does not always exist. In general, we should work instead with the characteristic function E[eitX],
which always exists.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 27

In statistical inference, we will find ourselves in the following kind of setup. Suppose we
have family of probability distributions Pθ, depending on a parameter θ. An estimator of
a random sample (X1, . . . , Xn) is a function W (X1, . . . , Xn), which is intended to infer the
parameter θ. Mathematically, an estimator is identical to a statistic; the difference between
the two terms lies in their psychological connotations: we think of an estimator as “trying”
to estimate something, whereas a statistic does not necessarily have any attached “purpose”.

Definition 3.2.4. Below, we denote by Eθ[W] the expected value of W according to the
distribution Pθ. The bias of an estimator W of a parameter θ is

Biasθ(W) := Eθ[W]− θ.

This can be viewed as a function of θ. An estimator whose bias is identically 0 (as a function
of θ) is called unbiased.

Example 3.2.5 (Estimating the mean). By linearity of expectation,

E[X] =
1

n
(E[X1] + . . .+ E[Xn]) = E[Xi]

since the Xi are i.i.d. In other words, the sample mean is an unbiased estimator of the
mean.

Example 3.2.6. Let X1, . . . , Xn be a random sample. For each i = 1, . . . , n, we can take
Xi as an estimator of the mean of the Xi. This is obviously an unbiased estimator.

Example 3.2.7 (Estimating the variance). Recall that the variance of Xi is

E[(Xi − Eθ[Xi])
2] = E[X2

i]− E[Xi]
2.

Let’s define the (ad hoc terminology) “naive sample variance” to be

S2
naive(X1, . . . , Xn) :=

1

n

n∑
i=1

(Xi −X)2.

Is this an unbiased estimator of the variance? Let’s calculate E[S2
naive(X1, . . . , Xn)]. First,

some algebra gives
n∑

i=1

(Xi −X)2 =
∑
i

(
(Xi − µ)− (X − µ)

)2
=
∑
i

(Xi − µ)2 − 2
∑
i

(Xi − µ)(X − µ) +
∑

(X − µ)2.

Using that
∑

i(Xi − µ) = n(X − µ), this expression simplifies as∑
i

(Xi − µ)2 − n(X − µ)2.

Then taking expectation, we find that

E
[n∑

i=1

(Xi −X)2
]
= E

[∑
i

(Xi − µ)2 − n(X − µ)2
]

= nVar[Xi]− n
Var[Xi]

n
= (n− 1)Var[Xi].

Dividing by n, we obtain

E[S2
naive(X1, . . . , Xn)] =

n− 1

n
Var[Xi].

28 TONY FENG

In particular, the naive sample variance is not unbiased (unless Var[Xi] happens to be 0, in
which case there is no randomness anyway). Furthermore, we see what is needed to correct
it: define the sample variance

S2(X1, . . . , Xn) :=
1

n− 1

n∑
i=1

(Xi −X)2 =
n

n− 1
S2

naive.

Then the same calculation shows that S2(X1, . . . , Xn) is an unbiased estimator of the vari-
ance.

What happened here? Qualitatively, we saw that the naive sample variance is an under-
estimate of the variance. For example, looking at the case n = 1, we see that the naive
sample variance would always be 0, which is clearly an underestimate, while the sample
variance is undefined (although this may appear mathematically disturbing at first, it is
actually reasonable: a single sample is not enough to conclude anything about variance).

3.3. Maximum Likelihood Estimation. Suppose we have family of probability distribu-
tion, parametrized by θ. We denote the PMF/PDF by p(x|θ).

• The probability of an outcome x given parameter θ is p(x|θ).
• The likelihood of a parameter θ given an outcome x is L(θ|x) := p(x|θ).

Note that the right side “p(x|θ)” of these formulas looks the same; the difference lies in what
is being held fixed and what is viewed as variable.

Slogan 3.3.1. In practical terms, we use probability to predict outcomes from a given
model, while we use likelihood to infer a model from a given outcome.

Definition 3.3.2. Suppose we are given an outcome x and want to infer θ. The maximum
likelihood estimate of θ is

θ̂ := argmax
θ

L(θ|x) = argmax
θ

p(x|θ).

Example 3.3.3. Let X1, X2, . . . , Xn be a random sample from a Bernoulli distribution
Bernoulli(θ). Then for x = (x1, . . . , xn) ∈ {0, 1}n we have

L(θ|x) =
n∏

i=1

θxi(1− θ)1−xi = θk(1− θ)n−k where k = #{i : xi = 1}.

We could differentiate this directly, but we will instead leverage the key observation that
because of monotonicity of log, maximizing the likelihood is equivalent to maximizing its
logarithm. Now, the “log-likelihood” lnL(θ|x) has a more convenient expression,

lnL(θ|x) = k ln(θ) + (n− k) ln(1− θ). (3.3.1)

Now we can easily differentiate to solve for the unique critical point θ̂ = k/n. A little more
work shows that this is the global maximum of (3.3.1), so we conclude that the maximum
likelihood estimate is (the obvious guess) θ̂ = k/n.

Example 3.3.4. Let X1, . . . , Xn be a random sample from a normal distribution N (µ, σ2).
Then for x = (x1, . . . , xn), we have

L(µ, σ2|x) =
n∏

i=1

1√
2πσ2

e−
1

2σ2 (xi−µ)2 =
1

(2πσ2)n/2
e−

1
2σ2

∑
i(xi−µ)2 .

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 29

To maximize L(µ, σ2|x), we will again use the trick of looking instead at the log-likelihood,

logL(µ, σ2|x) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

Let’s examine the critical points. Differentiating with respect to the parameters, we find
that

d

dµ
lnL(µ, σ2|x) = 1

σ2

(∑
i

(xi − µ)

)
, (3.3.2)

and
d

dσ2
lnL(µ, σ2|x) = − n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ)2. (3.3.3)

Setting (3.3.2) equal to 0 gives µ̂ =
1

n

∑
i

xi, , and then setting (3.3.3) equal to 0 gives

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2. Note that these are what we called the sample mean and naive sample

variance, respectively. With a bit more work (to verify that these µ̂ and σ̂2 give global
maxima), we find that this provides the maximum likelihood estimates. In particular, the
MLE can be biased, as we see in this case by Example 3.2.7.

Remark 3.3.5. One weakness of MLE is that it can be highly unstable as a function of
the data, which in practice is noisy. The following example (due to Olkin et al.) is [CB90,
p.297, Example 7.2.2]. Suppose we sample from a Binomial(k, p) distribution with unknown
k and p. Consider the two datasets

• [16, 18, 22, 25, 27]
• [16, 18, 22, 25, 28]

For the first, the MLE of k is k̂ = 99, while for the second the MLE of k is k̂ = 190.

3.3.1. Relation to cross-entropy. Let p and q be two probability distributions on the same
sample space (which we conflate with their PMF/PDF). Then the cross-entropy of p, q is

H(p, q) := Ep[log(1/q)] = Ep[− log q].

Example 3.3.6. Supposing that p and q are discrete for simplicity, this unpacks to

H(p, q) = −
∑
i

pi log(qi).

As with the KL divergence, there are some edge cases in interpreting this formula (Remark
2.4.3): if pi = 0, then the summand is omitted, while if pi ̸= 0 but qi = 0, then H(p, q) =∞.

In the case of discrete random variables, it is clear that H(p, q) ≥ 0, since each−pi log(qi) ≥
0. This tells us that we can reasonably think of H(p, q) as being some measure of “distance”
between p and q. (Note however that H(p, q) ̸= H(q, p). We’ll come back to this later.) But
what is it trying to capture?

Let’s place ourselves in the mindset of logistic regression. Think of p as being the empir-
ical distribution given by data (corresponding to x), and q as being the model parameter
(corresponding to θ). Then the Maximum Likelihood Estimate of the parameter maximizes
the likelihood of the observed data under the model q.

30 TONY FENG

Imagine for concreteness that the empirical distribution p arises from N total outcomes,
so outcome ωi comes up Npi times (if it helps psychologically, you can imagine that N
is divisible enough so that Npi is an integer). Under our model q, the probability of this
happening is qNpi

i , so the maximum likelihood estimate is

q̂ = argmax
q

(∏
i

qNpi

i

)
.

Again, it is equivalent to maximize the log-likelihood,

q̂ = argmax
q

(∏
i

qNpi

i

)
= argmax

q
log
(∏

i

qNpi

i

)
= argmax

q

(∑
i

Npi log qi

)
.

Now we see that the N is irrelevant, so we can pull it out. Also, to put this in our standard
“loss minimization” framework, we can trade the argmax for argmin if we introduce a
negative sign. This means that the maximum likelihood estimate can be written equivalently

q̂ = argmin
q

H(p, q)

and this suggests the cross-entropy H(p, q) as our loss function. In other words, minimizing
cross-entropy loss is solving for the maximum likelihood estimate!

Remark 3.3.7. From this analysis, we see that H(p, q) reflects “the probability of empirical
data p under the model q”. This description is not symmetric under exchanging p ↔ q.
Inspecting the formula −

∑
pi log qi, we see that summands where qi is small but pi is

non-negligible contribute a large value. This guides us to the heuristic principle:

Slogan 3.3.8. Cross-entropy loss punishes predictions that are “confident but wrong” that
an outcome will not occur.

Example 3.3.9. In classification problems, it is common to train a neural net that computes
a probability distribution q over possible classes, and then outputs the most probable class.
Suppose the data is of the form {(xi, yi)} where yi is the ground truth label on the input
xi. The loss function for a datapoint (xi, yi) would then by cross-entropy H(p, q) where p
is the delta function on the true class yi, and q is the model’s probability distribution. This
is simply

H(p, q) = − log q(yi).

By contrast, H(q, p) would be infinite as long as q is supported on some outcome other than
yi, which would typically be the case. Therefore, H(q, p) would not be an appropriate loss
function.

Example 3.3.10. Student’s12 “tν-distribution” depends on a parameter ν, and has PDF

fν(x) =
Γ
(

ν+1
2

)
√
νπΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

.

12Student is a name, which a pseudonym used by William Sealy Gosset.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 31

The graph of fν is “bell-shaped”, roughly similar in appearance to a normal distribution.

For ν > 2, fν has mean 0 and finite variance ν
ν−2 . Let’s compare to the normal distributions

with these means and variances.

What do the cross-entropies look like in each of these situations? The following table is
the result of numerical (truncated) integration over x ∈ [−500, 500].

H(t2.1,N (0, 21)) 2.5738
H(t2.5,N (0, 5)) 2.0782
H(t8,N (0, 4/3)) 1.5625

H(N (0, 21), t2.1) 3.726
H(N (0, 5), t2.5) 2.4343
H(N (0, 4/3), t8) 1.5722

For ν = 2.1, 2.5 we see that H(tν ,N (0, σ2)) is noticeably smaller than H(N (0, σ2), tν),
while they are pretty close for ν = 8. Let’s try to rationalize how we could have guessed
this from looking at the graphs. Intuitively, taking the tν-distribution as the model and
the normal distribution as the data, we might imagine that it gets penalized heavily in the
low-probability tails where the normal distribution lies above it. With the roles switched,
the region where the tν-distribution lies significantly above the normal is also the highest
probability region for the normal distribution.

That being said, human intuition can misleading – especially at extreme scale or high-
dimensional settings – and there is a delicate balance between casting things in terms of
intuition and just trusting the mathematics. Indeed, from looking at the PDFs it is clear

32 TONY FENG

that Student’s t-distribution is actually heavier in the tails asymptotically than the normal
distribution, since it decays as a power of x, whereas the density function of the normal
distribution decays exponentially. More precisely, fν(x) decays like x−(ν+1) as |x| → ∞,
whereas

− log fN (µ,σ2)(x) ≍ x2.

In particular, we can see that for ν ≤ 2, the cross-entropy H(tν ,N (µ, σ2)) will diverge. Let’s
examine ν = 1 more closely; in this case, the variance of tν diverges because the PDF decays
like x−2, but we can still compare it to the standard normal distribution.

It’s not obvious from the picture, but the t-distribution has heavier tails than the normal
distribution, leading to H(t1,N (0, 1)) =∞, while H(N (0, 1), t1) ≈ 1.6782. Intuitively, this
is because the cross-entropy penalizes the tail events of the t-distribution, which the normal
distribution “thinks” should almost never occur.

3.3.2. Relation to KL divergence. Let p, q be two probability distributions on the same
outcome space. Recall that the KL divergence of p, q is

KL(p, q) := Ep[log(p/q)] = H(p, q)−H(p).

One sees both the KL divergence and cross-entropy used in machine learning, often inter-
changeably. What is the difference between them? Recall that in logistic regression, p is
the empirical distribution determined from data, and q is the model. Hence KL(p, q) differs
from H(p, q) by the constant H(p) = −

∑
pi log pi, which is independent of the model. Since

the addition of this constant doesn’t affect the gradient of the loss function, these two loss
functions are completely equivalent for the purpose of backpropagation.

3.4. Bayesian estimation. Thus far we have discussed what are called “point” estimates:
a numerical estimate for a parameter θ. According to the Bayesian perspective of statistics,
one should really estimate a “posterior distribution” on θ by using the data D to calculate
an update to the “prior distribution”. Given a “prior distribution” P (θ), this can be done
using Bayes’ rule:

P (θ|D) = P (D | θ)P (θ)

P (D)
.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 33

Example 3.4.1. Suppose the Warriors play the Lakers 3 times in the NBA conference
finals, and win 2 of them. If they play again, what is the probability that the Warriors will
win?

This question does not have a single “correct” answer; we just have to propose a model
and see how it performs. Let’s model the situation by assuming that the outcome of each
game is i.i.d. and that the Warriors have win probability θ ∈ [0, 1]; in other words, the
outcomes of games independent samples from a Bernoulli distribution. In Example 3.3.3 we
saw that the MLE of θ is then θ̂ = 2/3.

Note that if the Warriors had won all 3 past games, the MLE would be θ̂ = 1, or 100%
chancing of winning Game 4. This may make you uncomfortable, indicating that you have
prior beliefs about θ which are not reflected in this model.

Let’s consider instead a Bayesian perspective. We have to start by choosing a prior
distribution on θ, and a the most natural one to take seems to be the uniform distribution.
Let D be the data that the Warriors won 2 of the first 3 games, and A the event that they
win game 4. Then the prior distribution of P (A) = θ is uniform, so that its density function
p(θ) is the indicator function of [0, 1]. By Bayes’ rule, the posterior distribution P (A|D) has
density function

p(θ|D) = P (D|θ)p(θ)
P (D)

.

We have P (D|θ) =
(
3
2

)
θ2(1− θ), and then

P (D) =
∫ 1

0

P (D|θ)dθ =

(
3

2

)∫ 1

0

θ2(1− θ) dθ. (3.4.1)

At this point, it is useful to remember that the Beta distribution B(α, β) is the probabil-
ity distribution with density function proportional to xα−1(1 − x)β−1, and normalization
constant determined by the formula13

∫ 1

0

xα−1(1− x)β−1 =
Γ(α)Γ(β)

Γ(α+ β)
.

From this, we see that (3.4.1) comes out to
(
3
2

)
2!1!
4! = 1

4 . Thus

p(θ|D) =

{
12θ2(1− θ) θ ∈ [0, 1],

0 otherwise.

Finally, we can use this to calculate the probability that the Warriors win the next game
under our model: it is

P (A|D) =
∫ 1

0

P (A|θ)p(θ|D) dθ =

∫ 1

0

θf(θ|D) dθ = 12

∫ 1

0

θ3(1− θ) = 12
3!

5!
=

3

5
.

Remark 3.4.2. The θ that maximizing P (θ|D) is called the maximum a posteriori (MAP)
estimate. In this example, the MAP estimate (with uniform prior) happens to agree with
the MLE estimate 2/3, but it could have differed if the prior distribution was non-uniform.

13If α and β are not integers, then the interpretation of this formula is “(α− 1)!” = Γ(α).

34 TONY FENG

3.4.1. Relation to loss functions. Suppose we have data D = {(xi, yi)}ni=1 which we are
trying to model with a function y = fθ(x). Consider the L2-regularized loss function

L(θ) =

n∑
i=1

(yi − fθ(xi))
2 + ||θ||22.

This can be interpreted in terms of MAP estimation with Gaussian prior and noise. Indeed,
Bayes’ rule says that the posterior density p(θ|D) is given by

p(θ|D) = p(D|θ)p(θ)
p(D)

.

Since p(D) is a constant independent of θ, we can ignore it for the purposes of optimizing
θ. Hence it is equivalent to find the θ̂ which minimizes

− ln p(θ|D) = − ln p(D|θ) + ln p(θ).

If we choose the prior distribution on p(θ) to be the product of independent mean-zero
Gaussian distributions, then we have

− ln p(θ) =
∑
i

(θ2i
2σ2

)
which reproduces the regularization term ||θ||22. If we assume that the data {(xi, yi)}ni=1 is
of the form yi = fθ(xi) + ϵi where the error terms ϵi are drawn i.i.d. from a Gaussian of
mean 0, then the other term − ln p(D|θ) agrees (up to constants) with the MSE loss∑

i

(yi − fθ(xi))
2.

Slogan 3.4.3. The L2-regularized loss function solves for the MAP estimate for data which
is drawn from a distribution with Gaussian errors, and with Gaussian prior on the param-
eters. (These are natural distributions to assume, by the universality of the Gaussian.)

Example 3.4.4. The Laplace distribution with mean µ and variance 2b2 has probability
density function

f(x|µ, b) = 1

2b
exp

(
− |x− µ|

b

)

By the same discussion, we see that L1-regularization can be interpreted in terms of MAP
estimation with a Laplacian prior distribution on weights.

3.5. Evaluating estimators. Let W be an estimator for a parameter θ.
• The mean absolute error (MAE) of W is Eθ[|W − θ|], viewed as a function of θ.
• The mean squared error (MSE) of W is Eθ[(W − θ)2], viewed as a function of θ.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 35

The MSE is somewhat preferred, as it is analytically convenient ((W − θ)2 is better to
differentiate as a function of θ). It also has the benefit of being “interpretable” according to
the decomposition

Eθ[(W − θ)2] = Eθ[(W − Eθ[W] + Eθ[W]− θ)]2 = Eθ[(W − Eθ[W])2] + (Eθ[W]− θ)2

= Varθ(W) + Biasθ(W)2

where we recall the notion of bias from Definition 3.2.4. The variance can be viewed as a
measure of the precision versus noisiness of the estimator, while the bias can be viewed as
a measure of accuracy.

Example 3.5.1. Let X1, . . . , Xn be a random sample from a distribution with mean µ and
variance σ2. We saw in Example 3.2.5 that the sample mean X := 1

n

∑n
i=1 Xi is an unbiased

estimator of the mean µ of the Xi. Therefore, the MSE of this estimator is Var[X] =
σ2

n
.

Example 3.5.2. Let X1, X2, . . . , Xn be a random sample from a distribution with mean
µ and variance σ2. We can simply take X1 as an estimator for µ. Tautologically, this
is unbiased, and tautologically its MSE is E[(X1 − µ)2] = Var[X1] = σ2. Compared to
the sample mean, the variance is much higher, making it a “worse” estimator than the
sample mean. However, it has a benefit: it is faster to compute, as we just need to draw a
single sample. Therefore, we will use this estimator when training certain computationally
intensive models, such as Diffusion Models, at scale.

Example 3.5.3. We move on to consider estimators of the variance. We saw in Example
3.2.5 that the sample variance

S2 :=
1

n− 1

n∑
i=1

(Xi −X)2

is an unbiased estimator of the variance. Therefore, MSE(S2) = Varσ2(S2). Through some
tedious algebra, one can calculate this to be

MSE(S2) = E[(S2 − σ2)2] =
2σ4

n− 1
.

Now suppose that the Xi are Gaussian. Then in Example 3.3.4 we saw that the MLE
estimate is what we called in Example 3.2.5 the naive sample variance

S2
naive =

1

n

n∑
i=1

(Xi −X)2.

In particular, the MLE estimate is biased, with

Bias(S2
naive)

2 = (E[S2
naive]− σ2)2 =

σ4

n2
.

As for the variance, we have

Var(S2
naive) =

(
n− 1

n

)2

Var(S2) =
2(n− 1)σ4

n2
.

Hence the MSE of S2
naive is

MSE(S2
naive) =

σ4

n2
+

2(n− 1)σ4

n2
=

(2n− 1)σ4

n2
.

36 TONY FENG

To summarize, we have seen that

MSE(S2
naive) =

(2n− 1)σ4

n2
<

2σ4

n− 1
= MSE(S2).

Thus the biased estimator given by MLE actually has a lower Mean Squared Error than
the natural unbiased estimator. This illustrates the possibility of decreasing the MSE by
trading off bias and variance.

4. Optimization

We gave an introduction to neural networks in §1, but the picture presented there was
oversimplified compared to how neural networks are actually implemented in practice nowa-
days. For example:

• Various forms of regularization should be implemented in order to combat overfit-
ting.

• Instead of gradient descent, weight updates are usually done with a momentum-
based optimizer.

• The initial weights of the neural network should be normalized appropriately, and
then during training and inference further normalization should be applied between
layers.

We will go over some of these finer points in this lecture, with the goal of learning enough
terms to understand research papers.

4.1. Regularization. Recall the preliminary discussion of regularization from §1.7. In this
section, we will look deeper at some common regularization methods.

4.1.1. Weight decay. One interpretation of overfitting is that it is a result of excessive com-
plexity of the model, possibly in response to inherent noise in data (Figure 4.1.1).

Figure 4.1.1. A cartoon of overfitting. Left: the data essentially follows
a linear model, with some noise. Right: the data can be interpolated com-
pletely by a sufficiently complicated piecewise-linear model, which however
will fail to generalize from training to test.

Therefore, it is natural to add a “penalty” term that measures the complexity of the
weights. Mathematically, this means adjusting the unregularized loss function Lunreg(W)
to

L(W) := Lunreg(W) + λ||W ||
where λ is the weight decay coefficient (often around 10−4) and ||W || is the norm of W (to
be chosen). The most common choice is perhaps L2 penalty, where we take the norm

||W || = |W |22 =
∑
i,ℓ

(W ℓ
i)

2.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 37

Another common choice is L1 penalty, where we take

||W || = |W |1 =
∑
i,ℓ

|W ℓ
i |.

Remark 4.1.1. With L2-penalty, the loss gradient becomes

∇W (L) = ∇W (Lunreg − λ||W ||22) = ∇W (Lunreg)− 2λW.

