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I’m going to begin by recalling a formula that Karl proved for the p-adic L-function of
a CM elliptic curve. Then I’m going to describe some applications to the BSD conjecture,
especially in the case of analytic rank 1.

1 A formula of Rubin

There are two main themes in the study of elliptic curves to date: Iwasawa theory and
Heegner points. These two themes converge in Rubin’s formula, which I’m not going to
explain.

Let E/Q be an elliptic curve with CM by K. Then it has an associated Hecke character,
which we denote by ψE , so that

L(E, s) = L(ψE , s).

There is a p-adic version of the Hecke character. Let p be a prime > 2, split in K. Write
p = vv∗ = pp∗. We get a Galois representation

ψ : GK = Gal(K/K)→ AutZp(TpE∨) � Z∗p

with Hodge-Tate weights (1, 0). Then we get an identity(with the normalization geometric
Frobenius)

L(ψ, s) = L(ψE , s).

Let Γ = Gal(K(E[p∞])/K). (This has rank 2 as a Zp-module, but also has torsion.) The
characters ψ, ψ∗ factor through Γ. Let R = Ẑunr

p and ΛR = R[[Γ]]. Katz’s 2-variable p-adic
L-function Lv is an element of this ring.

For a continuous character
φ : Γ→ Q

∗

p

we denote
φ̂ : ΛR → Qp
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the induced map.
The p-adic L-function has the property that

Lv(φ) = φ̂(Lv).

This is the sense in which it interpolates classical Hecke characters.
Then

Lv(ψk(ψ∗) j, 0) = (∗)L(ψk
E(ψ∗) j, 0)

(
Ωp

Ω∞

)k− j

for k < 0 and j ≥ 0.

Theorem 1.1 (Rubin 1992). If ords=1 L(E, s) = 1 then there exists a y ∈ E(K) of infinite
order such that

Lv((ψ∗)−1) = (∗)(logωE
y)2Ω−1

p .

The explicit constant (*) can be expressed in terms of the p-part of X, etc. and lies in
K∗.
Remark 1.2. One nice thing about this is that the logarithm detects points of finite/infinite
order. We’ll see that this formula is useful for exhibiting points of infinite order.

2 A formula of Bertolini-Darmon-Prasanna

Let f ∈ Snew
2 (Γ0(N)) for N square-free, say f =

∑
anqn. We write C( f ) := C({ai}) and Z( f )

for its ring of integers. Associated to such a modular form is an abelian variety A, and since
we’re interested in it only up to isogeny we can assume that the full ring of integers Z( f )
acts on A.

Let K be an imaginary quadratic field such that the root number ω(H/K) = −1. In this
situation, we get a parametrization of our abelian variety by a Shimura curve XB, meaning
a uniformization

J(XB)→ A

and also a Heegner point yK ∈ A(K). The natural question is: is yK of infinite order?
Pick a prime p - 2N disc(K), which is split in K. Write p = vv∗. Fix an embedding

C( f ) ↪→ Qp, and let L be the completion of C( f ) at the corresponding prime, and let O be
its ring of integers.

The p-adic L-function. Let K∞ be the anticyclotomic Zp-extension of K and Γ = Gal(K∞/K).
Let Λ = O[[Γ]] and ΛR = R[[Γ]], where R = Ôunr. There is a p-adic L-function Lv( f /K) ∈
R[[Γ]] with the property that if ψ : GK → Γ→ C∗p which has Hodge-Tate weights (−n, n), n >
0 for the places (v, v∗) then

Lv( f /K, ψ) = (∗)L( f , ψ, 1) ·
(

Ωp

Ω∞

)4n

.

(The weight of the Grossencharacter is larger than that of the modular form, so it is the
periods of ψ that show up rather than the periods of f .)
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Theorem 2.1 (BDP/Brooks). We have

Lv( f /K, χtriv) =

(
1 + p − ap

p

)2

(logω f
yK)2.

To detect whether yK is of finite order, we can try to compute the canonical height or
the logarithm. The canonical height is, by Gross-Zagier, a value of the derivative of the L-
function, and this theorem is telling us that the logarithm is a value of the L-function itself.
This latter is easier to approach, e.g. via Iwasawa theory.

3 Iwasawa theory for Lv

The Iwasawa theory of the usual anticyclotomic p-adic L-function has been studied by
Darmon, Bertolini, ... by the anticyclotomic Euler system of Heegner points, and also by
myself and Urban via the Eisenstein ideal.

Let V be the p-adic Galois representation over L associated to f (with the geometric
normalization, so for f associated to an elliptic curve E it is the dual of the Tate module).
Let T ⊂ V be an O-lattice.

Let M = T∨ ⊗O Λ∗, which has the Galois action of ρ f ⊗ ψ
−1 where ψ : GK � Γ ⊂ Λ∗ is

the natural quotient map. We consider the generalized Selmer group Selv( f /K) ⊂ H1(K,M)
with

• the usual local conditions away from p,

• no local condition at v

• the restriction at v∗ must be 0.