Therefore, the gradient update step is

W ←W − η∇W (Lunreg) = (1− 2ηλ)W − η∇W (Lunreg),

which can be interpreted as first decaying the weight by a scalar factor, and then implement-
ing a usual gradient update step. This interpretation is behind the name “weight decay”.

Example 4.1.2. Let’s revisit the toy example of Linear Regression with L2-regularization,
following §1.3. The regularized loss function is

L(W) =
1

n
(Y −XW)⊤(Y −XW)︸ ︷︷ ︸

Lunreg(W)

+λW⊤W.

Therefore, its gradient is

∇W (L) = −2
n

X⊤(Y −XW) + 2λW.

Setting this to 0, we find that the optimal weight Ŵ satisfies

(nλ Id+X⊤X)Ŵ = X⊤Y.

When λ = 0, we saw that this failed to have a unique solution when X⊤X fails to be
invertible, i.e., features are linearly dependent (Remark 1.3.2). For λ > 0, the matrix
(nλ Id+X⊤X) is strictly positive definite hence always invertible, so we have

Ŵ = (nλ Id+X⊤X)−1X⊤Y.

The stability of this solution is inversely proportional to the smallest eigenvalue of nλ Id+X⊤X,
since that controls the scale of its inverse. Therefore, we see that increasing λ makes Ŵ
more stable with respect to fluctuations in X.

There is a geometric interpretation of weight decay as constrained optimization. The
claim here is that the unconstrained minimization problem

min
W

[
Lunreg(W) + λ||W ||

]
(4.1.1)

can be related14 to the constrained minimization problem

min
W
Lunreg(W) such that ||W || ≤ τ (4.1.2)

for some value of τ . This is because the Lagrangian form of (4.1.2) is

min
W

[
Lunreg(W)− λ(||W || − τ)

]
, (4.1.3)

which is essentially equivalent to (4.1.1).

14If Lunreg is convex (rarely true in practice), then there is a precise equivalence of optimization problems.
For non-convex functions, the relation between optimization problems is heuristic.

38 TONY FENG

Example 4.1.3. Consider the special case of linear regression with p = 2 features, so the
unregularized Lagrangian is

Lunreg(w1, w2) =
∑
i

(y(i) − (w1x
(i)
1 + w2x

(i)
2))2.

For L2 weight decay, we are trying to minimize a loss function of the form

L(w1, w2) = Lunreg(w1, w2) + λ(w2
1 + w2

2).

In the constrained version of this problem (4.1.2), the constraint is a circle in the w1, w2

plane and the level sets of Lunreg(w1, w2) are ellipses. The optimal solution is the point at
which the circular constraint is tangent to an elliptical level set of Lunreg(w1, w2); see Figure
4.1.2.

Figure 4.1.2. Weight decay interpreted as constrained optimization, with
constraint shown in black and level sets of Lunreg shown in blue. Left: L2

regularization, right: L1 regularization.

For L1 weight decay, the constraint instead defines a square, with extreme points having
all but one coordinate equal to 0. Therefore, a non-extreme point cannot be a point of
tangency with an ellipse unless that ellipse is in special position, so generically the optimum
will occur at one of these extreme points.

The discussion of Example 4.1.3 applies as well in higher dimensions. In particular,
the extreme points of the L1 constraint are the vertices of a hypercube with all but one
coordinate equal to 0, and “generically” the optimum occurs at one of these extreme points.
This leads to the following intuition.

Slogan 4.1.4. Weight decay with L1 penalty encourages sparsity.

4.1.2. Dropout. Another intuition above overfitting is that it involves “memorization” of
training data (mathematically interpreted as overly complicated casework), involving com-
plex co-adaptation of neurons. To mitigate this effect, Hinton et al [HSK+12] introduced
a regularization scheme called dropout regularization, whose idea is to randomly eliminate
certain neurons during training. The intuition is that this prunes overly complex inter-
dependencies. Another perspective on dropout is that it is an efficient method of “model
averaging”, i.e., drawing an averaged prediction from many different models.

Dropout is implemented by introducing a “masking vector” mℓ for each layer. If the
pre-activation value is zℓ = W ℓaℓ−1 + bℓ, then the post-activation value with dropout is

aℓ = mℓ ⊙ h(zℓ).

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 39

Here we again used the Hadamard product ⊙, meaning two vectors of the same dimension
are multiplied entrywise. During backpropagation, the errors are also propagated through
the mask, so that the update steps do not affect a masked neuron.

The masking vector mℓ is typically constructed by making each entry a Bernoulli random
variable with drop probability 1 − p. (The value used in the original paper [HSK+12] is
p = 0.5.) At test and inference time, no dropout is applied. To compensate for the resulting
statistical shift, the activation vectors aℓ should then be scaled, so that at inference time
aℓ = ph(zℓ). Alternatively, this can be baked into training, by defining aℓ = 1

pm
ℓ ⊙ h(zℓ),

so that E[aℓ] = 1
ppE[h(z

ℓ)] = E[h(zℓ)]. Then no adjustments are needed at inference time,
where p = 1. This is called “inverted dropout” and is implemented under the hood in
TensorFlow/Pytorch.

4.2. Optimizers. In §1.5.2, we explained a naive version of the gradient descent algorithm

W ←W − η∇W (L)
where η is the learning rate. In practice, one uses an optimizer that implements a subtler
versions of this algorithm. The dominant optimizer at the time of this writing is Adam
(which stands for adaptive momentum), which we will build up to in two steps.

4.2.1. Momentum. First, we modify gradient descent by including a momentum term.

Slogan 4.2.1. The idea behind momentum is maintain memory of past gradients, and
update according to a “time-discounted” aggregate of all past gradients.

Mathematically, we track the time step t of the update, and let W (t) be the weights at
time t. The training update then has the form

W (t) = W (t−1) − ηv(t),

where v(t) is a recursive modification of the gradient:

v(t) = ∇W (t−1)(L) + µv(t−1). (4.2.1)

Here µ is a fixed momentum hyperparameter, which is often something like 0.9 in practice.
The v is meant to stand for “velocity”; the notation evokes some physics intuition, but really
various physics notions (velocity, momentum, mass) are mixed up here. To get a sense of
what this is doing, we can unroll the recursion (4.2.1) to

v(t) = ∇W (t−1)(L) + µ∇W (t−2)(L) + µ2∇W (t−3)(L) +

In other words, the momentum update is a “time-discounted” aggregate of all past gradients.
(This should be normalized, which we will do in Adam.)

Intuitively, momentum addresses oscillatory convergence to the solution in convergence
to a local loss optimum (Figure 4.2.1).

Figure 4.2.1. A cartoon illustrating the possible benefit of momentum.
Left: gradient descent can lead to oscillatory behavior, hence poor training
convergence. Right: momentum can counteract oscillation.

40 TONY FENG

4.2.2. Quadratic toy model. Is it common to take a quadratic potential L(W) = 1
2W

⊤AW
as a toy model (since it is easy to learn linear transformations, we allow ourselves to eliminate
linear terms). Then the gradient is 1

2 (A+A⊤)W ; let’s assume that A is symmetric so that
we can simplify this as AW . Then the gradient descent step is

W ←W − ηAW = (Id−ηA)W.

To think about the dynamics of convergence, let ui be the eigenvectors of A, with associated
eigenvalues λi. In these terms, a gradient descent update has the form∑

ciui 7→
∑

ci(1− ηλi)ui.

This converges if |1− ηλi| < 1, which happens when

0 < λi <
2

η
.

This gives a toy model of the dynamics of gradient descent. Imagine A is positive definite,
so the (global in this case, but local in general) minimum is at 0. If the learning rate η is too
large, then the updates will actually push away from the local minimum. Thus one wants
η to be small compared to the eigenvalues of the Hessian matrix, but if η is too small then
the convergence along the eigenvector with smallest eigenvalue will be extremely slow. The
condition number κ := λmax/λmin gives some measure of how unstable the convergence is,
with a small value (i.e., close to 1) indicating the possibility of relatively robust convergence.

Remark 4.2.2. We can see in this case that the smaller the condition number, the more
robust the convergence. In general, we say that a problem is “ill-conditioned” if small
changes in input data cause large changes in solution, and “well-conditioned” if the solution
is relatively stable under perturbations to the inputs. As this toy example shows, the condi-
tioning is governed by the condition number of the Hessian matrix. Being well-conditioned
is important for stability of training.

Now let’s add momentum into the picture. Then the dynamics are governed by the
equations

v(t+1) = µv(t) +∇W (L) = µv(t) +AW (t).

and
W (t+1) = W (t) − ηv(t+1) = (Id−ηA)W (t) − ηµv(t)

Hence, for each eigenvector ui, the corresponding components (vi,Wi) of v(t) and W (t)

evolve according to the matrix (
µ −ηµ
λi 1− ηλi

)
(4.2.2)

These are the equations that govern a damped harmonic oscillator, with ai being the “ve-
locity” and bi being the “position”. In this comparison, µ is the damping coefficient and λi

is the energy from an external field.
Going through the math, one finds that this effectively doubles the range of learning

rates that lead to convergence, an admittedly small effect. This is not believed to be the
main significance of momentum in practice. Rather, it comes from the improvement in
convergence rate. Indeed, when iterating the matrix (4.2.2), the convergence is governed
by the eigenvalues. The best convergence rate occurs when the eigenvalues are equal. The
trace of (4.2.2) is µ + 1 − ηλi and the determinant is µ, so this critical convergence rate
occurs when

(µ+ 1− ηλi)
2 = 4µ.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 41

Taking the square root of this equation, we can rearrange it as (√µ−1)2 = ηλi, which leads
to µ = (1−

√
ηλi)

2, with convergence rate 1−
√
ηλi. The idea is that if ηλi is quite small,

then 1−
√
ηλi ≈

√
1− ηλi improves the convergence rate by a square root.

This mathematics gives a guideline for choosing the µ and η hyperparameters in practice.
If the problem is well-conditioned (i.e., the condition number κ is close to 1), then the
convergence is robust. If the problem is ill-conditioned, then choose µ close to 1, and then
find the largest η that converges. Usually, people start by trying something like µ = 0.99 or
0.999, and η = 0.01.

For more in-depth discussion along these lines, see https://distill.pub/2017/momentum/.

4.2.3. RMSProp. The second modification comes from Root Mean Square Propagation (RM-
SProp).

Slogan 4.2.3. The idea behind RMSProp is to adapt the learning rate should adapt to the
different directions of the loss gradient.

Mathematically, RMSProp implements this idea by updating less in directions that have
already been updated a lot. It does so by keeping track of a “time-discounted” root mean
square of past gradients in each direction. Fix a layer ℓ for concreteness, and abbreviate the
ith coordinate of its weight matrix at time t as W

(t)
i . Then we keep track of a “discounted

root mean square in direction i” r(t)i at update step t, determined recursively by the formula

r
(t)
i = βr

(t−1)
i + (1− β)

(
∇

W
(t−1)
i

(L)
)2

. (4.2.3)

The root mean square is then used to normalize the gradient update, so that the update
step has the form

W
(t)
i = W

(t−1)
i − η√

r
(t)
i + ϵ

∇
W

(t−1)
i

(L).

Here one includes a +ϵ in the denominator for numerical stability reasons (to avoid division
by 0). The parameter β is a “momentum parameter for the RMS”, and a typical value might
be 0.99. This effectively means that the learning rate adapts to the different dimensions of
the gradient.

Remark 4.2.4. The equation (4.2.3) is trying to weight r
(t)
i so that for each time step,

the values r
(t)
i for varying t are about equal in expectation, at least assuming that the(

∇
W

(t)
i

(L)
)2

are approximately equal in expectation. However, there is a question of ini-

talization of r(t=0)
i , which is usually taken to be 0. This means that in fact, r(t)i is “under-

weighted” by a factor of 1− βt, and so one should really divide it by 1− βt.

4.2.4. Adam. Adam (short for “adaptive momentum”) is essentially momentum plus RM-
SProp. The algorithm to find the weights W

(t)
i at time t are given below.15

(1) We compute the gradient ∇
W

(t−1)
i

(L) with respect to the weights at time t− 1.
(2) We recursively calculate the momentum term

v
(t)
i = µv

(t−1)
i + (1− µ)∇

W
(t−1)
i

(L)

where v
(0)
i = 0.

15What we call µ and β are often called β1 and β2, respectively, in the literature.

https://distill.pub/2017/momentum/

42 TONY FENG

(3) We recursively calculate the RMS term

r
(t)
i = βr

(t−1)
i + (1− β)

(
∇

W
(t−1)
i

(L)
)2

where r
(0)
i = 0.

(4) Following Remark 4.2.4, we renormalize it as

ṽ
(t)
i =

1

1− µt
v
(t)
i and r̃

(t)
i =

1

1− βt
r
(t)
i .

(5) Update

W
(t)
i = W

(t−1)
i − η

ṽ
(t)
i√

r̃
(t)
i + ϵ

. (4.2.4)

Remark 4.2.5. The algorithm just described corresponds to Adam without weight decay.
In practice, one would also incorporate weight decay. The original Adam algorithm did this
by incorporating the L2 regularization term into the loss function, which means the weight

decay term is scaled by the adaptive learning rate η/(

√
r̃
(t)
i + ϵ), effectively coupling the

decay rate to the historical gradient magnitudes.
Nowadays, one uses a variant called AdamW which decouples the weight decay from the

adaptive learning rate. In view of Remark 4.1.1, this is implemented by simply changing
the update (4.2.4) to

W
(t)
i = (1− ηλ)W

(t−1)
i − η√

r̃
(t)
i + ϵ

ṽ
(t)
i . (4.2.5)

4.3. Normalization. Backpropagation through a deep network requires a deep application
of the chain rule. This can cause the formation of gradients to be unstable. For example,
multiplying a long chain of large derivatives leads to the “exploding gradients problem”, while
multiplying a long chain of small derivatives leads to the “vanishing gradients problem”.
Hence for stability, normalization of data is important. This includes:

• Preprocessing input data. (We have already discussed this in Example 1.5.3.)
• Initialization of neural network weights.
• Normalization of inputs to hidden layers.

4.3.1. Initialization of weights. At the start of training, weights are initialized randomly.16

Even for this, there is some methodology on how to initialize correctly. We will explain
one commonly used method, named “Kaiming initialization” or “He initialization” after
[HZRS15b]. It is easy enough to explain: the entries of the weights to a node should be
drawn from a Gaussian distribution N (0, 2/n) where n is the number of inputs to that node.

This assumption is forced by stability of the first and second moments, if one assumes
that:

• The inputs to each node in the first layer are i.i.d. mean 0 and variance σ2
x.

• The weights are all i.i.d. with mean 0 and variance σ2
W .

• Activation functions are ReLU.

16For reproducibility purposes, it is common to occasionally record and fix the random seeds used in
initialization. Even so, GPU scheduling and floating point precision limitations introduce certain randomness
to the training process, which can magnify into substantial issues at huge scales.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 43

The idea is then that the mean and variance should be tuned so that distributions remain
stable. For the first layer a = ReLU(xW), the coordinates are given by

ai = ReLU

 n∑
j=1

xjWij

 .

By additivity of variance over sums of independent random variables, and multiplicativity
over products of independent random variables, we have

Var
[n∑
j=1

xjWij

]
=

n∑
j=1

Var[xj] Var[Wij] = nσ2
xσ

2
W . (4.3.1)

As xj , Wij , and
∑n

j=1 xjWij all have mean 0, (4.3.1) says equivalently that

E
[(n∑

j=1

xjWij

)2]
= nσ2

xσ
2
W . (4.3.2)

Since the density of zi :=
∑n

j=1 xjWij is symmetric about 0, E[ReLU(zi)
2] = 1

2E[z
2
i].

Thus, we have
E[a2i] =

n

2
σ2
xσ

2
W .

If we want this to be stable through to the next layer, then σx and σW must satisfy

σ2
x =

n

2
σ2
xσ

2
W

which forces σW =
√

2/n .
Although this derivation was universal, in the original paper [HZRS15b] the weights

were taken to be normally distributed, which would then mean that they are drawn from
distribution N (0, 2/n) where again n is the number of input nodes.

Exercise 4.3.1. This derivation was based on the stability of the second moment. Arguably,
it would be more natural to seek stability of the variance. For normally distributed x and
W , show that the corresponding normalization factor is n

(
1
2 −

1
2π

)
. As far as I know, this is

not used in practice, possibly out of preference for the simpler answer coming from Kaiming
normalization.

Remark 4.3.2. Recall from §3.4.1 that we saw the L2 regularization arising naturally from
a prior distribution on weights of the neural network, as being Gaussian with mean 0 and
the same variance. Kaiming normalization (§4.3.1) suggests that we should actually refine
the regularization term so that the weights of different neurons are multiplied by a factor
proportional to n/2, where n is the number of inputs to the neuron. As far as I know, this
kind of adaptation is not used in practice.

4.3.2. Batch normalization. Ioffe and Szegedy [IS15] introduced a normalization method
called batch normalization. We have already discussed the need to normalize input data;
the idea of batch normalization is to normalize the pre-activation inputs to a neuron over a
batch of training data.

Let the inputs to a given neuron be z1, . . . , zB . Define

µB =
1

B

B∑
i=1

zi, σ2
B =

1

B

B∑
i=1

(zi − µB)
2.

44 TONY FENG

Then we normalize
z̃i =

zi − µB√
σ2
B + ϵ

where ϵ is a small constant added for numerical stability of division.
So far, these operations force the batch to have mean 0 and variance approximately 1,

regardless of the neuron. If we stopped here, then we would be imposing artificial constraints
on the neural network. Supposing for example that the activation function is ReLU; then
normalizing z̃i to have mean 0 means that one is artifically forcing about half of the neurons
to activate upon applying the linearity to z̃i. (In actuality, large neural networks such as
LLMs tend to see sparse activation, with substantially less than half of neurons firing on
any given input.)

Therefore, we further scale and shift z̃i ← γz̃i + β where γ and β are learned parameters
(which do not depend on i). Finally, the values z̃i are fed into the neuron’s activation
function. This perhaps unintuitive step makes Batch Normalization less obvious than it
might at first seem. Indeed, at first glance, it seems that this transformation will simply
undo the normalization procedure. However, this is not quite the case:

• The parameters γ and β are fixed for the model itself, not for each specific batch.
• By encoding these parameters explicitly as learnable parameters, the neural network

acquires more direct access to them. This can be thought of as a kind of feature
engineering, where we make important features explicit, so that the model can train
more efficiently.

When [IS15] was introduced, it pitched Batch Normalization as a method to reduce
“internal covariate shift”. In statistics, covariate shift refers to a shift in input distribution,
especially between testing and training inputs. Here, however, “internal covariate shift”
refers to the fact that during training, the distribution of inputs to a layer are changed by
updates to previous layers. This is especially a problem for very deep networks, where small
changes to one layer can compound through the network. In practice, Batch Normalization
allows training to use higher learning rates (and thus complete faster) and be less sensitive
to initialization.

At test and inference time, one encounters the problem that batches are no longer avail-
able, and normalization does not make sense for individual inputs. To deal with this, one
computes while training some running average of the mean and variance over all batches,
and uses those figures at inference time.

4.3.3. Layer normalization. Batch normalization is primarily used in fully connected layers
or convolutional layers. There are certain situations where one cannot batch data, so Batch
Normalization does not apply. For example, autoregressive models make predictions depend-
ing on their own previous outputs, and online models must serve responses immediately;
batch normalization cannot be used in either case. Layer normalization was invented by Ba
et al [BKH16] to work in such situations (specifically for recurrent neural networks, but it
is now also used in Transformers); it should be thought of as an orthogonal normalization
scheme. Figure 4.3.1 depicts batch versus layer normalization.

The idea is instead to average activations over all neurons in a layer, for a single input.
To apply layer normalization, one calculates the mean and variance of the outputs from a
given layer ℓ,

µℓ =
1

N ℓ

Nℓ∑
i=1

aℓi , and (σℓ)2 =
1

N ℓ

Nℓ∑
i=1

(aℓi − µℓ)2.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 45

Then we renormalize the outputs as

ãℓi =
aℓi − µℓ√
(σℓ)2 + ϵ

and finally introduce a scale and shift

ãℓi ← γℓãℓi + βℓ

by learnable parameters γℓ and βℓ, as in batch normalization.

Figure 4.3.1. Batch normalization averages, for each neuron, over a batch
of inputs to that neuron. Layer normalization averages, for each layer, over
other inputs to that layer.

4.4. Batch size. What is the optimal batch size for training? The purpose of batching is
to dampen the noise in data, and for that purpose increasing batch size is desirable. But
researchers have historically believed (see [LBOM12, §4]), based on empirical observation,
that training on large batches is worse for generalization. For example, [KMN+16, Table
2] documents experiments in which the training loss of large-batch models is comparable to
that of small-batch models, while the test loss is noticeably worse.

An explanation proposed in LeCun et al [LBOM12] is that noise is actually useful for
exploring the loss landscape: without noise, the parameters would explore only nearby local
minima, but noise allows the parameters to bounce around to better minima.

A more precise hypothesis is made by Keskar et al [KMN+16], which tries to quantify the
“sharpness” of local minima. To be clear, the notion of “sharp minima” had been studied
before, and quantified in terms of the eigenvalues of the Hessian matrix ∇2(L). Large
eigenvalues of the Hessian imply that there are directions along which L increases very
quickly. The intuition of loc. cit. is that noisy gradient updates can escape sharp minima,

46 TONY FENG

hence training with large batches can get trapped in sharp minima while training with
smaller batches tends to land in “flat” minima.

In practice, computing the Hessian efficiently is computationally costly, especially in very
high-dimensional spaces. To test their thesis, Keskar et al defines a more empirical measure
of sharpness, given by the rate of increase of L along small perturbations along random
low-dimensional subspaces. They then gives examples where large-batch training lands in
sharper minima, according to this metric. Specifically, “large-batch” means 10% of training
data (in their experiments, ranging from 5000 to ≈ 70000), while “small-batch” means 256.
Training was continued until validation loss plateaued.

However, it is worth noting that the thesis of [KMN+16] has been challenged by some
subsequent work. Indeed, the paper [KMN+16] did not control for the fact that with large
batches, the number of updates is smaller during the same number of epochs. According to
[HHS17], the generalization gap for large-batch training can be reduced to a level comparable
to small-batch training by appropriately adjusting the learning rate and the number of
weight updates.

4.5. Boosting and bagging. There are two more “macroscopic” methods to improve the
performance of models. The more naive is bagging, which is essentially aggregating (by
averaging in the case of regression, or voting in the case of classification) over the predictions
of N models trained in parallel. Mathematically, this replaces a single prediction with the
sample mean of N different predictions, which could in theory reduce the MSE if the models
are sufficiently uncorrelated. Compared to making N predictions from the same model, the
hope is that different models have less correlated error; however, this comes at the cost of
increasing training N -fold.

A second method is boosting, which was introduced by Freund–Schapire in 1997 [FS97] in
the form of the AdaBoost (“adaptive boosting”) algorithm. This involves training a sequence
of models, with the failure cases of each being weighted more heavily in the training set for
the next model. Boosting thus creates a “committee” of models with different specializations,
which votes by weighted majority at inference time. The error of each model during training
is used to weight that model’s vote. Both theoretical and empirical results show that
boosting can combine weak learners into a strong model.

Part 2. Architectures

5. Convolutional Neural Networks

In this lecture, we will survey convolutional neural networks (CNNs), an effective tool
for problems related to computer vision. Notable applications include Image Classification
(e.g., parsing handwriting) and Object Detection (e.g., detecting pedestrians in an image
taken by an autonomous vehicle).

The main pedagogical reason for covering CNNs is to introduce three important concepts
that arose out of their development:

(1) The importance of depth in neural networks. The intuition is that the compositional
nature of depth (as opposed to width) expands expressive capacity. Historically, the
success of deep CNNs on computer vision problems, starting with AlexNet [KSH12]
in 2012, was a major impetus in revitalizing the study of neural networks. Very
recently, transformer-based or hybrid transformer-CNN models have matched and
even surpassed CNNs in image classification. However, CNNs are still competitive
in data or compute constrained scenarios.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 47

(2) The importance of residual learning (He et al) when training deep neural networks.
(3) The idea of incorporating inductive bias into neural network architectures. Inductive

bias refers to assumptions about the nature of the relevant problem, including struc-
tural features of the data. Inductive bias can be implemented mathematically by
restricting to a function class with specific properties, such as symmetry or sparsity,
which one expects to hold in the problem. For an example that we have already
met, one could view regularization as reflecting a form of inductive bias towards
simple solutions (Occam’s Razor).

5.1. Image data. To motivate the setup of CNNs, let’s think about what image data looks
like. A typical picture is encoded as a matrix of pixels, with each pixel having a numerical
color representation. The length and width of the pixels are usually on the order of 102 to
103, and the colors are encoded by color scheme is encoded by three 8-bit numbers, expressing
a Red/Green/Blue intensity from 0 to 255. For concreteness: a single 224 × 224 RGB
picture is encoded by a vector of ≈ 150, 000 numbers. Thus, image data is extremely high-
dimensional. A single dense hidden layer, with the same number of parameters, connected
to the input data would by itself carry a massive number of parameters, on the order of
1010.

At the same time, image data is highly structured, and CNNs are designed to exploit this.
For example, nearby pixels tend to be strongly correlated to other, while distant pixels are
essentially unrelated. We will highlight four properties of images in particular, that we will
build into CNNs.

• Hierarchical structure. The meaning of images tends to be compiled in a hierarchical
fashion, with high-level features being assembled from low-level ones. For example,
a human face is assembled from eyes plus nose and mouth, and an eye is assembled
from an iris and a pupil, etc.

• Locality. Features are formed out of clusters of nearby pixels in the image.
• Translational equivariance. The semantic meaning of a feature tends to be preserved

by translation. For example, if a cluster of pixels represents a dog, then that same
cluster of pixels would represent a dog if translated elsewhere in the image.

• Local invariance. The semantic meaning of a feature tends to be preserved under
local perturbation.

The philosophy behind CNNs is to design an architecture that builds the high-level in-
ductive bias into the model “by hand”, while letting the parameters be learned by data.
(While this seems like an obvious philosophy, we mention again that the recent trend with
LLMs is to use a more flexible architecture that builds in less inductive bias, and learns
almost everything from the data.)

5.2. CNN architecture. A CNN is a neural network with “convolutional layers” that have
a specific form, in which each neuron is connected to only a small number of neurons in the
preceding layer, and furthermore weights are shared across neurons in the same layer.

5.2.1. Input/output format. The topology of the connections is prescribed in terms of the
format of the input. In a CNN, the input to each layer is a tensor of shape h×w× c, which
we think of as a 2d grid of dimension h × w (“height” by “width”), and c consists of the
“channels”.

Example 5.2.1. For ℓ = 1, the input is the original image. In a typical picture setup, h×w
is the number of pixels in the image, and c is the number of colors.

48 TONY FENG

The dimensions h and w decrease through the CNN, while the dimension c increases. For
example, for standard RGB pixel pictures, there are initially c = 3 channels, while h and w
are fairly large (e.g., 102 to 103). Towards the end of the CNN, h and w might be on the
order of 10 while c might be on the order of 103.

5.2.2. Convolutional layers. A convolutional neural network fits into the general format
described in §1, so each layer computes a function of the form

aℓ−1 7→ ReLU(aℓ−1W ℓ + b).

The distinctive feature of a CNN is that it includes many convolutional layers, where the
specific form of the weight matrix W ℓ is very specific. Far from being fully connected, in
these layers neurons connect to a small n × n receptive field in the input array, where n is
typically a small odd number such as n = 3 or n = 5.17 See Figure 5.2.1 for an example.

Figure 5.2.1. Example of a feature map in a CNN, from https://
anhreynolds.com/blogs/cnn.html.

In each layer, the learnable parameters are the entries of an n×n weight matrix K, called
the filter or kernel. Crucially, the filter K is shared across neurons in the same layer. The
pre-activation value of the feature map is given by multiplying each of the receptive field by
the corresponding entry of the filter, and then summing:

n∑
i=1

n∑
j=1

(receptive field)ijKij .

Remark 5.2.2. If we call Aℓ−1 (a square matrix) the input to layer ℓ for the chosen
channels, then the corresponding pre-activation matrix Zℓ has

Zℓ
x,y =

n−1
2∑

i=−n−1
2

n−1
2∑

j=−n−1
2

Aℓ−1
x+i,y+jKij .

If we reparametrize the indices, then this looks like the formula for convolution, which is
where the name “convolutional neural network” comes from. Strictly speaking, however, it
is not actually convolution in the mathematical sense.

To calculate all the outputs of the layer, the receptive field is shifted by an amount called
the stride, and the analogous calculation is applied to each. Typically, CNNs use a stride of

17The preference for odd sidelengths is so that there the filter is symmetric around a central pixel.
Another reason is to ensure that same padding (§5.2.6) is possible.

https://anhreynolds.com/blogs/cnn.html
https://anhreynolds.com/blogs/cnn.html

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 49

1 in the feature maps.

The hidden convolutional layer is also called a feature map, intuitively because the neurons
represent features.

Example 5.2.3. The neuron activates if the receptive field is “close enough” to the filter.
For example, the filter −1 0 1

−1 0 1
−1 0 1


can be interpreted as a feature that detects vertical edges. See Figure 5.2.2 for an example.

Figure 5.2.2. Example of a filter detecting vertical edges, from https:
//anhreynolds.com/blogs/cnn.html.

Let’s examine how the convolutional layers solve some of the problems discused in §5.1.
Firstly, the small receptive fields express the inductive bias of locality. They also reduce the
dimension of the model.

A priori, the filters could have depended on the neuron, but as we mentioned, the filters
are shared across all neurons in a given layer. This again reduces the dimension of the
weights. Furthermore, it captures the inductive bias of translational equivariance by making
the feature map equivariant with respect to translations.

5.2.3. Multiple channels. So far, we were focusing for simplicity on the case where there
is a single numerical value attached to each practice. In practice, there would typically
be multiple values, for example 3 RGB bytes in an image. To handle these, we break up
each the values into channels, and then treat each separately with independent filters. For
example, when processing an RGB image we can use three filters to separately process the
bytes for each color intensity.

https://anhreynolds.com/blogs/cnn.html
https://anhreynolds.com/blogs/cnn.html

50 TONY FENG

Each channel has one filter, and represents one feature (thus is analogous to a single
neuron in a standard neural network), such as the presence of vertical lines (Example 5.2.3).
In a real CNN, we would have many channels. Thus, a convolutional layer has dimension
h × w × cIN × cOUT where cIN is the number of input channels, and cOUT is the number
of output channels. Typically, the spatial dimensions h and w decrease through a CNN
network, while the feature parameters c? increase.

Example 5.2.4. It is meaningful to have a convolutional layer with filter size 1 × 1. The
purpose of such a layer is to apply a function to the channels. In particular, it allows to
alter (typically, to reduce) the number of channels.

5.2.4. Pooling layers. A CNN weaves in a pooling layer after every few convolutional layers.
Pooling layers implement a kind of aggregation over local pixels that captures the inductive
bias of local invariance under perturbations.

Structurally, pooling layers look like convolutional layers, but with the filters are fixed
beforehand (so there are no learnable parameters in the pooling layers). The other differences
are:

• The feature maps are not necessarily given by convolution with a kernel matrix.
• The stride is generally taken to be equal to the dimension l of the filter, so that the

receptive fields are disjoint. In particular, pooling scales the length and width down
by a factor of l. Thus, pooling implements a form of downsampling (i.e., dimension
reduction).

Example 5.2.5. Perhaps the most common form of pooling is max pooling, which takes
the maximum of the input values in the receptive field. Another example is average pooling,
which takes the average of the input values in the receptive field; see Figure 5.2.3.

Figure 5.2.3. Example of an average pooling filter, from iq.opengenus.
org.

Typically, a pooling layer is followed by a convolutional layer that upsamples by increasing
the dimension by a factor of l. The net effect of these two layers is to multiply the dimension
by 1

l2 l =
1
l .

5.2.5. Fully connected ending. CNNs end with a few fully connected layers, once the channel
dimension is small enough for this to be feasible.

To summarize, the following is a typical CNN structure.
(1) 2-3 convolutional layers followed by a pooling layer.
(2) Repeat (1) several times.
(3) Conclude with 2-3 fully connected layers. These “flatten” the features from a tensor

to a vector.

iq.opengenus.org
iq.opengenus.org

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 51

Let us also take stock of how the inductive biases in §5.1 are accounted for in this process.
• Locality is imposed by the small receptive fields.
• Translational equivariance is imposed by filter sharing between neurons in the same

layer.
• Local invariance is imposed by pooling layers.
• Hierarchical structure is imposed by the deep structure of the neural network.

5.2.6. Padding. A mathematically trivial, but in practice important, aspect of filters is
“padding”. If the filter is of size l, then an h×w image goes to (h− l+1)× (w− l+1). This
causes the size to decrease considerably when composing many feature maps in sequence.
Padding refers to the introduction of auxiliary pixels so that the feature map is larger.

The most common kind of padding is same padding, which arranges for the feature map
to have the same size as its input. In order to treat the boundary symmetrically, one pads
each edge of the boundary with padding of the same size p. Hence for same padding, one
wants h+ 2p− l + 1 = h, or p = l−1

2 , which requires l to be odd.
The input entries added during padding are artificial, and in practice are often just taken

to be 0. In order for this not to alter the statistical properties of the data, this is often
coupled with preprocessing the data so that the average pixel value is 0 [SZ14].

5.2.7. Interpretability. At least the first layer of a CNN tends to be “interpretable” in the
sense of having visually apparent meaning. The filters can be visualized by viewing their
values as grayscale intensities (after suitable scaling and translation), and then displaying
them as an image. See Figure 5.2.4 for the result of doing this to the first convolutional
layer of AlexNet [KSH12].

Figure 5.2.4. Filters learned from the first convolutional layer of AlexNet,
from [KSH12, Figure 3].

5.3. Case study: the ImageNet Challenge. The ImageNet project was conceived and
created by Fei-Fei Li [RDS+15]. It consists of 15 million images labeled into 22,000 cate-
gories. Each year from 2010 to 2017, an annual ImageNet Challenge showcased the top ML
algorithms for image classification.

Each ImageNet Challenge was a miniaturized version of the ImageNet database, with
1.28 million training images, 50,000 validation images, and 100,000 test images into 1,000
categories. See Figure 5.3.1 for some examples.

There were two scoring metrics: whether the true classification was in the “top-1” and
“top-5” classifications of the algorithm. The ImageNet Challenge spurred the development
of CNNs, and we will give a selection of landmark breakthroughs.

52 TONY FENG

Figure 5.3.1. Sample of pictures from the ImageNet challenge, with
ground-truth answer and AlexNet’s top-5 classification [KSH12, Figure 4].

5.3.1. AlexNet. In 2012, the ImageNet Challenge was won by a CNN called AlexNet, devel-
oped by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton [KSH12]. It achieved a top-5
error rate of 15.3%, a huge improvement over the previous best 26.2%. The main factor
behind this improvement probably came from the size of their model, which was enabled
by a highly optimized implementation of convolution on 2 GPUs that trained for 5-6 days.
(For comparison, at the time of this writing modern LLMs are trained on 105 GPUs for
months.)

AlexNet had 5 convolutional layers and 3 fully connected layers, making it an especially
deep CNN for that time. Each convolutional layer contained less than 1% of the learnable
parameters, but its importance was affirmed by ablation (removing them and measuring the
effect on performance).

In addition, AlexNet used a ReLU non-linearity instead of tanh or σ, whose non-saturating
nature was important given the deep nature of the network. AlexNet also featured some
other architectural innovations like “local response normalization” and “overlapping pooling”,
which however have not stood the test of time.

In terms of training, in addition to parallelizing on 2 GPUs, AlexNet popularized some
important regularization tricks.

(1) They performed data augmentation by (1) translating and reflecting the image, and
(2) perturbing RGB intensities. The latter was done by adding multiples of the PCA
vectors to each pixel, the intuition being that this is reflects “realistic” correlations
of RGB values occurring in natural images.

(2) They used dropout regularization.

5.3.2. VGGNet. In 2014, the VGGNet of Simonyan–Zisserman [SZ14] took runner-up in the
ImageNet Challenge with a top-5 error rate of 7.32%.

VGGNet was influential in systematically demonstrating the value of increasing depth,
using a simple uniform architecture.

• VGGNet had 16-19 weight layers, with very small convolution filters (3 × 3 with
stride 1) and pooling filters (2 × 2 with stride 2). For comparison, AlexNet had 8
layers and used a mix of 11× 11 (with stride 4), 5× 5 and 3× 3 filters.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 53

• VGGNet had a simple design rule for pooling layers: use 2× 2 pooling filters (with
stride 2), and double the number of channels. Thus, the width and height of the
feature map size are each halved, while the number of channels doubles.18 See Figure
5.3.2 for an illustration of the VGGNet architecture.

Figure 5.3.2. Depiction of the VGGNet architecture, from Varshney’s
Kaggle notebook. Note that when the size of the feature map is halved, the
number of channels doubles.

Example 5.3.1. As a toy example to contemplate the depth vs. filter size tradeoff, compare
a 5× 5 filter versus stacking two 3× 3 filters. The latter creates a composite 5× 5 receptive
field, but has 18 < 25 parameters and more non-linearities.

5.3.3. Inception. The actual winner of the 2014 ImageNet Challenge was a deep neural
network developed by Szegedy et al at Google [SLJ+14], and codenamed “Inception” (as a
reference to the meme, “We need to go deeper”, which spawned from the movie Inception).
The official name was GoogLeNet, which achieved a 6.67% top-5 error rate.

Despite achieving a better score, the stated goal of Inception was actually to improve
efficiency. For example, they report a 12x reduction in parameters over AlexNet, while
increasing depth to 22.

The idea was, interestingly, inspired by an academic paper [ABGM13], which advocates
for dense networks clustering neurons with highly correlated outputs (reminiscent of the
“Hebbian principle: neurons that fire together, wire together”, from neuroscience). This
leads Szegedy et al to do feature concatenation on filters of different sizes: 1×1, 3×3, 5×5,
and 3× 3 max-pooling. In order to keep the number of outputs from exploding, each of the
larger filters is placed after a 1 × 1 downsampling convolutional layer. In total, this is the
“Inception” module, depicted in Figure 5.3.3.

18Why this rule? In [HZRS15a], it is said to be “so as to preserve the time complexity per layer”, where
halving M and N is offset by doubling CIN and COUT. Note that in the transition layers where COUT

doubles but not CIN, the complexity is approximately halved instead of preserved.

https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide
https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide

54 TONY FENG

Figure 5.3.3. Depiction of the Inception module, a stack of layers in
GoogLeNet [SLJ+14, Figure 2].

5.3.4. ResNet. The 2015 ImageNet challenge was won by ResNet [HZRS15a], which intro-
duced a fundamental new perspective on neural networks, achieving 3.57% error rate on the
2015 ImageNet challenge (surpassing human performance, which is cited to be around 5%
[RDS+15]). The winning network was substantially deeper than previous submissions (152
layers).

The original issue with depth was the “vanishing gradients” problem, preventing conver-
gence during training. This was addressed by gradient clipping and intermediate normal-
ization layers.19 The next issue was that, even when training of deep networks converged,
at some point adding more layers led to a degradation in performance – see Figure 5.3.4.
This is not believed to be a consequence of overfitting (as the performance degradation is
witnessed in both training and test error).

Figure 5.3.4. Naïvely training deeper networks leads to worse training
and test performance [HZRS15a, Figure 1].

At first glance, this degradation is puzzling since deeper networks are clearly at least as
expressive as shallow networks, for example by having later layers simply learn the identity
function. This appears to have been a motivation for the key idea of [HZRS15a], which was
to introduce “skip connections”, whereby layer outputs are fed to later layers directly as in
Figure 5.3.5. Note that adding skip connections (essentially) does not affect the parameter
count or computational complexity.

The basic idea is that if the original layer was trying to learn a function F (x), then
adding the skip connection makes it learn the “residual” function R(x) := F (x)− x instead.
In particular, if F (x) is the identity function then R(x) = 0, which is easy to learn.

19One checks that this works by measuring the gradient norms.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 55

Figure 5.3.5. A “skip connection” in a residual neural network [HZRS15a,
Figure 5].

If F (x) and x do not have the same dimension, as is often the case, then one applies
a linear function W to x which makes the dimensions agree. In a CNN, the dimensions
increase through the network, and three possibilities are considered: (A) pad with 0, (B)
identity matrix if dimensions do not increase, and learn a linear map x 7→ Wx if they do
increase, (C) learn a linear map x 7→ Wx in all cases. There is a small improvement from
(A) to (B), and a very small improvement from (B) to (C) which is negligible enough that
the authors do not use (C).

Remark 5.3.2. The Taylor expansion of a function F (X) decomposes it into its linear and
higher order components,

F (x) = b+Wx+R(X),

where we can think of R(X) as the “residual function” of the linear component. From this
perspective, the idea of residual learning seems quite natural, but the fact that one can
almost just as well take W to be the identity matrix in practice is surprising (at least to
me).

Apart from the skip connections and the increased depth, the architecture of ResNet
was very similar to VGGNet. In particular, it followed the same simple, uniform design
principles for filter size (3× 3 only) and dimension (double the channel dimension when the
feature map dimensions halve). Skip connections are applied 2 or 3 layers; see Figure 5.3.6.

The training procedure of ResNet was also simple. Normalization layers were used but
no dropout regularization.

Remark 5.3.3 (Do we still need to go deeper?). [HZRS15a] also tried training a 1202-
layer ResNet. Compared the 110-layer ResNet, this had comparable training error but
substantially worse test error, indicating overfitting.

5.4. Adversarial attacks. Image recognition models are highly susceptible to adversarial
attacks, meaning the construction of examples that the neural network will misclassify.
Moreover, this can often be done by perturbing a correctly classified image in a way that is
imperceptible to humans; see Figure 5.4.1.

A simple approach to constructing adversarial examples is to perform gradient ascent on
the examples. That is, given the model parameters θ, we view a particular loss function
Lx(θ) as a function of the input x instead of the model parameter θ. Then we do gradient
ascent to perturb some initial x0 in a direction that increases the loss, x′

0 = x0 + dx. In
order to control the size of the modification, we constrain dx to be small.

In gradient descent, we effectively constrain dx using the L2 norm. It turns out, however,
that for the constraint of making the perturbation imperceptible, it is very effective to
constrain dx in the L∞ norm. The intuition here is that images are represented by discrete
values, e.g., in steps of 1/255 for RGB intensities, hence changes smaller than 1/255 should
be literally imperceptible. Thus, if we choose dx such that ||dx||∞ = ε for some small ε on

56 TONY FENG

Figure 5.3.6. The architecture of the 34-layer ResNet [HZRS15a, Figure
3].

the order of 1/255, then x′
0 = x0 + dx is almost indistinguishable from x′

0. On the other
hand, the pre-activation value

x′
0W = x0W + (dx)W.

changes by (dx)W , which could have magnitude around ε||W ||1. This can be astronomical
if the dimension of W is large, as is often the case.

This is the basis of the Fast Gradient Sign Method (FGSM) [GSS14] of Goodfellow et al.
The updates then have the shape

x′ = x+ ε sign(∇xLx(θ))

where in [GSS14] the ε might be around 2/255 ≈ 0.0078.
To see why this is the correct answer, we can reformulate the problem as follows: for

fixed w, find

argmax
||v||∞≤1

vW.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 57

Figure 5.4.1. Top: an adversarial example generated by the FGSM
method. Pixel intensity in [0, 256] is renormalized to the interval [−1, 1],
the smallest change in pixels being about 0.007. Adding a small error vector
causes GoogLeNet (winner of the 2014 ImageNet Challenge) to misclassify
a panda as a gibbon [GSS14, Figure 1]. Bottom: a picture of a gibbon,
from Wikipedia.

The answer is the coordinate-wise sign vector sign(W). Indeed, since this is a linear program
on a hypercube, it is maximized on one of the vertices, which all have coordinates {±1}N .

It is easy to see this more generally for bounded convex domains. If v = λv0+(1−λ)v1, then
⟨u, v⟩ = λ⟨u, v0⟩ + (1 − λ)⟨u, v1⟩ is maximized by replacing v with whichever vi maximizes
⟨u, vi⟩. Thus, the function is maximized by “pushing” the input to the extreme points.

Remark 5.4.1. It is possible to embed this simple argument into a complicated but more
general picture. There is a general theory of norm duality : a norm || • || on a vector space

58 TONY FENG

V induces a dual norm || • ||∗ on V ∗, by

||ξ||∗ := sup
v∈V
⟨ξ, v⟩.