Finally, set Xv( f /K) = Selv( f /K)∗. This is a finitely generated Λ-module, which should be
torsion.

Conjecture 3.1. We have

charΛ(Xv( f /K)) = (Lv( f /K))

as an equality in ΛR.

Towards this conjecture we have the following result.

Theorem 3.2 (X. Wan). Suppose p ≥ 5, T is residually irreducible, and at least ` | N is not
split in K. Then (Lv( f /K)) ⊃ charΛ(Xv( f /K)) in ΛR ⊗ Qp.

We can’t use the usual Heegner hypothesis. Why not? Because we’ll want to use
Jacquet-Langlands transfer to a definite quaternion algebra.

We can extend this to an equality in ΛR thanks to the following result.

Theorem 3.3 (Burungale). We have µ(Lv( f /K)) = 0.

This direction is good for showing that Lv( f /K) , 0, and hence that a p-adic logarithm
doesn’t vanish.
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4 Converse to Gross-Zagier and Kolyvagin

Gross-Zagier/Kolyvagin show that if ords=1 L(E/K, s) ≤ r ≤ 1, then rank E(K) = r and
#X(E/K) < ∞. We want to go in the other direction.

If rank = 0 and #X < ∞ then this follows from my work with Urban on the Iwasawa
main conjecture. I’m going to discuss the case of rank = 1 and #X < ∞.

For concreteness, let’s discuss elliptic curves instead of modular forms.

Theorem 4.1. Assume (as is expected) that

Selp∞(E/K)
log // E(Kv) ⊗ Qp/Zp

Qp/Zp ⊕ finite Qp/Zp

is surjective. Then ords=1 L(E/K, s) = 1.

The idea is that one can use some Galois cohomology to show that #Xv( f /K)Γ < ∞.
This comes from playing off the different conditions at p imposed on the Selmer group.
That implies, by Wan’s work, that Lv( f /K, χtriv) , 0. Then that implies by Bertolini-
Darmon-Prasanna that yK is non-torsion. Finally, use Gross-Zagier.

How might one check the hypothesis of the theorem (particularly surjectivity)?

Corollary 4.2. Suppose

Selp(E/K) � Z/pZ ↪→
E(Kv)

pE(Kv) + E(Kv)[p]
.

Then ords=1 L(E/K, s) = 1.

At least in this result the hypothesis is a finite condition, which one can imagine could
be checkable.

Remark 4.3. In joint work with Bhargava, we have results on counting elliptic curves that
satisfy this condition. This allows us to show that there is a positive proportion of elliptic
curves with analytic rank 1.

5 BSD formula

Theorem 5.1 (Jetcher-S-Wan). Let E/Q be semistable, p ≥ 5 a prime of good reduction
such that E[p] is an irreducible GQ-representation. If ords=1 L(E, s) = 1 then∣∣∣∣∣L′(E, 1)

ΩE · RE

∣∣∣∣∣
p

= |#X(E) ·
∏
`|nE

c`|p.
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Remark 5.2. The novelty here is being able to handle the Tamagawa factors.

The idea is to look at what Gross-Zagier says about∣∣∣∣∣∣L′(E/K, 1)
ΩE/K · RE/

∣∣∣∣∣∣
p

One gets that ∣∣∣∣∣∣L′(E/K, 1)
ΩE/K · RE/

∣∣∣∣∣∣
p

= |index of yK |
2
p

and by Galois cohomology we can relate the latter to logE yK , which is related to Selmer
groups. We can show that this is ≤ the expected value. Namely, since L′(E/K, 1) =

L′(E/Q, 1)L(EK , 1) and since we know Gross-Zagier in analytic rank 1 for EK we can get
the desired upper bound.

To get the lower bound we use an Euler system to bound the Tate-Shafarevich group.
However, the Euler system argument loses information about the Tamagawa factors. The
nice thing about Shimura curves is that, by making a right choice of imaginary quadratic
field we can sweep the Tamagawa factors into degrees of parametrization so that Kolyva-
gin’s argument actually becomes sufficient.

Let’s go back to Corollary 4.2. How can we deal with the injectivity hypothesis? There
is a “level-raising” idea exploited cleverly by Wei Zhang, but which goes back to Bertolini-
Darmon. Find some modular form g of level NE`1`2 (with `i inert in K) such that fe ≡ g,
and so that the Selmer group for g does satisfy the condition, has rank 1 and is non-zero at
v | p. Then by geometric reciprocity laws, one deduces some non-vanishing of the original
Heegner point at `1.

This furnishes the base case of an induction argument of Wei Zhang.
There was actually one final condition we didn’t mention: we need that if ` | NE and

`2 ≡ 1 mod p then E[p] is ramified at `.
Using these ideas, one can prove that Kato’s main conjecture for his Euler system is

true.
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