Consider V = RN (thus identifying V ∗ ∼= RN) with the norm || • || = Lp for p ≥ 1. Then
Hölder’s inequality says that for q such that 1

p + 1
q = 1, we have

|⟨ξ, v⟩| ≤ ||ξ||p||v||q

with equality if and only if |ξpi | ∝ |v
q
i | as a vector in i. This shows that the dual norm to

Lq(RN) is Lp(RN). Our example pertains to the special case p = 1 and q = ∞, where
Hölder’s inequality says that

sup
||v||∞=1

⟨v, ξ⟩

is maximized when vi = sgn(ξi)ξ
1/∞
i = sgn(ξi). This is a special case of a general duality:

constraining with one norm often leads to update steps related to the dual norm.

The FGSM method allows [GSS14] to investigate the landscape of adversarial examples.
By varying ε and dx, they conclude that adversarial examples occupy large, continuous
regions. Also, adversarial examples tend to work across different models: FGSM examples
constructed using a specific model tend to also be misclassified by other models. This
means in particular that ensembles of models are not robust against adversarial attacks.
The takeaway is that neural networks are quite fragile in practice.

6. Recurrent Neural Networks

In this lecture, we will begin to discuss architectures for natural language processing.
This would include problems such as the following:

• Classification: e.g., sentiment analysis, spam filtering.
• Machine translation between different languages.
• Generation: e.g., text summaries, image captioning.

The major difference of the NLP setting is that the inputs are variable length sequences,
and outputs could also be variable length sequences. Historically, recurrent neural networks
(RNNs) were introduced to handle such tasks. They are based on the intuitively appealing
idea of adding “memory” to a neural network, in the form of a hidden state that is modified
as the sequence is processed.

More recently, RNNs have been superseded by Transformers, which we will discuss in
the next section. Thus, from a modern perspective RNNs have become mostly obsolete.
However, we want to take away some important ideas from the development of RNNs, such
as the encoder-decoder architecture and the idea of representation learning.

6.1. RNN architecture.

6.1.1. Hidden states. The basic idea of a RNN is to add a self-connection to each layer,
which records a “hidden state” h. In this way, when the network processes a sequence input,

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 59

each term of the sequence is able to “remember” information about previous terms.

Example 6.1.1. Let’s spell out how this looks in a 1-layer RNN. The input is a sequence
x1, x2, . . . , xT with each xi ∈ Rdx .

We have a hidden state h ∈ Rdh (perhaps initialized to 0). The hidden layer has weight
matrices Whh ∈ Rdh×dh and Wxh ∈ Rdx×dh . Each forward pass takes the form

h← f(hWhh + xWxh + b). (6.1.1)

where f is the non-linearity. Typically RNNs used tanh instead of ReLU, in order to keep
the entries bounded; otherwise compounding in the time direction could lead to exploding
gradients.

Finally, the output y is computed from the hidden state h by a final fully connected layer,
which could for example be of the form

y = SoftMax(hWhy).

The weights of the W?? matrices, as well as the bias b, are all learned in training.

6.1.2. Unrolling. Because of the recursive nature of the hidden state, an RNN can be viewed
as a discrete-time dynamical system. To visualize how an RNN works, it is useful to “unroll”
it, thinking of the sequence index as a “time” variable t.

(6.1.2)

Example 6.1.2. The unrolled form of (6.1.1) is a recurrence relation

ht = f(ht−1Whh + xtWxh)

The hidden state ht at time t contains aggregated information about xt, xt−1, . . . , x1. Fi-
nally, the output yt at time t is computed from ht by another NN layer, say of the form

yt = SoftMax(htWhy).

Thus we see that when an RNN operates on input xt, it effectively has the topology of
a neural network of depth t. Let’s call these “time layers” to distinguish them from “space
layers”, of which there is only one depicted in (6.1.2). In particular, the gradient descent
and backpropagation updates are computed just as in a depth-t neural network. However,
note that the unrolled network (6.1.2) shares weights across layers, since the neurons are

60 TONY FENG

the same (at different snapshots in time). Hence if Lt(W) is the loss on (xt, yt), then we
have

∂Lt

∂W
=

∂Lt

∂ht

t∑
s=1

∂ht

∂hs

∂hs

∂W
.

Note that the derivative ∂ht

∂hs
involves t−s multiplications by the matrix Whh. On a training

batch x1, . . . , xT , we would actually update with respect to the gradient of the aggregated
loss

∑T
t=1 Lt.

6.1.3. Adding long-term memory. We have advocated thinking of recurrent neural networks
as being like deep neural networks, with variable depth. This comes with all the benefits
and pitfalls of deep neural networks, e.g., the vanishing gradients problem. For CNNs, we
saw that skip connections can be used to solve this problem, but it does not make sense to
add skip connection forward in time, so we cannot implement residual learning in the “time”
direction. This means that RNNs, as described so far, will degrade rapidly with sequence
length.

A metaphor is that the hidden state is “short-term memory”, which becomes attenuated
through time. Hochreiter and Schmidhuber [HS97] suggested to address this with Long
Short-Term Memory (LSTM). Their idea was to add an additional recurrent connection,
effectively tracking a “long-term memory cell” ct. Mathematically, this means that that there
are two hidden states, one of which is designated as a long-term memory cell, as reflected
by the nature of its dynamics.

Namely, the dynamics of ct are governed by a recurrence of the form

ct = ft ⊙ ct−1 + it ⊙ c̃t (6.1.3)

whose form reflects an inductive bias about the way that long-term memory should work.
• The function ft (for “forget”) has the form

ft = σ(xtWf + ht−1Uf + bf)

where σ is the elementwise sigmoid. In particular, ft ⊙ ct−1 is multiplying each
entry of ct−1 by a number in (0, 1); intuitively, this term selects what to forget from
the previous long-term memory.
• The function it (for “input”) has the form

it = σ(xtWi + ht−1Ui + bi),

and c̃t (“potential memory to add”) has the form

c̃t = tanh(xtWc + ht−1Uc + bc).

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 61

Intuitively, the term it ⊙ c̃t is trying to identify what memory to add from the new
input at time t.

The key point which makes ct “long-term” is that (6.1.3) is roughly additive in c, rather
than multiplicative. This means that ∂ct

∂cs
≈ ft ⊙ ft−1 ⊙ . . . ⊙ fs+1 with each fi having

entries in (0, 1), leading to a more controlled gradient flow than ∂ht

∂hs
, which involves many

multiplications of a large matrix Whh.
Finally, the hidden state is updated as

ht = ot ⊙ tanh(ct)

where ot = σ(xtWo + ht−1Uo + bo).
All the weights and biases (the W,U , and b terms) are learnable parameters.

6.1.4. Deep RNNs. So far we have only discussed RNNs with a single layer, even though we
saw that they are effectively deep in the “time” direction. However, we can also stack RNN
layers to gain deep in the “space” direction as well.

To think about the dynamics, it is again useful to “unroll” the RNN as a network with both
a “space” depth and a dynamic “time” depth.

6.2. Interpretability. Andrej Karpathy’s blog post on RNNs contains several instructive
examples. We will look at some of his examples on interpreting the role of selected neurons.

In Figures 6.2.1 and 6.2.2, the first line displays the input sequence and the five rows below
indicate the model’s 5 most probable guesses for the next character, with the intensity of red
proportional to the modeled probability (dark red meaning likely, white meaning not likely).
In the first line, the pre-activation value in [−1, 1] of a cherrypicked neuron is indicated by
the color scale, with blue being close to −1 (not excited) and green being close to 1 (excited).

We see that the neuron in Figure 6.2.1 seems to be a detector for website URLs, while
the neuron in Figure 6.2.2 seems to be a detector for being inside the [[...]] environment.

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

62 TONY FENG

Figure 6.2.1. From the section Visualizing the predictions and the “neu-
ron” firings in the RNN in https://karpathy.github.io/2015/05/21/
rnn-effectiveness.

Figure 6.2.2. From the section Visualizing the predictions and the “neu-
ron” firings in the RNN in https://karpathy.github.io/2015/05/21/
rnn-effectiveness.

6.3. Variable length output. So far we have discussed using a hidden state in order to
handle variable length inputs, but our illustrations made it appear as if the output length
were a function of the input length. Going back to the example problems that we stated at
the beginning of the lecture, we see that this is not realistic. It can be remedied by having

https://karpathy.github.io/2015/05/21/rnn-effectiveness
https://karpathy.github.io/2015/05/21/rnn-effectiveness
https://karpathy.github.io/2015/05/21/rnn-effectiveness
https://karpathy.github.io/2015/05/21/rnn-effectiveness

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 63

the model start output generation only with a special start token (such as <SOS>) and stop
generation only with a special stop token (such as <EOS>). But a specific design, called the
encoder-decoder architecture, gained particular popularity for handling situations where the
output sequence length could differ substantially; we will discuss this next.

6.4. Encoder-decoder architecture. The encoder-decoder architecture seems to have
been introduced almost simultaneously by two independent groups: Cho et al [CvMG+14]
in June 2014, and then Sutskever et al [SVL14] in September 2014. The idea is to build a
neural network with two halves: an “encoder” RNN, which turns a variable-length sequence
into a fixed-length vector (its representation), and then a “decoder” RNN with the inverted
structure, that turns a fixed-length representation back into a variable-length sequence. The
template for the architecture is depicted in Figure 6.4.1.

Figure 6.4.1. Unrolled illustration of the encoder-decoder RNN architec-
ture. The left half constitutes the encoder, which processes a variable-length
input sequence into a fixed-length representation. The right half constitutes
the decoder, which processes the fixed-length representation into a variable-
length output sequence.

This architecture is especially popular when:
(1) The output length T ′ might be significantly different from the input length T , or
(2) The input and output are of different natures, e.g., when translating one language

to another, or captioning an image.
Mathematically, the RNN is predicting a conditional probability distribution

p(y1:T ′ |x1:T).

The encoder that reads in the input sequence x1:T , and passes its hidden state hE
T to the

decoder. This hidden state hE
T is a fixed-length “representation” (aka “embedding”) of x1:T ,

64 TONY FENG

with dynamics governed by an equation of the form

hE
t = f(hE

t−1, xt).

The decoder RNN generates yt, and has hidden state of the form

hD
t = g(hD

t−1, yt−1)

with initialization hD
0 = hE

T . Note that the decoder’s output at time t−1 serves as its input
at time t.

These two halves are jointly trained to minimize the conditional log-likelihood of an
output sequence y given an input sequence x,

min
θ

(
− log pθ(y|x)

)
. (6.4.1)

Actually, in practice one would take the average of such loss over a batch, but we will ignore
this for notational convenience. To express (6.4.1) in terms of the neural network, write
y := y1:T ′ and x := x1:T . The RNN itself calculates a prediction of the form

pθ(yt|x1:T , y1, . . . , yt−1) = pθ(yt|hE
T , y1, . . . , yt−1)

where hE
T = E(x1:T) is the embedding of x1:T . This then gives an expression for the

conditional probability pθ(y|x) as

pθ(y|x) = pθ(y1:T ′ |hE
T) =

T ′∏
t=1

pθ(yt|hE
T , y1, . . . , yt−1)

so that (6.4.1) can be rewritten as

− log pθ(y|x) = −
T ′∑
t=1

log pθ(yt|hE
T , y1, . . . , yt−1). (6.4.2)

Note that each summand− log pθ(yt|hE
T , y1, . . . , yt−1) can be interpreted as the cross-entropy

loss on token yt.

6.5. Representation learning. As the encoder-decoder network trains, the encoder learns
a mapping E from variable-length sequences x to fixed-length vectors hE

T . This is an example
of “representation learning” (in the sense of Terminology 1.4.6): learning a hidden latent
representation of a input data. Here the adjective “latent” connotes features which are not
explicitly observed in the data.

Latent space is also often called “embedding space”, and the latent representation is often
also called an “embedding”.

The latent representation is abstract, and could be hard to interpret concretely. One can
look at examples to get an intuitive feel for latent space. For example, one would expect
that sequence vectors which are literally quite different, but similar in semantic meaning,
like “Sup dog?” and “How are you?”, would end up close to each other in latent space.
Another intuition is that vector arithmetic is meaningful in latent space, as seen in the
famous example

E(king)− E(man) + E(woman) ≈ E(queen).
A 2D projection of the learned representation in [CvMG+14] is displayed in Figure 6.5.1;
more such figures can be found there.

The standard intuition about real-world data is that it is messy and unstructured. By
contrast, a good latent representation compresses into “nice” coordinates. As a mathematical
metaphor, one can imagine the “meaningful” datapoints (e.g., natural language sentences

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 65

Figure 6.5.1. Top left: 2D projection of the representation learned by the
encoder in [CvMG+14]. The other panels are zoomed-in views of colored
regions, displaying a semantic pattern to that region of latent space. From
[CvMG+14, Figure 6].

among all possible combinations of English words) as forming a very thin manifold in an
extremely high-dimensional space of possibilities. The encoder aims to learn a mapping
from this manifold to a Euclidean space, which admits an inverse, to be learned by the
decoder. This is analogous to learning local coordinate charts for a low-dimensional manifold
embedded in high-dimensional space. The cartoon below depicts a visualization of this
framework.

In these terms, the data is viewed as an implicit presentation of a manifold, as a subset of
some very high-dimensional space, and the encoder-decoder network is trying to present it

66 TONY FENG

in terms of a Euclidean atlas. The point of embedding in latent space is that this is a better
setting to do calculations: a principle familiar from analysis on manifolds.

The “Manifold Hypothesis” refers to the principle that real-world data is typically a rather
low-dimensional manifold embedded in high-dimensional space, and thus the dimension of
latent space can be taken to be quite small. For example, we saw in the discussion of §5.3
on the ImageNet challenge that a standard 224x224 image has dimension 224 × 224 × 3 ≈
150, 000, and gets downsampled to an embedding of dimension 512 by a 34-layer ResNet.

6.6. Sampling. When sampling from the RNN at inference time, one ideally wants to
generate the output sequence y maximizing the conditional probability p(y|x) given an
input sequence x. However, the number of possible sequences blows up exponentially with
length, so it is not feasible to consider them all. Note that greedy selection, where the single
most probable token is selected at each step, does not necessarily lead to the most probably
sequence.

6.6.1. Temperature sampling. One can consider instead just sampling from the distribution
computed by the neural network. However, this tends to give poor results. The reason is
that, as discussed around Slogan 3.3.8, cross-entropy penalizes the model for being confident
but wrong, so the model is incentivized to allocate a tiny possibility to all possible tokens.
Thus, there tends to be a long tail of many improbable tokens each of which carries very
little weight, but which aggregate to a non-trivial proportion of the total probability.

Temperature sampling is a variant of this which introduces a “temperature” parameter
τ that allows one to suppress the long tail. The parameter τ enters in renormalizing the
softmax function:

SoftMaxτ (ai) =
exp(ai/τ)∑
j exp(aj/τ)

.

The limit τ = 0 concentrates on the single most probable state, i.e., greedy selection,
while τ = 1 is the standard softmax. Thus a temperature in (0, 1) strikes an intermediate
between the two. LLMs use temperature sampling, and a typical temperature value might
be τ ∈ [0.5, 0.7].

We will also discuss some other sampling methods that come up.

6.6.2. Beam search. The idea of Beam search is to maintain a set of k running “hypotheses”
y
(1)
1:t , y

(2)
1:t , . . . , y

(k)
1:t at each time step, and select the best one at the end.

To generate token t + 1, we use the neural network to calculate the top-k next tokens
for each of the k hypotheses y

(1)
1:t , y

(2)
1:t , . . . , y

(k)
1:t , and then prune this down to the next list of

top-k hypotheses,y(1)1:t+1, y
(2)
1:t+1, . . . , y

(k)
1:t+1.

Actually, there is a difference between the calculation of log probability at inference
time versus during training. Notice that (6.4.2) tends to penalize longer sequences, since
each token contributes a negative log likelihood. Therefore, at inference time one should
normalize the log likelihood by the length of the sequence, i.e., consider the average log
likelihood per token. But during the actual beam search, when processing a token one does
not know how long the final sequence will be. Hence in order to implement this with beam
search, a separate list of “finished” sequences need to be maintained, with the beam search
only running over unfinished sequences. Once sequences are finished, their log likelihood
can be normalized and compared.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 67

6.6.3. Nucleus sampling. Nucleus sampling strikes an intermediate between beam search
and sampling directly from the modeled distribution. The idea is to truncate the long tail
by considering only the most probable tokens up to a certain proportion (a fixed hyperpa-
rameter, e.g., 0.9) of the total mass, and then sampling from them according to the model’s
conditional probabilities (renormalized).

6.7. Case studies. We will discuss some early examples of encoder-decoder RNNs, which
were trained for machine translation. For this, a common evaluation metric is “BLEU score”,
which compares the machine translation to a reference translation, giving points for having
n-grams in common. BLEU score is technically valued in [0, 1], but typically reported as
a percentage in [0, 100]. A higher score is better, with < 10 considered very poor, 20-30
considered understandable but not fluent, 40-50 considered good, and 60+ considered close
to human performance.

6.7.1. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine
Translation. The paper [CvMG+14] by Cho et al introduced the encoder-decoder architec-
ture and analyzed its performance on English-to-French translation of phrases (typically 5-7
words instead of a full sentence). They did not use the RNN as a standalone translation
system, but rather as a “helper” to rescore the output of a traditional Statistical Machine
Translation system. In this way, they were able to achieve a BLEU score of 34.64 on the
WMT’14 dataset, which consists of 12M English/French sentence pairs, with 304M English
words and 348M French words.

Parameters. Cho et al used a single-layer RNN with “1000 hidden units”, meaning
the hidden state has dimension 1000. To decrease the dimension of the matrix Wxh, they
used a low-rank approximation by forcing Wxh = WxzWzh where z has dimension 100. A
back-of-the-envelope calculation thus indicates that the model had ≈ 108 − 109 learnable
parameters.

The model was trained on a table of phrase pairs drawn from the WMT’14 dataset.
Training was done with batch size of 64.

Innovations. Compared to our discussion of RNNs, Cho et al made a few modifications
that were important for performance. Firstly, they used a different formula for the dynamics
of their hidden states than the conventional LSTM formulas from §6.1.3, which they call a
“Gated Recurrent Unit” (GRU). Secondly, they added a compartment to the hidden unit of
the decoder which retains the representation learned by the encoder without any modifica-
tion. In terms of the unrolled picture, this means that the encoder’s representation is fed
directly to the hidden unit of the decoder at each time step: see Figure 6.7.1, and compare
to Figure 6.4.1. This prevents the decoder from “forgetting” the encoder’s representation as
the output sequence length grows.

6.7.2. seq2seq. The encoder-decoder architecture seems to have been independently discov-
ered by Sutskever et al. in the paper [SVL14] appearing a few months after the work of
Cho et al. On the same WTM’14 English to French translation dataset, their system, called
“seq2seq” achieved a BLEU score of 36.5 when used in a similar way as Cho et al’s (i.e., in
combination with a phrase-based Statistical Machine Translation system). Notably, how-
ever, seq2seq also attained impressive performance translating full sentences end-to-end,
achieving a BLEU score of 34.81 by itself. In particular, seq2seq exhibited decently robust
generalization to longer sequences.

Innovations. Compared to [CvMG+14], Sutskever et al opted for a deeper RNN, with
4 layers. They also discovered that the simple trick of reversing the input sequence order

68 TONY FENG

Figure 6.7.1. Unrolled illustration of the encoder-decoder RNN architec-
ture from Cho et al [CvMG+14]. The encoder’s representation is directly
fed to the decoder at each time step.

helped a lot with performance: instead of translating x1x2x3 7→ y1y2y3, they translate
x3x2x1 7→ y1y2y3. The intuition seems to be that in the reversed setup, x1 is closer to y1.
We note however that Sutskever et al do not seem to use the trick of connecting the learned
representation directly to the decoder at each time step (Figure 6.7.1), which also mitigates
the problem of memory attenuation.

Parameters. The model of Sutskever et al had 4 hidden layers in each LSTM (i.e.,
encoder and decoder). Word embedding and hidden state dimension were both 1000; the
total learnable parameter count was 348M.

Training ran for 7.5 epochs, with batch size 128. The initial learning rate was 0.7, and
was halved every half-epoch starting with epoch 5. The training was parallelized on 8 GPUs,
and took about 10 days.

The BLEU score of 34.81 was achieved using beam search with size k = 12, although
k = 2 already achieved 34.50 and even k = 1 achieved a respectable 33.00.

7. Transformers

This lecture covers Transformers, the architecture underlying modern generative models
such as LLMs. The key aspect of Transformers is the Attention mechanism, a different way
of handling variable length inputs. Attention was originally introduced by Bahdanau et al
in 2014 [BCB14] as an augmentation to RNNs. Transformers were invented by Vaswani et
al in 2017 [VSP+17]; as their title Attention is All You Need suggests, the key insight was
to jettison RNNs entirely and make Attention the focal point.

7.1. Attention. The basic intuition of Attention is that when processing a sentence, the
words pick up meaning depending on their relation to other words in the sentence. For

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 69

Figure 6.7.2. Examples of phrases in two regions of latent space from the
representation learned in [SVL14]. From [SVL14, Figure 2].

example, consider the following two sentences:

I crossed the river to get to the bank. (7.1.1)

I crossed the street to get to the bank. (7.1.2)
Although the sentences are almost identical, the word “bank” has two different very mean-
ings. In the first case, it is referring to a river bank, as is hinted by the presence of the
word “river” earlier in the sentence. In the second case, it is referring to a financial bank,
as is hinted by its location across the “street”.

A RNN would handle this by maintaining “hidden states” and “memory cells” which
record some understanding of the context. By contrast, Attention will transform the inputs
themselves, so that each word becomes a superposition of itself along with other words that
give contextual guidance.

7.1.1. Toy model. Here is a toy mathematical model for what Attention is trying to accom-
plish. We are given an input sequence (xi), we want to turn it into a new sequence (yi)
where each yi is a “superposition” of the xi, in the sense that

yi =
∑

aijxj (7.1.3)

where aij ∈ [0, 1] and
∑

j aij = 1. In our examples above, one might imagine that in (7.1.1)
the word xi = ‘bank’ might become yi = 0.9 · ‘bank’+ 0.1 · ‘river’, while in (7.1.2) the
word xi = ‘bank’ might become yi = (say) 0.9 · ‘bank’+ 0.1 · ‘street’.

Remark 7.1.1. Depending on the NLP task, it might be natural to demand some “upper-
triangularity” to the matrix (aij), corresponding to the fact that at the time of seeing xi,
only the previous xj with j < i have been seen.

7.1.2. Metaphor to information retrieval. In the toy model, how might we come up with the
coefficients aij? Basically we are asking: given a word xi, which of the other words xj is
relevant for xi? This is similar the problem of information retrieval ; an example use case is
building a database where the user can enter a search query and get a list of relevant results.
A basic idea for doing this (to first approximation) is to attach a Key vector K to each item
in the database, and also a Query vector Q to each query. The Key and Query vectors
should be of the same dimension, so we can take their dot product to obtain a measure of
similarity.

70 TONY FENG

Example 7.1.2. For a concrete example, suppose our database consists of movies. For
each movie, the Key vector K might encode what we think are important attributes: genre,
director, starring actors, reviews, etc. The Query vector Q would attempt to extract these
attributes from the user’s search query, and the inner product ⟨K,Q⟩ would reflect the
strength of the match.

Finally, in information retrieval we will return a Value vector V which might differ sub-
stantially from the key K. In our movie database example, the Value might for example just
be the title of the movie. In NLP tasks, it will itself be a function of inputs which will be
learned.

7.1.3. Attention. Now imagine an NLP setup where our input is a sequence of vectors
x1, . . . , xN . Write

X =


x1

x2

...
xN


where each xi has dimension d.

Our plan is to compute similarity coefficients

Similarity(K(xj), Q(xi)), for each pair i, j.

Here, the Key and Query vectors K(xi) and Q(xi) have dimension dK = dQ. To first
approximation, we can take the dot product

⟨K(xj), Q(xi)⟩ = K(xj)Q(xi)
⊤

to be a measure of similarity. To turn this into a “superposition”, satisfying
∑

j aij = 1, we
would like to apply the softmax function. However, we should do some renormalization first,
to maintain the scale of the features. To find the normalization constant, we approximate
the individual entries of K(xj) and Q(xi) as i.i.d. random variables with a fixed variance,
say σ2 = 1. Then the variance of the dot product is dK , so scaling by 1/

√
dK recovers a

variance of 1.
To summarize, we will have

aij = SoftMax

(
1√
dK

K(xj)Q(xi)
⊤
)

j

.

Finally, after incorporating the additional flexibility of a Value encoding, the output of the
Attention layer on xi becomes

yi =
∑
j

SoftMax

(
1√
dK

K(xj)Q(xi)
⊤
)

j

V (xj). (7.1.4)

Example 7.1.3. This example is taken from [Goo17]. Consider the English-to-French
translations

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 71

Although the sentences have essentially identical structure, in the first sentence the word
“it” refers to the animal, while in the second sentence “it” refers to street. Figure 7.1.1
displays the Attention scores in one of the later layers of [VSP+17], which clearly reflect
this difference.

Figure 7.1.1. Visualization of attention coefficients (as intensity of the
blue color) for the word “it” in two different English sentences. The atten-
tion scores indicate that “it” refers to different subjects in the sentences.
From [Goo17].

7.1.4. What are the Query, Key, and Value vectors? We have not yet explained how to
calculate K(xi), Q(xi), and V (xi). These will be given by linear functions of the input, of
the form

Q(xi) = xiWQ

K(xi) = xiWK

V (xi) = xiWV

The weights of the matrices WQ,WK and WV will be learned parameters. The dimension of
W? will be d×d? where d is the dimension of xi (the “model dimension”). We need dK = dQ,
and we typically take dK = dV as well, although this is not necessary.

Remark 7.1.4. We never use WQ and WK separately; they always appear together as
WKW⊤

Q . In principle, we could just learn a d × d matrix WKQ instead. We are effectively
taking WKQ to be of the form WKW⊤

Q , which can be seen as a way of forcing WKQ to have
low rank (at most dK = dQ, which is typically much smaller than d – see Example 7.1.6).

7.1.5. Multihead attention. In practice, it will be useful to keep track of independent “atten-
tion heads”, which attend to different aspects of the input. This is analogous to the different
channels in a CNN. To do this, one stacks W i

K ,W i
Q,W

i
V for i = 1, . . . , h. Typically, the

dimensions are arranged so that hdV = d, so that the total dimension of the inputs and
outputs are the same after accounting for the number of attention heads.

Remark 7.1.5. Instead of tracking multiple attention heads, why not simply take use
longer K/Q/V vectors, of dimension d? The hope is that different heads will “specialize” to
track different information. If we put them all under the same softmax function, then some
would be swamped by others.

72 TONY FENG

Example 7.1.6. For the original transformer, d = 1024, h = 16, dK = dV = 64. For the
largest GPT-3 model (175B parameters), d = 12288, h = 96, and dK = dV = 128.

7.2. Positional embedding. As described so far, Attention depends only on the multiset
of input x1, . . . , xT and not to their order. However, we know that order matters in NLP.
The idea to address this is to also incorporate a “positional encoding” into the sequence,
which tracks the position of the input. The most naive way to do this would be to append
an index, e.g., x̃n = (xn, n). However, it is not really the numerical value of the index that
matters, but rather its position relative to the other inputs, so this imposes an unwanted
artificial inductive bias.

One might instead try to learn an embedding of indices, n 7→ r(n). This is a valid
approach, but can struggle to generalize to indices not seen in training.

Perhaps surprisingly, the method of [VSP+17] is to take x̃n = xn + r(n) where r(n)
is a handcrafted “sinusoidal” vector. The intuition behind taking a vector sum instead of
putting the position in a separate coordinate seems to be that two “random” vectors in
high-dimensional space are likely almost orthogonal, so it should be possible to essentially
separate out the position vectors.

As for the specific form of r(n), the basic intuition seems to be to record the angle
(cosn, sinn) instead of n itself. However, if n gets large then different positions will map
to almost the same angle, so [VSP+17] instead takes r(n) to be a vector with coordinates
(cos n

ω , sin
n
ω) for increasing “frequencies” ω; the later coordinates decreases the repetition

horizon. More precisely, their position vector rn has the form

(r(n))2i = sin
(n

100002i/d

)
, (r(n))2i+1 = cos

(n

100002i/d

)
.

7.3. Transformers. Attention was originally conceived by Bahdanau et al [BCB14] as an
added component of Recurrent Neural Networks. However, the paper [VSP+17] proposed
the Transformer architecture, in which Attention completely replaces the recurrent layers.
We will describe the architecture of loc. cit. (displayed in Figure 7.3.1) as a “vanilla” model
for transformers; in §8.4 we will meet some subsequent modifications of this architecture.

7.3.1. Encoder-decoder structure. The Transformer of [VSP+17] has two halves. As with an
RNN, the encoder half embeds a variable-length input sequence as a latent representation,
and the decoder half is an autoregressive20 model that uses the encoder’s representation
to produce an output sequence. But unlike an RNN, the latent representation now itself
has variable length (except that it is limited by some context window): it consists of the
Attention-weighted Values (7.1.4). Following the discussion of §7.1, at least for the first
layer, this representation can be imagined intuitively as a superposition of Values attached
to the original input tokens.

The encoder is similar to an RNN’s encoder, except with recurrent layers replaced by
Attention layers. Thus, an encoder layer consists of an attention sublayer followed by a
standard fully connected sublayer. A 1-layer Transformer is depicted below, although in
practice there would be several layers (the paper [VSP+17] uses 6 layers in both encoder

20meaning that its own previous output is used as input

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 73

Figure 7.3.1. The original Transformer architecture from [VSP+17, Fig-
ure 1]

and decoder).

74 TONY FENG

The decoder half is similar, except that (like in an RNN) it is autogressive: its own output
tokens y1, . . . , yt−1 are fed back into itself as input in order to predict token yt. Consequently,
the decoder contains an additional Attention layer that processes its own output. This layer
is masked so that tokens cannot attend to “future” tokens; mathematically, this means that
the Attention scores K(xj)Q(xi)

⊤ for j > i are set to −∞ (so that they become 0 after
applying softmax).

Positional embeddings are applied from the input to the first layer of the encoder, as well
as from the output to the first layer of the decoder.

Finally, both encoder and decoder enjoy the bells and whistles of a deep neural network
that we have already learned about: residual skip connections (around each of the sublayers),
and layer normalization (since batch normalization is not possible for autoregressive models).

7.3.2. Hyperparameters. As mentioned above, in the original Transformer of Vaswani et
al there were 6 layer stacks in both the encoder and decoder. For the largest model of
[VSP+17], the embedding dimension of input tokens was d = 1024, while the dimension of
the feedforward networks was 4096. There were h = 16 attention heads, and key and value
dimensions were both dK = dV = 64 = d/16.

7.3.3. Training. The paper [VSP+17] was trained on 8 (NVIDIA P100) GPUs over ≈ 3.5
days; the estimated number of total FLOPs was 2.3 × 1019. On the WMT’14 dataset, the
largest Transformer model achieved a state-of-the-art BLEU score of 41.8.

7.4. Comparison to RNNs. Transformers are now the dominant architecture for NLP
(and a host of other problems not necessarily of sequential nature, such as computer vision).

One major advantage of Attention is in facilitating the signal between inputs at large
distances. In RNNs, the input xi attenuates through n memory computations to influence
xi+n, while in Attention it is always a constant number of operations. The paper [KMH+20]
suggests that LSTM RNNs degrade when the context exceeds 100 tokens.

Another important advantage of Transformers over RNNs is that Attention is highly
parallelizable, which makes it amenable to scaling (e.g., by distributing computation over
many GPUs). In particular, the inner products

K(xj)Q(xi)
⊤ = xjWKW⊤

Q x⊤
i

can all be computed in parallel, whereas an RNN must process inputs sequentially through
hidden states. Because of this, Attention-based neural networks can be trained at much
larger scales than RNNs.

In summary, the following table illustrates the comparison of sequential operations (largest
number of computations that must be performed in sequence, rather than being paralleliz-
able) and path length (largest number of computations intervening between two members
of the sequence) for Attention versus Recurrent layers on a sequence of length n and repre-
sentation dimension d.

Layer Computational Sequential Path
complexity operations length

Attention O(n2d) O(1) O(1)
Recurrent O(nd2) O(n) O(n)

Left for presentation instead
of lecture 7.5. Case study: Vision Transformers. Although transformers were originally intro-

duced for NLP, they have proven to be flexible enough for multimodal capabilities. In the
domain of Image Classification, the Vision Transform (ViT) of Dosovitskiy et al [DBK+20]

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 75

was notable for achieving state of the art performance using Transformers instead of, or in
addition to, CNNs.

7.5.1. Tokenization. The main adaptation required to use Transformers for computer vision
is in tokenization. The idea of [DBK+20] is to cut the initial image up into smaller square
patches, and effectively treat each patch as a token. Learned embeddings are applied to
these patches before the attention layers.

Example 7.5.1. Suppose the original image has dimension H×W ×C, e.g. H = W = 224
and C = 3 for ImageNet. If the patch width is P , then the number of patches is N =
HW/P 2, and the dimension of each patch is P 2C. Dosovitskiy et al chose patch dimensions
such as P = 16, which with C = 3 leads to a model dimension of P 2C = 768 – the same as
for the base model GPT-1 and BERT.

Note that unlike in NLP, there is no natural sequence order of the tokens produced
from an image. Since Attention is not naturally sequential anyway, this is no problem,
but it does mean that a different positional embedding should be applied. Several schemes
for learning position embeddings were considered, but the simplest scheme of choosing a
standard transversal order (raster order) worked essentially as well as any other scheme.

7.5.2. Architecture. The architecture of ViT was deliberately similar to that of original
Transformer [VSP+17] and BERT, in order to demonstrate the flexibility of the architecture
in transferring from NLP to computer vision. Three different model sizes were considered
in [DBK+20]

Model Layers dimension (d) Heads (h) dK = dV Params
Base 12 768 12 64 86M
Large 12 1024 16 64 307M
Huge 32 1280 16 80 632M

Table 7.5.1. Model sizes of Vision Transformers trained in [DBK+20].

7.5.3. Training. ViT was supervised pre-training on a labeled dataset and then supervised
fine-tuning on downstream tasks. Notable, this constrasts with the training procedure for
Transformers used for LLMs, in which the pre-training is done on unlabeled data.

The pre-training was done successively on datasets ImageNet (1.3M images), ImageNet-
21k (14M images), and JFT (303M images). The best performances were obtained by a
Huge ViT with patch width P = 14, and a Large ViT with P = 16.

Performance on ImageNet was measured over the course of pre-training and compared
to CNN ResNets, indicating that CNN ResNets perform better at small data scales, but
plateau earlier and are eventually surpassed by the best Vision Transformer – see Figure
7.5.1. This fits with the intuition that the CNN’s architecture accommodates inductive
biases relevant to image recognition, hence requires less training to perform well. However,
it also suggest that at sufficient scales, more generic models eventually learn these inductive
biases just as well, and then even benefit from the flexibility of not being architecturally
constrained.

76 TONY FENG

Figure 7.5.1. Performance on ImageNet of various models at different
scales of pre-training. ViT-L/P (resp. ViT-B/P) is the large (resp. base)
ViT with patch width P . Deep ResNets dominate at 10M and 30M pre-
training samples, but are eventually surpassed by ViT-L/16 after 100M
pre-training samples. From [DBK+20, Figure 4].

7.5.4. Interpretation. One can construct Attention maps to visualize the patches which
contribute to the final classification (e.g., using Attention Rollout [AZ20]); see Figure 7.5.2.
In these Attention maps, pixels in the original image are highlighted according to their
weight in the “superposition” (in terms of the discussion of §7.1.1).

To compare with CNNs, it is interesting to measure the “mean Attention distance”
through the network, which is analogous to the size of the receptive field in CNNs. This is
is displayed in Figure 7.5.3. In the early layers of the network, a wide range of distances is
witnessed by different Attention heads; as the network depth increases, the mean attention
distances coalesce around the upper limit of the initial spread.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 77

Figure 7.5.2. Some
samples of Attention
maps, from [DBK+20,
Figure 7].

Figure 7.5.3. Plot of
mean attention distance
against network depth,
from [DBK+20, Figure
7].

Left for presentation instead
of lecture7.6. Scaling transformers: Transformer-XL. The original Transformers had small con-

text windows, capped at hundreds of tokens (e.g., 512 for BERT). For comparison: at the
time of writing these notes, modern LLMs have context windows extending into the hundreds
of thousands or even millions. A basic bottleneck of Attention is that it scales quadratically
with the length of the context window.

As a case study, we will examine an early effort towards scaling effective context length:
Transformer-XL by Dai et al [DYY+19]. This paper introduced two main ideas. Firstly, in
order to combat the context fragmentation problem in which contextual meaning is abruptly
lost beyond the context window, they introduced a recurrent mechanism by injecting a
hidden state into the Attention computation. This served to cache prior context in memory,
to some extent. While this trick did work well in the experiments of [DYY+19], which
extended the effective context window from hundreds to thousands, it is not really used
in modern LLMs due to the scaling limitations of recurrent mechanisms. The basic idea
of caching previous computations remains an important part of optimizing and scaling.
However, this requires some modification to the computation of Attention.

Consider calculating Attention at inference time: the context window shifts by 1 for
each output token, which means that one is almost redoing many Attention computations.
However, this is not literally true because of the positional embeddings. The second, last-
ing, innovation of [DYY+19] is to replace the positional embeddings by “relative positional
embeddings” in order to solve this problem.

Indeed, recall that in a Transformer, each token xi is embedded as Ei and then added to
a positional embedding Ui. We can think of Ei as capturing the “content” of xi, and Ui as
capturing the “position”. The Attention between xi and xj is then

(Ei + Ui)WKW⊤
Q (Ej + Uj)

⊤.

78 TONY FENG

We can expand this expression as

EiWKW⊤
QE⊤

j︸ ︷︷ ︸
(a)

+EiWKW⊤
QU⊤

j︸ ︷︷ ︸
(b)

+UiWKW⊤
QE⊤

j︸ ︷︷ ︸
(c)

+UiWKW⊤
QU⊤

j︸ ︷︷ ︸
(d)

. (7.6.1)

We can think of (a) EiWKW⊤
QE⊤

j as a “relative content” term, which does not depend
on the positions. On the other hand, the (d) term UiWKW⊤

QU⊤
j depends on the absolute

position indices (i, j), which change as the context window shifts, whereas intuitively only
the difference j−i should matter. Therefore, we would like to alter this term to only depend
on the relative position. The final form of relative attention from [DYY+19] is

EiWKW⊤
QE⊤

j︸ ︷︷ ︸
(a′)

+EiWKu⊤︸ ︷︷ ︸
(b′)

+Rj−iWRW
⊤
QE⊤

j︸ ︷︷ ︸
(c′)

+Rj−iWRv
⊤︸ ︷︷ ︸

(d′)

. (7.6.2)

Here Rj−i is learned embedding of j − i, and u, v are learned vectors (“global” in the sense
that they are independent of i, j). Let’s talk through the new interpretation of these terms.
The “relative content” term (a) is the same as (a′). The term (d′) is a “relative position” term,
with learnable parameters Rj−i and v. Since v is independent of i and j, it captures “global”
bias about relative position; for example, we can expect it to learn that “the previous word
is important”. Similarly, (b′) captures “global” bias about content, such as which words have
higher baseline importance (e.g., the tokens ‘the’ and ‘an’ are perhaps not so important).
Finally, (c′) captures content-based positional bias, such as which positions tend to be
important for a given token. For a concrete example: in Spanish, adjectives tend to follow
the nouns they describe, so if Ej is the encoding of an adjective, then the preceding word
is especially important.

Part 3. Generative models

8. Large Language Models

In this lecture, we will survey the development of Large Language Models (LLMs).

8.1. Pre-trained transformers. A distinctive feature of modern LLMs is their massive
Pre-training phase. To understand the backdrop for pre-training, recall that Vaswani et al
introduced the Transformer as a model for machine translation. However, one would like a
model capable of handling a variety of NLP tasks, including translation, text summarization,
question answering, etc. By the late 2010s, benchmarks covering many diverse tasks were
collected, such as GLUE (General Language Understanding Evaluation) in 2018, which
featured 9 different types of natural language understanding tasks. This reflected a shifting
emphasis from individual benchmarks to general capability. What might be a uniform
system for handling all such tasks?

The idea of OpenAI’s 2018 GPT-1 (short for Generative Pre-trained Transformer) [RN18]
and Google’s 2019 BERT [DCLT19] was to use a common pre-training procedure for rep-
resentation learning of natural language, and then do separate supervised fine-tuning for
each downstream task: see Figure 8.1.1. As a metaphor, pretraining could be thought of as
analogous to the common “primary schooling” for children, while supervised fine-tuning is
analogous to specialized advanced education that students undertake after primary school.

Crucially, the pre-training is done on unlabeled data, which makes it feasible at massive
scales (e.g., by scraping the whole Internet for data) in comparison to supervised learning on
labeled data, which is costly to curate. In this sense, pre-training is a form of unsupervised
learning, although a more suggestive name might be self-supervised learning : unlabeled data

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 79

Figure 8.1.1. The training strategy for BERT. Left: massive-scale unsu-
pervised pre-training results in robust representation learning. Right: for
individual tasks, the model is initialized with pre-trained parameters and
then undergoes small-scale supervised learning. From [DCLT19, Figure 1].

is automatically transformed into labeled data by the nature of the pre-training objective,
and then subjected to a training process that looks identical to supervised learning.

Later, OpenAI demonstrated with GPT-2 and GPT-3 that sufficiently pre-trained mod-
els could already perform decently at downstream tasks without supervised fine-tuning. Of
course, modern frontier models do undergo significant pre-training and post-training (in-
cluding supervised fine-tuning).

Remark 8.1.1. Let us comment on the historical development of pre-training. The idea of
pre-training has been around for a long time, but its signifance has changed over the years.
It was emphasized already in early work of LeCun et al [LBOM12] that good initialization
of weights is important for training. The 2006 Science paper of Hinton and Salakhutdinov
[HS06] introduced and validated the important idea of initialization via pre-training via
unsupervised learning on raw data, although its methodology for doing so was very different
from that of modern LLMs. In [HS06], individual layers were pre-trained separately using
Restricted Boltzmann Machines, and their weights were then loaded to initialize a neural
network, while modern LLMs are pre-trained end-to-end.

With the development of better initialization schemes and optimizers, the importance of
pre-training as a mechanism for weight initialization diminished. Instead, pretraining is now
viewed as a form of self-supervised representation learning in the sense of §6.5, in which the
model learns useful representations by identifying patterns in the raw data.

8.2. Token embeddings. In order to do machine learning on natural language, we need
to convert words (or more precisely, tokens) into quantitative information, i.e., vectors of
numbers. This is a form of representation learning commonly called token embeddings, that
was already necessary for RNNs and vanilla Transformers, but we previously skirted it. Now
it is timely to return to this point; this will be our first example of unsupervised learning.

The fundamental idea is that unlabeled natural language text can be automatically trans-
formed into certain kinds of labeled data. We will illustrate some examples from word2vec,
an technique for representation learning that was an ideological predecessor for the pre-
training procedure of LLMs.

• “Bag of words”: predict a target word from surrounding context words. For example,
suppose we find the sentence

The cat sat on the mat.

80 TONY FENG

We can choose a random word to mask, say sat, and create a pair

(the cat ___ on the mat, sat)

The model will be shown the first member of the pair, and asked to predict the
second member.

• “Skip-gram”: predict context words surrounding a target word. For example, from
the sentence “the cat sat on the mat” we might extract the target word cat and
context words {the, sat, on, mat}. The training objective is then to maximize
the log likelihood of predicting the context words given the target word,∑

wj∈context words

log pE(wj |target word).

Note that, crucially, the data for each of these approaches is easy to obtain: it can be
extracted from unlabeled natural language text.

Now we will, this one time only, walk through some low-level implementation details.

8.2.1. Tokenization. As a first remark, LLMs do not actually operate on words but on more
mathematically engineered units of meaning called tokens. The conversion from words to
tokens, called tokenization, can be thought of as a data pre-processing step. Some illustrative
examples of tokenization might be:

cooked 7→ [cook, ed]

cooking 7→ [cook, ing]

uncooked 7→ [un, cook, ed]

Tokenization is carried out algorithmically; a common tokenization scheme (used for GPT-
1) is Byte Pair Encoding. The basic idea is to start with a vocabulary of characters and
a body of reference text, and then repeatedly merge the two most frequent tokens from
the vocabulary which appear in the reference text. This is basically a greedy algorithm for
minimizing the number of tokens needed to express the reference text.

8.2.2. One-hot encoding. Next, suppose we have a vocabulary V of all possible tokens
x1, x2, . . . , xN . We cannot directly feed these into neural networks, because those oper-
ate on numbers rather than words or tokens. A cheap way to convert the xi into vectors of
numbers is the so-called “one-hot embedding” V → RN , sending xi to the vector whose ith
coordinate is 1 and all other coordinates are 0.

x1 7→ [1, 0, 0, 0, . . .]

x2 7→ [0, 1, 0, 0, . . .]

x3 7→ [0, 0, 1, 0, . . .]

...
...

More generally, we can use one-hot encoding anytime we have categorical rather than quan-
titative features.

8.2.3. word2vec. Finally, to do the actual training we pick a latent dimension D and learn a
linear projection v 7→ vE for E ∈ RN×D. To learn E, we view it as the weights for a linear
model of the form

one-hot(x)E

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 81

which is then trained on data D = {(xi, yi)} obtained from “bag-of-words” and “skip-gram”
applied to unlabeled natural language text.

left for presentation instead
of lecture8.3. Case study: GPT-1. The most famous Large Language Models are OpenAI’s GPT

(Generative Pre-trained Transformer) series. Here we highlight some aspects of GPT-1
[RN18].

8.3.1. Pre-training. As in word2vec, the pre-training phase of GPT-1 was based on tasks
extracted from unlabeled natural language text. Specifically, its objective was “next-token
prediction”: given a sequence

x1:T−1 = x1x2 . . . xT−1,

the neural network learns to predict a conditional probability function on the next token,
denoted

pθ(xT |x1:T−1).

Recall that this came up already in the discussion of RNNs (§6.4). The training is carried
out using cross-entropy loss. Namely, given a training pair (x1:T−1, xT), the empirical
distribution is the delta distribution δxT

concentrated at xT , so the cross-entropy against
the model is

H(δ{xT }, pθ) = − log pθ(xT |x1:T−1).

Note that, as with word2vec, such training data is easy to acquire: any unlabeled corpus
of natural text can be converted into training pairs by extracting sequences of T tokens and
then treating the last token as the label.

8.3.2. Decoder-only architecture. The GPT-models are decoder-only Transformers: in terms
of the discussion of §7.3, they consist only of the decoder half. Indeed, their main task is au-
toregressive generation – generating sequences of tokens based on their own previous output
– which does not really have a separate “input processing” stage like machine translation
does. Note that the decoder half does have its own embedding layer, which partially plays
the role of representation learning.

For concrete details, GPT-1 had 12 layers and h = 12 attention heads with dK = dV = 64,
so model dimension 12× 64 = 768. It was trained over 100 epochs, with minibatches of size
64.

8.3.3. Supervised fine-tuning. To transfer from pre-training to downstream tasks, GPT-1
underwent supervised fine-tuning on each specific task on the pre-trained model. This was
carried out by extracting the portion of the pre-trained transformer up through the final
attention layer, adding a new fully-connected layer on top of it, and then doing standard
supervised machine learning on a labeled dataset (see Figure 8.3.1).

The supervised fine-tuning data for GPT-1 came from publicly available datasets, which
had been curated for benchmarking on various NLP tasks such as translation, question
answering, summarization, and recognizing semantic similarity.

left for presentation instead
of lecture8.4. Case study: BERT. In contrast to GPT-1, Google’s BERT (short for Bidirection En-

coder Representations from Transformers) [DCLT19] was effectively an encoder-only trans-
former (the encoder half of a transformer as described in §7.3).

82 TONY FENG

Figure 8.3.1. GPT-1 was pre-trained on a massive natural language cor-
pus. Later, for each downstream task, the final attention head layer
was connected to new fully connected layers, whose parameters were then
trained on a smaller labeled dataset in the manner of ordinary supervised
learning.

8.4.1. Pre-training tasks. The main novelty of BERT, compared to GPT-1, was that its
pre-training objective consisted of “bidirectional” tasks where the model learns contextual
relations flowing both forwards and backwards in the sequence (this is the meaning of
“bidirectional”). The two tasks were called “Masked Language Model” and “Next Sentence
Prediction”.

(1) Masked Language Model. BERT was given passages of natural language text with
some of the tokens randomly masked (e.g., replaced by a special [MASK] token), and its
training objective was to guess the masked token from context. The earlier GPT-1 had
pre-trained on “next token prediction”, which uses only the preceding context, while Masked
Language Modeling involves prediction based on both the left context and the right context.

Actually, the masking procedure was a bit subtler. If done in the naive way described
above, there would be a mismatch between text seen in the training distribution versus
downstream tasks where the [MASK] token does not appear. Therefore, what actually hap-
pened was that 15% of the tokens were selected at random for masking. Of these, only 80%
actually got replaced by the [MASK] token, 10% got replaced by a random token, and 10%
were left unchanged. In a single training example, the model is asked to predict all masked
tokens and the loss is the average cross-entropy loss for each prediction.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 83

Example 8.4.1 ([DCLT19, Appendix A.1]). Suppose the input sentence is

my dog is hairy

and that the word hairy is randomly selected for masking.

• 80% of the time, it is replaced with [MASK] token, so the model sees

my dog is [MASK]

• 10% of the time, it is replaced with a random word, say apple, so the model sees

my dog is apple

• 10% of the time, it is left unchanged, so that the model sees

my dog is hairy

(2) Next Sentence Prediction. In order to build up higher level understanding, BERT
was also given sentence-level tasks. Specifically, the model was given two sentences A and
B drawn from a natural language corpus, where B was the next sentence after A 50% of
the time, and a random sentence from the corpus the other half of the time. The model’s
objective was simply to classify whether B isNext or is notNext.

Example 8.4.2 ([DCLT19, Appendix A.1]). For the input

A = the man went to [MASK] store

B = he bought a gallon [MASK] milk

the ground-truth label is isNext.
For the input

A = the man [MASK] to the store

B = penguin [MASK] are flightless birds

the ground-truth label is notNext.

8.4.2. Hyperparameters. We will discuss two BERT models: a base model and a large model.
The base model was chosen to be comparable to OpenAI’s GPT-1. It had 12 layers,

h = 12 attention heads, dimension d = 768 (so dK = dQ = dV = 64 = d/h), for a total of
about 110M parameters.

The large model had 24 layers, h = 16 attention heads, and d = 1024 (so again
dK = dQ = dV = 64), for a total of about 340M parameters.

8.4.3. Training. The pre-training corpus for BERT consisted of BooksCorpus (a dataset
of about 7000 self-published books with 800M words) and English Wikipedia (about 2.5B
words). These were divided into input sequences of ≤ 512 tokens. The batch size was 256,
so each batch consisted of up to 128, 000 tokens. Training lasted for 40 epochs over a 3.3
billion word corpus.

Pre-training was done with the Adam optimizer, with hyperparameters µ = 0.9, β =
0.999. For regularization, BERT used L2 weight decay with λ = 0.01 and dropout with
probability p = 0.1.

84 TONY FENG

8.4.4. Ablation studies. Ablation studies are a way of analyzing the contribution and im-
portance of different components of the model and training pipeline. The idea is to remove
(“ablate”) or change individual parts, and then measure how this affects performance. Here
are some ablations that [DCLT19] considered.

• Pre-training tasks. Remove the NSP objective, or change the Masked Language
Modeling task from bidirectional to unidirectional (left-to-right only). These were
all found to hurt performance significantly [DCLT19, Table 5].

• Model size. Increasing the number of layers and attention heads (fixing dK = dV =
dQ) led to smooth improvements in performance.

• Fine-tuning approach. Instead of fine-tuning the pre-trained model directly, there
is a featured-based approach to using a pre-trained model. This involves plugging
the pre-trained model in as features to another task-specific architecture. This also
achieved good performance with BERT, but not quite as good as the fine-tuning
approach.

8.5. GPT-2, GPT-3, and beyond. Both GPT-1 and BERT train separate models for
different downstream tasks, after a common pre-training phase. A key paradigm shift oc-
curred with GPT-2 [RWC+19], which demonstrated that a single, sufficiently pre-trained
model could handle diverse downstream tasks without separate specialization through fine-
tuning.

Recall that in the GPT-1/BERT paradigm, for each task τ we obtain a separate model
through supervised fine-tuning, that calculates

pτθ (xT |x1:T−1).

Alternatively, we can think of this as a single model that conditions on both input and task,
pτθ (xT |x1:T−1, τ). The insight of GPT-2 was that it can be effective to condition on the task
simply by adding the task description to the input context.

Example 8.5.1. Suppose x1:T is

The cat sat on the

The pre-trained transformer will naturally try to continue this sentence, perhaps with the
word mat. But suppose that we instead want a translation of this phrase from English to
French. In the GPT-1/BERT paradigm, we would take part of the pre-trained transformer,
insert it into an architecture for the translation task, and then do supervised learning. But
in the GPT-2 paradigm, we instead augment the context with something like the following.

Your task: Translate the following English text to French.
English text: The cat sat on the
French text:

The model would then understand to start translating into French, rather than completing
the English sentence.

This idea was taken further in GPT-3 [BMR+20], which studied the effect of including
sample demonstrations of the desired task into the prompt, a technique called few-shot
prompting. In fact, an intriguing result from GPT-3 was that for sufficiently large models, if
enough (e.g., 10) samples are included in the prompt then even the original task description
becomes unnecessary. However, this effect was only observed in sufficiently large models:
see Figure 8.5.1, which shows that a small (1.3B parameter) model does not benefit from
few-shot examples, while a large 175B parameter model benefits much more than a medium
13B parameter model. This gave rise to the concept of emergent behavior : qualitative

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 85

capabilities “emerge” only in sufficiently large models like a “phase transition”, not predicted
by extrapolation from scaling.

Figure 8.5.1. Graph of performance against number of few-shot samples
included in context, over several different model sizes, from [BMR+20, Fig-
ure 1.2]. The small model (1.3B parameters) does not seem to be able to
learn from context. By constrast, larger models learn well from context, to
the point where the task-specific prompt is no longer necessary.

The papers [RWC+19] (GPT-2) and [BMR+20] (GPT-3) showed that massive models
with extensive pre-training could perform well on a diverse collection of downstream tasks
without any supervised fine-tuning at all. The driving force behind performance was simply
scale: the growth of various parameters from GPT-1 to the largest GPT-2 and GPT-3
models is indicated in Table 8.5.1.

GPT-1 GPT-2 (1.5B) GPT-3 (175B)
Publication Year 2018 2019 2020
Parameters 117M 1.5B 175B
Layers 12 48 96
Hidden size (dmodel) 768 1600 12288
Attention heads 12 25 96
Context length 512 1024 2048
Batch size 64 512 ?
Tokens per batch 32,768 500k 3.2M
Training data size BooksCorpus WebText CommonCrawl, etc.

(4.5 GB) (40 GB) (570GB, 300B tokens)

Table 8.5.1. Largest configurations of GPT-1, GPT-2, and GPT-3.

Of course, modern LLMs today do involve a significant amount of supervised fine-tuning
on labeled data. This is part of the “post-training” phase (along with Reinforcement Learn-
ing, which we haven’t discussed yet). However, instead of fine-tuning separate models as in

86 TONY FENG

GPT-1 and BERT, all supervised fine-tuning is conducted on the same pre-trained model,
using context to condition on the task. Supervised fine-tuning requires labeled data, which
as we have mentioned is costly to curate. Data labeling itself has become a huge industry,
enough so that pure labeling companies like Scale AI have arisen to meet the demand.

8.6. Data. Modern LLMs are pre-trained on trillions of tokens. This requires a huge corpus
of natural language text, which is scraped from the internet. For example, even as of 2019
the Common Crawl dataset contained hundreds of billions of words.

However, the Common Crawl contains a large proportion of low-quality data (i.e., unin-
telligible contents), which is counterproductive for training. Significant effort is required for
filtering, cleaning, and deduplication of pre-training data. Thus, data curation is a signifi-
cant part of the LLM development pipeline by itself. In fact, modern AI labs tend to have
separate divisions for Data curation, Pre-training, and Post-training.

8.6.1. Filtering. OpenAI sketches in [BMR+20, Appendix A] the classifier used to filter
Common Crawl data for GPT-3 pre-training. It is a form of negative sampling, where “ver-
ified” high-quality data such as WebText, Wikipedia, and online books are used as positive
examples, and random instances from Common Crawl are used as negative examples.

8.6.2. Deduplication. Since some internet data is repeated over many different webpages, re-
training on the same data risks overfitting. Another consideration is that many benchmarks
can be found on the internet, so pre-training on them would contaminate performance.
Thus, another important step is in filtering training data is deduplication, i.e., removing
(almost) duplicate data. A classic method for doing this is hashing, but one can bet that
the major AI labs have developed more sophisticated deduplication procedures.

8.6.3. Data mixtures. When we discussed the vanilla template for LLMs in §1, we implicitly
assumed that datapoints were drawn i.i.d. However, the reality is that not all data on the
internet is created equal. During pre-training, data is weighted according to its quality. For
example, articles from Wikipedia and ArXiv would be considered “higher-quality” compared
to average internet data.

The data mixture for training GPT-3 is depicted in Figure 8.6.1. Here, WebText2 is

Figure 8.6.1. The data mixture used to train GPT-3. From [BMR+20,
Table 2.2].

the successor to a new dataset that OpenAI created when building GPT-2 [RWC+19]. The
original idea was to scrape outbound links from Reddit posts, using karma as a proxy for
human-labeled quality.

On average, pre-training runs for less than one epoch, meaning that not even all the
training data is used. However, the highest quality data (e.g., Wikipedia data) is reused
several times.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 87

It is also beneficial to schedule pre-training so that higher quality data, which is typically
more advanced, is used later. This can be viewed as a form of “curriculum learning”, in
which the model is given harder tasks when it is more ready for them.

8.7. Scaling laws. As we have already discussed, the gains from GPT-2 and GPT-3 were
obtained by scaling the size and training of models. Especially for GPT-3, this was predicted
by experimental investigation of “scaling laws”, which continue to motivate the scaling of
Large Language Models.

The first systematic investigation for scaling laws in neural-network based LLMs was
carried out by Kaplan et al [KMH+20]. They studied the behavior of performance (measured
by test loss) as a function of the compute budget C (measured in total FLOPs – floating
point operations), data size D, and model size N (number of parameters). These are
related approximately by the formula C ≈ 6ND. The important qualitative conclusions are
as follows.

• Scale, not shape. Performance depends strongly on the size of the parameters, and
weakly on architectural hyperparameters such as depth versus width. According to
the “Chinchilla Scaling Laws” of Hoffman et al [HBM+22], for a fixed C it is optimal
to scale D and N equally.21

• Predictable performance gains. Validation loss exhibits a power law relation-
ship with each of the three scale factors (when bottlenecked by the other two).

• Predictable performance transfer. When the model is evaluated on out-of-
training-distribution text, its performance is highly correlated with validation loss.
In fact, the out-of-distribution test loss is essentially a constant shift of validation
loss.

• Optimal batch size is predictable. The optimal batch size is roughly a power
of the (cross-entropy) loss, and is determinable by the noise scale of the gradient
[Kap, §4.5].

We will sketch how Hoffman et al [HBM+22] investigated scaling laws. They tried three
different approaches, each leading to the conclusion that optimal scaling should obey a power
law of the form N̂ ∝ C1/2, D̂ ∝ C1/2.

(1) Fix a sequence of models of different sizes, and plot their training loss up as FLOPs
vary. Each model size produces a graph of training loss versus FLOPs: see Figure
8.7.1.22 For each FLOP count, one can take the model with lowest training loss as
the optimal size. This interpolates to a power law estimate of optimal model size
versus FLOPS; and one can similarly interpolate the optimal training tokens versus
FLOPS.

(2) Fix a sequence of FLOP budgets, and plot the training loss as model size varies: see
Figure 8.7.2. Then one can directly see the optimal model size for a given FLOP
budget. Plotting this, there is a clear power law relationship between FLOPs and
optimal model size.

(3) Interpolate a prediction for loss as a function of the form L(N,D) = E + A
Nα +

B
Dβ . Here E captures an irreducible error from the nature of the task; the other

21This amends [KMH+20], which suggested that for every 10x C, D should 1.8x while N should 5.5x.
See [PS24, PWJ+24] for analyses of this discrepancy, which suggest that it was due to incorrect accounting
in [KMH+20].

22In fact, each model size was trained with 4 different learning rates, so there would 4 graphs per model
size.

88 TONY FENG

terms express inverse power law contributions with exponents to be empirically
determined.

Figure 8.7.1. Approach 1 of Hoffman et al [HBM+22, Figure 2] for finding
the optimal scaling laws. Left: graph of training loss for various model sizes
as a function of FLOPs. Middle: for each FLOP count, find the model size
with lowest training loss and plot it. There is a clear log-linear relationship,
with slope 0.5, between FLOPs and parameters. Right: for each FLOP
count, calculate the training tokens for the model with lowest training loss.
Again, there is a clear log-linear relationship, with slope 0.5.

Figure 8.7.2. Approach 2 of Hoffman et al [HBM+22, Figure 2] for finding
the optimal scaling laws. Left: graph of training loss versus parameter
size for various compute budgets. Middle: for each FLOP count, find the
model size with lowest training loss and plot it. There is a clear log-linear
relationship, with slope 0.5, between the FLOPs and parameters. Right: for
each FLOP count, calculate the training tokens for the model with lowest
training loss. Again, there is a clear log-linear relationship, with slope 0.5.

9. Generative Adversarial Networks

We will now move on to self-supervised generative models designed for image generation.
The next two lectures will cover Generative Adversarial Networks (GANs), Variational Au-
toencoders (VAEs), and Diffusion models. We begin with GANs because they are simple
and intuitive (although historically they actually came after VAEs), and quite flexible.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 89

To motivate GANs, we go back to the idea of representation learning we first encountered
in the discussion of RNNs (§6.5). We can view realistic image data as forming a thin manifold
M in some enormously high-dimensional space X of all possible images (which would be
≈ 109-dimensional just for 224×224 pixel RGB images, as estimated in §5.1). The idea is to
construct a “chart” from latent space g : Z → M , and then to sample from M by sampling
z ∈ Z (from some standard distribution, e.g., Gaussian) and then forming x = g(z). We
will find g by choosing a parametric family gθ(z), given by a neural network, and optimizing
over θ. But how do we formulate a “loss” for gθ if we only have access to unlabeled image
data?

9.1. Generator-discriminator approach. The ingenious idea behind GANs, introduced
by Goodfellow et al [GPAM+14], is to insert the function gθ into an adversarial two-player
game, where the optimal behavior of gθ will be to produce outputs resembling real images.
In order to do this, we introduce an auxiliary function d = dϕ, itself parametrized by a
neural network, which predicts the probability of an image being real. Then dϕ serves as
the “adversary” of gθ.

We henceforth call gθ the “generator”, because its role is to generate synthetic images,
and dϕ the “discriminator”, because its role is to discriminate between synthetic images and
real ones. Imagine this as a game where:

(1) The generator creates an image.
(2) The discriminator receives an image which has 50% chance of coming from the

generator, and 50% chance of being a real image.
(3) The discriminator wins a point if it correctly classifies the image as real or synthetic,

and the generator wins a point if the discriminator is incorrect.

Then the Nash equilibrium strategy is for the generator to create images that are indistin-
guishable from real ones, in which case any discriminator has only 50% chance of success.

Concretely, say that on an input image x, the discriminator computes dϕ(x) = 1 if it
thinks x is real, and dϕ(x) = 0 if it thinks that x is synthetic. Then the discriminator’s
cross-entropy loss function is

L(ϕ, θ) = −Exreal∼Preal [log dϕ(xreal)]− Ez∼PZ [log(1− dϕ(gθ(z)))] (9.1.1)

where Preal is the probability distribution of real image data, and PZ is a pre-chosen distri-
bution on latent space, usually a Gaussian N (0, Id). In practice, we can compute this by
sampling a batch xreal from the real data D, and another batch of equal size xsynth ∼ gθ(z)
from the generator, and averaging the cross entropy loss over their mixture.

The discriminator wants to minimize its loss L(ϕ, θ), while the generator wants to max-
imize it. Thus, the discriminator performs gradient descent on its parameters ϕ as usual,
while the generator performs gradient ascent on its parameters θ (because it is trying to
construct adversarial examples, cf. §5.4).

Remark 9.1.1. Although we initially rooted our discussion in image generation, which was
historically the first domain of application for GANs, note that this framework of adversarial
training is actually very general, and makes sense in any domain.

Indeed, we have been agnostic about the actual architecture for the generator and dis-
criminator. The GAN is really a “meta-architecture” in that it specifies a way to jointly
train two sub-neural-networks, but not the specific architectures of either. That would be
domain-dependent, and for image data the natural choice would be CNNs.

90 TONY FENG

9.2. Pitfalls. GANs have several problems in practice. First of all, their training dynamics
can be unstable, with generator and discriminator circling around the equilibrium but not
converging (quickly) to it.

Also, if the generator and discriminator are imbalanced in capability, then training can
be very slow.

Finally, training can reach bad equilibria called “mode collapse”, where the generator
learns to create a distribution that is concentrated on a few examples, instead of the true
distribution Ptrue. As a toy example, imagine training a model to generate handwritten
digits. The generator could learn to generate a handwritten ‘7’ well, without learning any
other digits.

For all these reasons, it proved to be difficult to get GANs to work well in practice. TheLeft for presentation instead
of lecture work of Radford et al [RMC15] was one of the first to successfully scale up GAN training

to the level of producing reasonably realistic images. Their main adaptations seem to be as
follows.

• Instead of using fixed pooling functions, Radford et al replaced pooling with learned
strided convolutions in the discriminator, and learned upsampling (i.e., “fractionally-
strided”) convolutions in the generator.

• They eliminated fully connected layers typically placed on top of convolutional lay-
ers, instead connecting the final convolutional layers directly to the input of the
generator, and output of the discriminator.

• They applied Batch Normalization, but somewhat selectively: they did not apply
it to the output layer of the generator, nor to the input layer of the discriminator.

In Figures 9.2.1 and 9.2.2 we display some examples from the generator learned in [RMC15],
which give some interesting insight about latent space. Firstly, Figure 9.2.1 demonstrates
that when z moves around continuously in latent space, gθ(z) more or less stays within
the data manifold of realistic images. Secondly, Figure 9.2.2 demonstrates an interesting
property that vector addition in latent space is meaningful.

10. Variational Autoencoders

Variational Autoencoders (VAEs) were introduced by Kingma et al in [KW13] and ini-
tially applied to image generation. The abstract setup is the same as for GANs: we want to
be able to generate artificial samples from some true distribution Preal(x), which we think
of as being supported on a thin submanifold of a high-dimensional ambient space X . We
are given unlabeled data D which we assume to be i.i.d. samples from Preal(x).

Also similarly to GANs, the idea of VAEs is to learn Preal(x) in terms of latent space.
That is, we will learn how to transform a fixed distribution on latent space Z, say a standard
Gaussian N (0, Id), into Preal(x). But unlike GANs, instead of directly learning a mapping
g : Z → X , we will try to learn the conditional density function preal(x|z) for Preal(x).

10.1. Conditional density function. We will use a neural network to parametrize a fam-
ily of functions pθ(x|z) intended to approximate preal(x|z). But how should we formulate a
loss function for training?

The data D consists of i.i.d. samples from Preal, which gives us access to the absolute
probability density preal(x). In principle, the model pθ(x|z) for conditional density gives a
model for the absolute density:

pθ(x) =

∫
pθ(x, z) dz =

∫
pθ(x|z)p(z) dz. (10.1.1)

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 91

Figure 9.2.1. These images are created by choosing 9 different points
z1, . . . , z9 in latent space, and then applying the generator to a mesh of
intermediate points z in latent space interpolating between the zi. Each
image is a plausible candidate for a picture of a bedroom, demonstrat-
ing gθ(z) moves around smoothly in image space when z moves around
smoothly in latent space. From [RMC15, Figure 4].

Figure 9.2.2. For each column, the latent representations are averaged
and vector operations performed on the result to produce z ∈ Z. The
center sample on the right side is the generator’s output on z, and the
others are produced by applying the generator to z + ε where ε is a small
uniform noise vector. From [RMC15, Figure 7].

92 TONY FENG

Idealistically, we would like to train pθ(x) to resemble preal(x). As discussed in §3.3, we can
try to approximate the Maximum Likelihood Estimate

θ̂ = argmax
θ

∑
xi∈D

pθ(xi),

by minimizing the log likelihood loss

−
∑
xi∈D

log pθ(xi).

However, the density (10.1.1) is difficult to work with. Analytically, the integral cannot
be evaluated in closed form. What if we tried to approximate it numerically, e.g., by
drawing random i.i.d. samples from p(z) and averaging pθ(x|z) over them (i.e., Monte Carlo
sampling)? Technically, this is an unbiased estimator, but it will be very noisy, and therefore
impractical to use.

Let’s try to understand why. Intuitively, the prior distribution p(z) is diffuse (typically
p(z) ∼ N (0, I)), while for a given x, pθ(x|z) is highly concentrated. Look back to Figure
6.5.1: for a given word x (e.g., Germany), a randomly sampled z ∈ Z has very low likelihood
preal(x|z); only a particular region of latent space is relevant for country names. Hence the
Monte Carlo approximation would be dominated by samples landing in the particular region
of latent space where the likelihood pθ(x|z) is non-negligible. This would give a very noisy
(high variance) estimator.

Remark 10.1.1. It would be better to sample from the posterior distribution p(z|x) on
latent space, as this will be concentrated on z which “explain” x. But Bayes’ rule says that

pθ(z|x) =
pθ(x|z)p(z)

pθ(x)
,

so estimating the posterior is equivalent to estimate pθ(x), which is exactly what we were
trying to estimate in the first place.

10.2. The Evidence Lower Bound. Let q be any probability distribution on latent space
Z. Then we may write

log pθ(x) = log

∫
pθ(x, z) dz = log

∫
q(z)

pθ(x, z)

q(z)
dz = logEq

[pθ(x, z)
q(z)

]
.

Since log x is concave, Jensen’s inequality applies and says that

log pθ(x) = logEq

[pθ(x, z)
q(z)

]
≥ Eq[log pθ(x, z)− log q(z)]. (10.2.1)

Definition 10.2.1. The Evidence Lower Bound (ELBO) of log pθ(x) with respect to q(z)
is

ELBO(x|pθ, q) := Eq[log pθ(x, z)− log q(z)].

We just showed in (10.2.2) that ELBO(x|pθ, q) is a lower bound for log pθ(x), i.e.,

log pθ(x) ≥ ELBO(x|pθ, q) for any probability distribution q on Z. (10.2.2)

Exercise 10.2.2. Show that

log pθ(x) = ELBO(x|pθ, q) + KL(q(z) || pθ(z|x)) (10.2.3)

This gives a more precise version of (10.2.2). Moreover, it shows that for fixed x and θ,
maximizing ELBO with respect to q is equivalent to minimizing the KL divergence between
q and the modeled posterior pθ(z|x).

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 93

Lemma 10.2.3. We have ELBO(x|pθ, q) = Eq[log pθ(x|z)]−KL(q(z) || p(z)).

Proof. Substituting log pθ(x, z) = log pθ(x|z)+log p(z) into the expression for ELBO(x|pθ, q),
we have

ELBO(x|pθ, q) = Eq[log pθ(x|z) + log p(z)− log q(z)]

= Eq[log pθ(x|z)]−KL(q(z) || p(z)).

□

10.2.1. Encoder-decoder structure. Note that the lower bound (10.2.1) holds for every prob-
ability distribution q, so we can even allow q to depend on x. The idea behind VAE is to use
ELBO(x|pθ, q) as a proxy for the true log likelihood log pθ(x). The function q(z) = qϕ(z|x)
will be learned by a separate neural network.

Figure 10.2.1. Cartoon of the VAE architecture. The encoder half learns
a conditional distribution qϕ(z|x) on latent space Z, while the decoder half
learns a conditional distribution pθ(x|z).

Hence the VAE has a structure reminiscent of the encoder-decoder architecture (see
Figure 10.2.1): the encoder half learns qϕ(z|x), the decoder half learns pθ(x|z), and the two
are jointly trained to maximize

ELBO(x|pθ, qϕ) = Eqϕ [log pθ(x|z)]−KL(qϕ(z|x) || p(z)). (10.2.4)

Remark 10.2.4 (Autoencoders). Figure 10.2.1 is reminiscent of an autoencoder, which is
a neural network of the form

X E−→ Z D−→ X .
that learns to approximate the identity function on X . The key point which makes this
non-trivial is that Z has much lower dimension than X , so in this process the network
learns a compression function E : X → Z.

94 TONY FENG

In statistics, “variational inference” is a technique for approximating a probability distri-
bution by treating it as an optimization problem. The adjective “variational” in Variational
Encoder is a reference to this concept.

10.2.2. Interpretation. Let’s analyze each of the terms appearing in (10.2.4).
• We can think of the term Eqϕ [log pθ(x|z)] as a “reconstruction” term: it is the

expected value according to our distribution qϕ(z|x) of the likelihood of z for the
data x. Thus, maximizing this term pushes qϕ(z|x) to be concentrated around the
z ∈ Z for which pθ(x|z) is high.
• We can think of −KL(qϕ(z|x) || p(z)) as a “regularization” term: it penalizes qϕ(z|x)

for diverging from the prior distribution p(z). For example, with p(z) ∼ N (0, Id),
this prevents qϕ(z|x) from becoming something like a bump function at the z which
maximizes the likelihood of x under pθ.

Remark 10.2.5. The “β-VAE” of [HMP+16] considers a more general objective function
of the form

Eqϕ [log pθ(x|z)]− βKL(qϕ(z|x) || p(z))
where β > 1 is a hyperparameter, tuned during hyparameter sweep, that adjusts the balance
between the “reconstruction” term and the “regularization” term. Empirically, choosing
β > 1 leads to better performance on certain tasks.

10.2.3. Functional form of qϕ. We take qϕ(z|x) to be a product of Gaussian distributions,

qϕ(z|x) =
d∏

j=1

N (zj |µϕ,j(x), σ
2
ϕ,j(x)). (10.2.5)

The encoder half of the network learns the functions µϕ(x), σ
2
ϕ(x). Here d is the dimension

of the latent embedding space Z.
One reason that we choose qϕ of the form (10.2.5) is so that the “regularization” term

KL(qϕ(z|x) || p(z)) has a nice closed form.

Example 10.2.6. We will calculate the KL divergence between independent Gaussians
N (µ1, σ

2
1) and N (µ2, σ

2
2). Note that

KL(N (µ1, σ
2
1) || N (µ2, σ

2
2)) = KL(N (µ1 − µ2, σ

2
1) || N (0, σ2

2))

= KL
(
N (

µ1 − µ2

σ2
,
σ2
1

σ2
2

) || N (0, 1)
)
. (10.2.6)

Finally, we have

KL(N (µ, σ2) || N (0, 1)) = E
[X2

2
− (X − µ)2

2σ2
− log σ2

]
=

1

2
(σ2 + µ2 − log σ2 − 1).

Putting this back into (10.2.6), we see that

KL(N (µ1, σ
2
1) || N (µ2, σ

2
2)) =

1

2

(
σ2
1 + (µ1 − µ2)

2

σ2
2

− log
σ2
1

σ2
2

− 1

)
. (10.2.7)

Applying Example 10.2.6, we see that for qϕ of the form (10.2.5) and p(z) = N (0, Id), we
have

KL(qϕ(z|x) || p(z)) =
1

2

d∑
j=1

(µ2
j + σ2

j − log σ2
j − 1). (10.2.8)

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 95

This gives a simple analytic expression for the regularization term in (10.2.4).

10.2.4. Functional form of pθ. For the reconstruction term, pθ(x|z) would also be taken to
be of a particular form, depending on the problem.

• For continuous R-valued data, we can take a Gaussian function

pθ(x|z) ∼
∏
i

N (xi;µθ,i(z), σ
2I) (10.2.9)

where the xi are the individual pixels of x. Note that this imposes an independence
assumption on the pixels, which is unrealistic in practice; it leads to a well-known
weakness of VAEs that they tend to produce blurry images.

With pθ(x|z) of the form (10.2.9), we have

log pθ(x|z) = −
1

2σ2
||x− µθ(z)||2 + constant,

which looks like a standard MSE loss. Indeed, this is the same manifestation of the
relationship between MSE loss and Gaussian noise that we saw in §3.4.1.
• For binary data valued in {0, 1}, we take a Bernoulli distribution

pθ(x|z) ∼
∏
i

Bernoulli(θi) (10.2.10)

and then
log pθ(x|z) =

∑
i

xi log θi + (1− xi) log(1− θi)

looks like the standard binary cross-entropy loss.
One reason we choose pθ(x|z) of the above form is so that log pθ(x|z) will have a clean

expression in closed form. However, for the ELBO objective we need to evaluate the recon-
struction term Eqϕ [log pθ(x|z)]. Now we seem to encounter the same problem as came up in
§10.1. Since pθ and qϕ are computed by a neural network, this expression will not be ana-
lytically tractable (i.e., expressible in closed form). We could try numerical approximation
via Monte Carlo sampling, but didn’t we already say in §10.1 that this would be too noisy
of an estimator?

Actually, there is a key difference here which makes Monte Carlo sampling viable. Recall
how we discussed in Remark 10.1.1 that Monte Carlo sampling would be less noisy if sampled
from the posterior distribution pθ(z|x) instead of the prior distribution pθ(z). The intuition
is that qϕ(z|x) will look approximately like pθ(z|x). Indeed, from (10.2.3) we can see that
for fixed x, the ELBO will be maximized when KL(qϕ(z) || pθ(z|x)) is minimized, which
occurs exactly when qϕ(z|x) = pθ(z|x). Also, we saw in §10.2.2 that the “reconstruction”
term in the ELBO pushes qϕ(z|x) to be concentrated around the z ∈ Z for which pθ(x|z) is
high.

10.3. The reparametrization trick. We have just described how to calculate the objec-
tive function

ELBO(x|pθ, qϕ) = Eqϕ [log pθ(x|z)]−KL(qϕ(z|x) || p(z)).
However, in training we not only need to compute this, but to differentiate it with respect
to the learnable parameters θ and ϕ. When computing Eqϕ [log pθ(x|z)] by Monte Carlo
sampling, the dependence on ϕ is rather indirect: we use ϕ to calculate qϕ(z), and then
sample from that distribution to approximate an integral. In particular, it is not clear how
to differentiate z = sample(qϕ(z|x)) with respect to ϕ.

96 TONY FENG

Kingma et al [KW13] address this issue with the so-called “reparametrization trick”.
Instead of viewing the encoder as outputting a probability distribution, we view it as out-
putting the mean µϕ(x) and variance σϕ(x) (which is what it does anyway), and we create
from these a random variable

z = µϕ(x) + σϕ(x)⊙ ϵ, ϵ ∼ N (0, I).

Then z is distributed as qϕ(z|x). But now z is also a differentiable function of µϕ and σ2
ϕ,

so we can now backpropagate through the encoder network:

∂z

∂ϕ
=

∂z

∂µϕ

∂µϕ

∂ϕ
+

∂z

∂σ2
ϕ

∂σ2
ϕ

∂ϕ
.

10.4. Comparison to GANs. The Variational Autoencoder consists of two halves: an
encoder half that produces distribution qϕ(z|x) over latent space depending on learnable
parameters ϕ, and a decoder half that produces a function pθ(x|z). These halves “work
together” to jointly maximize the ELBO. GANs also have two halves, but those have an
adversarial relationship instead.

Like the GAN, the VAE is a “meta-architecture” in that it specifies a way to jointly
train two sub-neural-networks, but not the specific architectures of either; those would be
domain-dependent. For example, subnetworks of the β-VAE in [HMP+16] had the same
architecture as the GAN in [RMC15], which appeared in §9.2.

The VAE also has its own version of “mode collapse” suffered by GAN (§9.2), called
posterior collapse, where the regularization term drives the qϕ(z|x) towards the prior p(z)
independently of x, and the decoder learns to ignore z entirely, thus producing the same
output regardless of the input.

In practice, VAE tends to produce blurry images. One cause is that the network design
forces independence of pixels, and another is that it is ultimately performing some maximum
likelihood estimate on Gaussian distributions, whose solution is the sample mean (Example
3.3.4). This natural tendency to “average’ results in blurriness: see Figure 10.4.1.

10.5. Conditional generation. Suppose we want to do something a little fancier than
vanilla image generation, say, generate images from text captions. This is called conditional
generation. More generally, we can formulate the problem as generation from a conditional
probability distribution Preal(x|c).

For this, we need to have labeled data D consisting of pairs (x, c). For example, if we
want to generate images from captions, we need to have examples of images with captions,
which we could perhaps scrape from the internet. To adapt the VAE, we can keep the
same latent space Z, but now our decoder learns a conditional density function pθ(x|z, c)
while our encoder learns a conditional density function qϕ(z|x, c). In principle we also have
a conditional prior p(z|c), but this is usually taken independent of c, say N (0, Id). The
caption c is fed into both the encoder and decoder.

11. Diffusion Models

GANs and VAEs were the basis of early approaches to image generation, but in §9.2 and
§10.4, we mentioned some of their weaknesses. Diffusion Models appear to be the current
state-of-the-art approach to image generation; for example, they were used in DALL-E 2.

Diffusion Models were introduced by Sohl-Dickstein et al [SDWMG15]. They viewed Dif-
fusion Models as a mechanism for converting from analytically tractable known distributions
(e.g., a Gaussian) and a complicated target distribution (e.g., data). Their idea was inspired

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 97

Figure 10.4.1. Top: images generated by GAN. Bot: images generated
by VAE. The VAE’s images tend to be blurry, while the GAN’s images look
sharper but also less smooth. From [HMP+16, Figure 1].

by statistical physics (non-equilibrium thermodynamics), and involved slowly adding noise
to the target distribution to convert it to the known one, and then learning the inverse pro-
cedure with a neural network. We have already met this idea when studying VAEs, which
transform a Gaussian distribution on latent space to a target data distribution.

Diffusion Models are very different from GANs and VAEs. However, since they are
considerably more complicated than the architectures we have met already, we will use
the comparison to VAEs as mathematical scaffolding for our discussion. Recall that the
decoder half of a VAE learns a conditional probability distribution pθ(x|z) as a function of
latent space z, such that sampling z ∼ N (0, Id) and then x ∼ pθ(x|z) induces a marginal
distribution

pθ(x) =

∫
pθ(x|z)p(z) dz ≈ preal(x).

The idea of Diffusion Models is to learn p(x|z) as a sequence of many small, local steps
instead of one direct step. More precisely, a Diffusion Model learns a sequence of transfor-
mations

z = xT → xT−1 → . . .→ xt → xt−1 → . . . x0 = x (11.0.1)

where each xt → xt−1 is a relatively small change, by learning conditional density functions
pθ(xt−1|xt). The intuition is that this decomposition into a sequence of small steps makes
the learning problem more stable and easier to optimize. This can be viewed as improving
the conditioning of the problem (Remark 4.2.2) by breaking a single, complex mapping into
a sequence of simple ones.

In practice, a Diffusion Model would have T ≈ 103. Formally, the VAE resembles the
special case T = 1 of this description. However, one should not actually think of the VAE as
a special case of a Diffusion Model. Most notably, in Diffusion the z variable is not latent;
it is has the same dimension as x, and is obtained by adding noise to x.

98 TONY FENG

Another intuition of Diffusion Models is that the individual steps xt → xt−1 can operate
at different scales as t changes. For large t, xt is mostly noise, and the network learns to
generate the coarse, global structure of the data. For small t, xt is very close to a real data
sample, and the network learns to refine fine-scale details. This facilitates the development of
hierarchical structure, analogous to the way deep neural networks build feature hierarchies.
This facilitates the development of hierarchical structure, analogous to the way deep neural
networks build feature hierarchies.

11.1. Design. To learn the process (11.0.1), we need to learn a bunch of conditional prob-
ability density functions

pθ(xt−1|xt) for each t = 1, 2, . . . , T.

Idealistically, we want to train to maximize the (log-)likelihood of the real data D under
the model pθ, or equivalently minimize cross-entropy loss of the data against

pθ(x0) =

∫
pθ(x0|x1)pθ(x1|x2) . . . p(xT−1|xT)p(xT) dx1 . . . dxT−1dxT .

As in the discussion of VAEs (§10.1), such integrals are intractable, so we will instead use the
Evidence Lower Bound as a proxy for pθ(x0). To formulate it, we need to have a collection
of probability distributions

qϕ(xt|xt−1) for each t = 1, 2, . . . , T

which collectively play the role of the encoder of a VAE.

Remark 11.1.1. Starting with the 2020 work of Ho et al [HJA20], the learnable parameters
were removed from qϕ.

Collectively, these are analogous to the term qϕ(z|x) in the discussion of VAEs, except
without any learnable parameters. Thus, we can think of (11.0.1) as the “decoder half” to
an encoder which implements

x = x0 → x1 → x2 → . . .→ xt−1 → xt → . . .→ xT (11.1.1)

In particular, as is clear from the form of qϕ, (11.1.1) is a Markov process. However, (11.1.1)
should not be thought of as an embedding/representation. Rather, this Markov process
should be thought of as “successively adding noise” so that xT tends towards a Gaussian
distribution N (0, Id) as T → ∞. To implement this, xt is obtained from xt−1 by adding a
small amount of Gaussian noise at each step.

11.1.1. Functional form of qϕ. As with VAE, we fix the form of qϕ(xt|xt−1) to be Gaussian.
Namely, we take xt to be of the form

xt = atxt−1 + btϵt, ϵt ∼ N (0, Id) (11.1.2)

In the original 2015 work of Sohl-Dickstein et al [SDWMG15], the at and bt were learned
parameters, but in later work they actually became fixed hyperparameters (thus removing
all learning from q). We would like this to converge to a fixed normal distribution, say
N (0, Id) as t→∞. A choice of algebra that makes for convenient expressions ends up being
at =

√
1− βt and bt =

√
βt; this choice ensures that if xt−1 has unit variance, then xt also

has unit variance. The transitions are thus defined by a Markov process

xt =
√
1− βt xt−1 +

√
βt ϵt, ϵt ∼ N (0, Id) (11.1.3)

so that
qϕ(xt|xt−1) ∼ N (

√
1− βtxt−1, βt Id).

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 99

Figure 11.1.1. The top row depicts (from left to right) the result of suc-
cessively adding noise to an initial data sample x0, using the Markov chain
qϕ(xt|xt−1). The bottom row depicts (from right to left) the model’s predic-
tion for each time step, obtained by successively drawing from p(xt−1|xt, t).
From [SDWMG15, Figure 1].

Exercise 11.1.2. To help see these calculations, prove the “Law of Total Variance”: for any
two random variables X,Y , we have

Var[X] = E[Var[X|Y]] + Var[E[X|Y]].

In the analogy to statistical physics, the βt correspond to the diffusion rate. In the early
Diffusion Models of [SDWMG15], these were (the only) learned parameters of qϕ. Thus the
ϕ stands for the collection of parameters β1, β2, . . . , βT .

The form of this Markov process means that qϕ(xt|x0) is also Gaussian. Explicitly,
defining23 ᾱt :=

∏t
s=1(1− βs), we have

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ

accum
t , ϵaccumt ∼ N (0, Id). (11.1.4)

In (11.1.4), the ϵaccumt is not “the same” as the ϵt from (11.1.3), but it is identically dis-
tributed. It instead represents the accumulated noise relative to the original x0.

Now, a key observation is that the conditional distribution of xt−1 given xt and x0 is also
Gaussian.

Lemma 11.1.3. The conditional distribution q(xt−1|xt, x0) is Gaussian.

Proof. According to Bayes’ rule we will have

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
.

For the assertion in question, we can ignore the denominator, since it is a normalization
constant that independent of xt−1. The factor q(xt|xt−1, x0) = q(xt|xt−1) in the numerator
is Gaussian by construction. The factor q(xt−1|x0) is also Gaussian, as is clear from (11.1.4).
Then we conclude using that the product of two Gaussian densities is Gaussian. □

23It is common in the literature to define αt = 1− βt.

100 TONY FENG

Exercise 11.1.4. Show that q(xt−1|xt, x0) has mean

mt(x0, xt) =

√
αt−1βt

1− ᾱt
x0 +

(1− αt−1)
√
1− βt

1− ᾱt
xt (11.1.5)

and variance
s2t = βt

1− ᾱt−1

1− ᾱt
. (11.1.6)

Notice that the variance s2t does not depend on x0 or xt.

To summarize, from Lemma 11.1.3 we have

q(xt−1|xt, x0) ∼ N (mt(x0, xt), s
2
t) (11.1.7)

where mt(x0, xt) and s2t are as in Exercise (11.1.4).

11.1.2. Functional form of pθ. As in the discussion of VAEs, we will also take

pθ(xt−1|xt) ∼ N (µθ(xt, t), σ
2
t I)

to be Gaussian, with mean µθ(xt, t) to be learned by the neural network. The variance is
taken to be the same σ2

t = s2t where s2t is as in (11.1.6). It is not necessary to make this
particular choice; we could instead set σ2

t to be an independently learned parameter, but
this is a reasonable choice which simplifies the objective function (as we will see later).

11.2. The Evidence Lower Bound. Let’s derive the form of the Evidence Lower Bound
ELBO(x|pθ, q) with these choices. For any probability density function q̂(x1, . . . , xT) in
x1, . . . , xT , the modeled probability distribution can be written as

pθ(x0) =

∫
pθ(x0, x1, . . . , xT) dx1 . . . dxT

=

∫
pθ(x0, x1, . . . , xT)

q̂(x1, . . . , xT)
q̂(x1, . . . , xT) dx1 . . . dxT

= Eq̂(x1,...,xT)

[pθ(x0, x1, . . . , xT)

q̂(x1, . . . , xT)

]
so the ELBO is

log pθ(x) = logEq̂(x1,...,xT)

[pθ(x0, x1, . . . , xT)

q̂(x1, . . . , xT)

]
≥ Eq̂(x1,...,xT)

[
log

pθ(x0, x1, . . . , xT)

q̂(x1, . . . , xT)

]
=: ELBO(x|pθ, q̂).

11.2.1. This holds for any probability density q̂(x1, . . . , xT), so we can in particular take q̂
to be qϕ from §11.1.1. This gives

qϕ(x1, . . . , xT |x0) = qϕ(xT |x0)

T∏
t=1

qϕ(xt−1|xt, x0), q(xt−1|xt, x0) ∼ N (mt(x0, xt), s
2
t Id).

(11.2.1)
By Lemma 11.1.3, this is a product of Gaussian distributions. We can factorize pθ(x0, x1, . . . , xT)
in an analogous way:

pθ(x0, x1, . . . , xT) = p(xT)

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) ∼ N (µθ(xt, t), σ
2
t Id).

(11.2.2)

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 101

11.2.2. In summary, we have

pθ(x0, x1, . . . , xT)

q(x1, . . . , xT |x0)
=

pθ(xT)

q(xT |x0)

T∏
t=1

pθ(xt−1|xt)

q(xt−1|xt, x0)
.

Therefore the ELBO takes the form

ELBO(x|pθ, q) = Eq(x1,...,xT |x0)

[
log

p(xT)

q(xT |x0)
+

T∑
t=1

log
pθ(xt−1|xt)

q(xt−1|xt, x0)

]
.

We will express it analytically in terms of the learnable parameters.

Example 11.2.1. Consider the first term,

Eq(x1,...,xT |x0)

[
log

p(xT)

q(xT |x0)

]
=

∫
q(x1, . . . , xT |x0) log

p(xT)

q(xT |x0)
dx1 . . . dxT .

Since log p(xT)
q(xT |x0)

doesn’t depend on x1, . . . , xT−1, the marginalization over those variables
does nothing, so this can be simplified to

Eq(xT |x0)

[
log

p(xT)

q(xT |x0)

]
= −KL(q(xT |x0) || p(xT)).

Since p(xT) ∼ N (0, Id) and q(xT |x0) ∼ N (
√
ᾱTx0, (1 − ᾱT) Id) by (11.1.4), from Example

10.2.6 we have

KL(q(xT |x0) || p(xT)) =
d

2

(ᾱT + 1

1− ᾱT
− log

1

1− ᾱT
− 1
)

Actually, since this term doesn’t depend on learnable parameters θ, it can be ignored for
the purpose of optimization.

11.2.3. Treating the other terms similarly, we see that the ELBO decomposes in terms of
KL divergences between Gaussians, and can therefore be expressed cleanly in closed form.

Eq(x1,...,xT |x0)

[
log

pθ(xt−1|xt)

q(xt−1|xt, x0)

]
=

∫
q(x1, . . . , xT |x0) log

pθ(xt−1|xt)

q(xt−1|xt, x0)
dx1 . . . dxT

=

∫ (∫
q(xt−1|xt, x0) log

pθ(xt−1|xt)

q(xt−1|xt, x0)
dxt−1

)
q(xt|x0) dxt

= Eq(xt|x0)[−KL(q(xt−1|xt, x0) || pθ(xt−1|xt))]

Since q(xt−1|xt, x0) and pθ(xt−1|xt) are chosen to be Gaussian with the same variance s2t ,
Example 10.2.6 gives

KL(q(xt−1|xt, x0) || pθ(xt−1|xt)) =
(mt(xt, x0)− µθ(xt, t))

2

2s2t
+ constant. (11.2.3)

where mt(xt, x0) is as in (11.1.5) and µθ(xt, t) is learned mean of pθ(xt−1|xt). The constant
does not affect the formation of gradients, so we can ignore it.

Example 11.2.2. For t = 1, q(xt−1|xt, x0) is a bump function at x0, so we simply have

KL(q(x0|x1, x0) || pθ(x0, x1)) = − log pθ(x0|x1).

The corresponding contribution to ELBO(x|q, pθ) is

−Eq(x1|x0)[log pθ(x0|x1)],

which is analogous to the “Reconstruction Term” for a VAE (§10.2.2).

102 TONY FENG

11.2.4. The loss function. Putting things together (and sorting out the signs), we find that
maximizing the ELBO is equivalent to the following optimization problem:

argmin
θ

(
− Eq(x1|x0)[log pθ(x0|x1)] +

T∑
t=2

(mt(xt, x0)− µθ(xt, t))
2

2s2t

)
. (11.2.4)

The appropriate loss function in terms of data x0 is therefore

Lx0
(θ) = Eq(x1,...,xT |x0)

[
− log pθ(x0|x1) +

T∑
t=2

(mt(xt, x0)− µθ(xt, t))
2

2s2t

]
. (11.2.5)

11.3. Comparison to VAEs. If we took T = 1, then our initial discussion of Diffusion
Models would be formally similar to that of a VAE, except that the form of qϕ(x1|x0) ↔
qϕ(z|x) is different. However, the intuitive meaning of x1 and z is still very different: z is
meant to be a latent representation, whereas x1 is meant to be a noise-obscured of x0.

Note also that despite the more complicated mathematical derivation, the training ob-
jective of a Diffusion Model turned out to be simpler: a straightforward mean squared error
regression.

left for presentations in-
stead of lecture 11.4. Improving diffusion models. So far, we have described Diffusion Models in their

original (2015) conception [SDWMG15]. It was not until the 2020 work of Ho et al [HJA20]
that the efficacy of Diffusion Models for image generation was convincingly demonstrated.
Compare the images in Figure 11.4.1, which were generated by the Diffusion Model [HJA20],
with the images generated by GAN and VAE in Figure 10.4.1.

This achievement involved several modifications to the “vanilla” setup described so far,
most of which were simplifications. These simplifications are mathematically anticlimactic,
in the sense that they throw away hard-earned mathematical derivations in favor of simpler
variants that would have been obvious to guess from the beginning, but they work better
in practice. Such is life...

11.4.1. Removing the encoder. In the original formula of Diffusion Models, the functions
qϕ(xt|xt−1) depended upon learnable parameters βt. Ho et al fix βt to be hyperparameters,
thus fixing q(xt|xt−1) = qϕ(xt|xt−1) to be independent of training. Specifically, they took
T = 1000, and scheduled βt to increase linearly from β1 = 10−4 to β1000 = 0.02. These were
deliberately chosen to be small compared to the values of the input data, which were RGB
intensities scaled to the range [−1, 1].

11.4.2. Simplifying the loss function. The objective (11.2.5) was formulated for a model
that predicts pθ(xt−1|xt), by predicting its mean and variance.

Recall from (11.1.4) that xt could be written in the form

xt =
√
ᾱtx0 +

√
1− ᾱtεt, εt ∼ N (0, Id). (11.4.1)

Ho et al change the neural network to predict the noise vector εt instead than pθ(xt−1|xt).
This is philosophically reminiscent of residual learning, where we predict the “residual”
instead of the desired function. Therefore, we will rewrite the objective (11.2.5) in these
terms. First, we can solve for mt(x0, xt) in terms of εt,

mt(x0, xt) =
1√

1− βt

(
xt −

βt√
1− ᾱt

εt

)
.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 103

Figure 11.4.1. Images generated by diffusion, from [HJA20, Figure 1].
We see marked improvements compared to the images generated by GAN
and VAE in Figure 10.4.1.

Therefore, recalling that pθ(xt−1|xt) ∼ N (µθ(xt, t), σ
2
t Id), we will define εθ(xt, t) in terms

of µθ(xt, t) by the formula

µθ(xt, t) =
1√

1− βt

(
xt −

βt√
1− ᾱt

εθ(xt, t)
)
.

Instead of outputting µθ(xt, t), the neural network will output εθ(xt, t). We can view q(xt|x0)
as defining a distribution on εt. Then for t ≥ 2, we write the KL divergence contribution
(11.2.3) as

Lt
x0
(θ) = wtEq(xt|x0)[||εt − εθ(xt, t)||2]

where the weighting factor is wt =
βt

2(1−ᾱt−1)(1−βt)
. A calculation shows that this is in fact

also true for t = 1, as is also clear by “pure thought” since that can be seen as a continuation
of the sequence where x−1 = x0 and β0 = 0. Notice that the inner term has a simple
interpretation as the MSE between the sampled noise εt and the predicted noise εθ(xt, t).

In summary, we have rewritten (11.2.5) as

Lx0(θ) =

T∑
t=1

Lt
x0
(θ) =

T∑
t=1

wtEq(xt|x0)[||εt − εθ(xt, t)||2. (11.4.2)

In theory, this is the function which we should try to maximize. But practice is another
matter. After reaching (11.4.2), Ho et al [HJA20] suggest throwing away the weighting

104 TONY FENG

factors wt, which simplifies the math and actually works better in their experiments. A
possible intuition here is that wt downweights the contributions from large t where the noise
level is high, whereas in practice the small t regime tends to be less important than the
mathematics suggests. Anyway, this gives a simplified loss function,

L̃x0
(θ) =

T∑
t=1

Eq(xt|x0)[||εt − εθ(xt, t)||2. (11.4.3)

Furthermore, the interpretation of (11.4.3) is clear: it is just the usual mean squared loss
between the “ground-truth” noise εt and the predicted noise εθ(xt, t), summed over all t.
Intuitively, the Diffusion Model learns to guess what noise was added at each step of the
process x0 → x1 → x2 → . . .→ xT .

In fact, since T is large in practice (e.g., ≈ 103), the summation over t is pretty costly.
Therefore, we replace it by an estimator which is faster to evaluate: we will simply choose
a random t and evaluate the term Eq(xt|x0)[||εt − εθ(xt, t)||2] by Monte Carlo sampling. To
do this, we sample εt ∼ N (0, Id), then write xt in terms of x0 and εt as

xt =
√
ᾱtx0 +

√
1− ᾱtεt,

and feed this into the NN to compute εθ(
√
ᾱtx0 +

√
1− ᾱtεt, t).

In conclusion, we have arrived at a “simple loss function”,

Lsimple
x0

(θ) = E t∼U [1,T]
εt∼N (0,Id)

[||εt − εθ(
√
ᾱtx0 +

√
1− ᾱtεt, t)||2] (11.4.4)

where U [1, T] is the uniform distribution on 1, 2, . . . , T . Note that the sampling of εt ∼
N (0, Id) effects the sampling of xt ∼ qt(xt|x0), and the sampling of t ∼ U [1, T] is an
unbiased estimator for the average over T (Example 3.5.2). Hence (11.4.4) can be viewed as
an unbiased estimator for (11.4.3). This comes at a cost, however: (11.4.4) is noisier than
(11.4.3), and therefore requires more samples to converge.

left for presentation instead
of lecture 11.5. Latent Diffusion. Although Diffusion Models can produce better results than GANs

and VAEs, they also come at a significant price: both training and evaluation are much more
costly, (e.g., hundreds of GPU days). Indeed, Diffusion operates in an ambient space of the
same dimension as the data, which for images is very high. This was in fact the reason
we emphasized the importance of representation learning, which could be thought of as
compression to latent space.

There is an intuition that representation learning has two qualitatively different phases.
The first stage is “perceptual compression”, which removes essentially imperceptible details
that have no semantic consequence; and the second stage, which occurs when the modeled
reaches meaningful tiers of understanding, is “semantic compression”. The intuition is that
diffusing in pixel space wastes the bulk of computation on semantically insignificant bits,
which are compressed away in the first stage; therefore, we should really be performing
diffusion in the intermediate latent space reached after “perceptual compression”.

In 2021, Rombach et al [RBL+21] introduced Latent Diffusion, implementing diffusion
in latent space to achieve high-quality image generation at lower cost (some samples can be
seen in Figure 11.5.1). This project later developed into Stable Diffusion, which is known
to be one ingredient behind OpenAI’s DALL-E 2; it is hard to say more due to scarcity
of publicly available information about the details of current proprietary image generation
technology.

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 105

Figure 11.5.1. Samples of images generated by the Latent Diffusion Mod-
els trained on a dataset of celebrity images, from [RBL+21, Figure 4].

11.5.1. Latent compression. Rombach et al use an autoencoder (Remark 10.2.4) to compress
to latent space. The autoencoder downsamples the H ×W ×C image to (H/f)× (W/f)×
C. Choices of f ∈ {1, 2, 4, 8, 16, 32} were investigated. The values f = 1 and f = 2
demonstrated slow training progress, while f = 32 already exhibits stagnation (failure to
improve after a certain point). The best performance occurs with f = 4 or f = 8. Notably,
this is far less downsampling than occurs over the course of a typical CNN.

11.5.2. Cross-Attention conditioning. Rombach et al also introduce “Cross-Attention blocks”
into the latent Diffusion model architecture, in anticipation of application to conditional gen-
eration in the sense of §10.5. For example, suppose we want to generate an image x based
on a caption c. Then the model should learn εθ(xt, t|E(c)) where E(c) is a domain-specific
embedding, e.g., a text embedding for caption generation. Attention is used to interface the
diffusion process with E(c).

More precisely, for each xt generated by the model during denoising, we take a flattened
intermediate representation φ(xt) generated by the neural network and use it to compute
a Query vector Q(xt) = φ(xt)WQ where WQ is a learned parameter. Then we compute
Attention against Key and Value vectors coming from E(c):

K = E(c)WK , V = E(c)WV ,

where WK and WV are also learned. This is called Cross-Attention, as it is a form of Atten-
tion that extends across different modalities. These Cross-Attention layers are inserted into
the U-net (a CNN with downsampling convolutions followed by upsampling convolutions)

106 TONY FENG

that calculates εθ(xt, t|E(c)). The architecture of Latent Diffusion is displayed in Figure
11.5.2.

Figure 11.5.2. Latent Diffusion Model architecture from [RBL+21, Fig-
ure 3]. Reading from top left to top right, then bottom right to bottom
left: the encoder E embeds the data x in latent space. Diffusion is im-
plemented in latent space, with Cross-Attention blocks interleaved in the
denoising process for conditional generation. Finally, the decoder trans-
forms the generated latent vector back to data space D.

Remark 11.5.1. Why are the image pixels are used to compute the Query, while the text
caption is used to compute the Key and Value? The way to think about things is that the
image is the output, and the output needs to know what to attend to. Therefore, the output
issues the query.

Part 4. Reinforcement learning

12. Value function methods

13. Policy optimization

References

[ABGM13] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma, Provable Bounds for Learning
Some Deep Representations, International Conference on Machine Learning, 2013.

[AZ20] Samira Abnar and Willem Zuidema, Quantifying Attention Flow in Transformers, Annual
Meeting of the Association for Computational Linguistics, 2020.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, Neural Machine Translation by
Jointly Learning to Align and Translate, CoRR abs/1409.0473 (2014).

[BKH16] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton, Layer Normalization, ArXiv
abs/1607.06450 (2016).

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Ma teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei, Language Models are Few-Shot
Learners, ArXiv abs/2005.14165 (2020).

A SURVEY OF DEEP LEARNING FOR MATHEMATICIANS 107

[CB90] George Casella and Roger L. Berger, Statistical Inference, The Wadsworth & Brooks/Cole
Statistics/Probability Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific
Grove, CA, 1990.

[CvMG+14] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio, Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation, Conference on Empirical Methods in Natural
Language Processing, 2014.

[DBK+20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby, An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale, ArXiv abs/2010.11929 (2020).

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding, North American Chapter of
the Association for Computational Linguistics, 2019.

[DRD+24] Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein,
Christopher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent
Orseau, Marcus Hutter, and Joel Veness, Language Modeling Is Compression, 2024.

[DYY+19] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov, Transformer-XL: Attentive Language Models beyond a Fixed-Length Context, ArXiv
abs/1901.02860 (2019).

[FS97] Yoav Freund and Robert E. Schapire, A Decision-theoretic Generalization of On-line Learning
and an Application to Boosting, European Conference on Computational Learning Theory,
1997.

[Goo17] Google Research Blog, Transformer: A Novel Neural Network Ar-
chitecture for Language Understanding, https://research.google/blog/
transformer-a-novel-neural-network-architecture-for-language-understanding/,
aug 2017, Accessed: 2025-08-30.

[GPAM+14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio, Generative Adversarial Nets, Neural Informa-
tion Processing Systems, 2014.

[GSS14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, Explaining and Harnessing Ad-
versarial Examples, CoRR abs/1412.6572 (2014).

[HBM+22] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and L. Sifre,
Training Compute-Optimal Large Language Models, ArXiv abs/2203.15556 (2022).

[HHS17] Elad Hoffer, Itay Hubara, and Daniel Soudry, Train Longer, Generalize Better: Closing the
Generalization Gap in Large Batch Training of Neural Networks, ArXiv abs/1705.08741
(2017).

[HJA20] Jonathan Ho, Ajay Jain, and P. Abbeel, Denoising diffusion probabilistic models, ArXiv
abs/2006.11239 (2020).

[HMP+16] Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M.
Botvinick, Shakir Mohamed, and Alexander Lerchner, beta-VAE: Learning Basic Visual Con-
cepts with a Constrained Variational Framework, International Conference on Learning Rep-
resentations, 2016.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber, Long Short-Term Memory, Neural Computation
9 (1997), 1735–1780.

[HS06] Geoffrey E. Hinton and Ruslan R. Salakhutdinov, Reducing the Dimensionality of Data with
Neural Networks, Science 313 (2006), no. 5786, 504–507.

[HSK+12] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov, Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors, ArXiv
abs/1207.0580 (2012).

[HZRS15a] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun, Deep Residual Learning for Image
Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2015), 770–778.

[HZRS15b] , Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet

https://research.google/blog/transformer-a-novel-neural-network-architecture-for-language-understanding/
https://research.google/blog/transformer-a-novel-neural-network-architecture-for-language-understanding/

108 TONY FENG

Classification, 2015 IEEE International Conference on Computer Vision (ICCV) (2015), 1026–
1034.

[iF89] Ken ichi Funahashi, On the Approximate Realization of Continuous Mappings by Neural
Networks, Neural Networks 2 (1989), 183–192.

[IS15] Sergey Ioffe and Christian Szegedy, Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift, ArXiv abs/1502.03167 (2015).

[Kap] Jared Kaplan, Notes on Contemporary Machine Learning for Physicists.
[KMH+20] Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess, Rewon

Child, Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei, Scaling Laws for Neural Lan-
guage Models, ArXiv abs/2001.08361 (2020).

[KMN+16] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang, On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima, ArXiv abs/1609.04836 (2016).

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, Communications of the ACM 60 (2012), 84–90.

[KW13] Diederik P. Kingma and Max Welling, Auto-Encoding Variational Bayes, CoRR
abs/1312.6114 (2013).

[LBOM12] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller, Efficient BackProp,
Neural Networks, 2012.

[PS24] Tim Pearce and Jinyeop Song, Reconciling Kaplan and Chinchilla Scaling Laws, Trans. Mach.
Learn. Res. 2024 (2024).

[PWJ+24] Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon, Resolv-
ing Discrepancies in Compute-Optimal Scaling of Language Models, ArXiv abs/2406.19146
(2024).

[RBL+21] Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer, High-
resolution image synthesis with latent diffusion models, 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021), 10674–10685.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei, ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer
Vision (IJCV) 115 (2015), no. 3, 211–252.

[RMC15] Alec Radford, Luke Metz, and Soumith Chintala, Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks, CoRR abs/1511.06434 (2015).

[RN18] Alec Radford and Karthik Narasimhan, Improving Language Understanding by Generative
Pre-Training, 2018.

[RWC+19] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever, Language
Models are Unsupervised Multitask Learners, 2019.

[SDWMG15] Jascha Narain Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli,
Deep unsupervised learning using nonequilibrium thermodynamics, ArXiv abs/1503.03585
(2015).

[Sha48] C. E. Shannon, A Mathematical Theory of Communication, Bell System Tech. J. 27 (1948),
379–423, 623–656.

[SLJ+14] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir
Anguelov, D. Erhan, Vincent Vanhoucke, and Andrew Rabinovich, Going Deeper with Convo-
lutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014),
1–9.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le, Sequence to Sequence Learning with Neural
Networks, ArXiv abs/1409.3215 (2014).

[SZ14] Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale
Image Recognition, CoRR abs/1409.1556 (2014).

[VSP+17] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin, Attention is All you Need, Neural Information
Processing Systems, 2017.

	Part 1. Background
	1. Introduction to Neural Networks
	2. Information theory
	3. Statistical inference
	4. Optimization

	Part 2. Architectures
	5. Convolutional Neural Networks
	6. Recurrent Neural Networks
	7. Transformers

	Part 3. Generative models
	8. Large Language Models
	9. Generative Adversarial Networks
	10. Variational Autoencoders
	11. Diffusion Models

	Part 4. Reinforcement learning
	12. Value function methods
	13. Policy optimization
	References

