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1 Motivation

For E/Q, let s(E) = dimF2 Sel2 E − dimF2 E(Q)[2].

Theorem 1.1 (Heath-Brown 1994). For d ≥ 1, as E varies over quadratic twists of y2 =

x3 − x,

Prob(s(E) = d) ∝
d∏

j=1

2
2 j − 1

The normalizing constant turns out to be∏
j≥0

(1 + 2− j)−1.

I first learned this when Karl Rubin stated this theorem in a seminar talk. I (together with
Eric Rains) was motivated by this to think about distributions of “random” F2 vector spaces.

Random Linear Algebra. Let V = (Fp)2n. Let Q : V → Fp be a quadratic form,

(x1, . . . , xn, y1, . . . , yn)→
∑

xiyi.

The associated bilinear form is

〈v,w〉 := Q(v + w) − Q(v) − Q(w).

Definition 1.2. A subspace Z ⊂ V is maximal isotropic if and only if

Z⊥ = Z and Q|Z = 0.

(The second condition is only needed in characteristic 2.)
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Proposition 1.3. Choose maximal isotropic subspaces Z,W ⊂ V at random. Then

lim
n→∞

Prob(dim(Z ∩W) = d) =
∏
j≥0

(1 + p− j)−1.

d∏
j=1

p
p j − 1

This bears an obvious resemblance to Heath-Brown’s Theorem. Interesting! Why might
this be happening?

2 Selmer groups

Let k be a global field, A the adele ring of k, E an elliptic curve over k, and p a prime
distinct from the characteristic of k.

Kummer theory gives

E(k)/pE(k) //

��

H1(k, E[p])

β
��

E(A)/pE(A) α
// H1(A, E[p])

Here we can H1(A, E[p]) as notation for a restricted product

′∏
v

(H1(kv, E[p]),H1
ét(Ov,E[p]))

Alternatively, it is a theorem that Cesnavisius that this really can be identified with étale
cohomology over the adeles.

It is non-trivial but true that β is an injection.

Definition 2.1. We define the Selmer group

Selp E := β−1(Im α)
β
� Im (α) ∩ Im (β).

Theorem 2.2 (P-Rains). There exists a quadratic form Q : H1(A, E[p]) → Q/Z for which
Im α and Im β are maximal isotropic.

This shows that the Selmer group is the intersection of two maximal isotropic subspaces
in an infinite-dimensional vector space, which harmonizes with the random linear algebra.

What is Q? In the interest of time, I won’t answer this. Let me explain instead the
associated bilinear form. Thanks to the Weil pairing

E[p] × E[p]→ Gm

we have an induced pairing

〈·, ·〉 : H1(A, E[p]) × H1(A, E[p])→ H2(A,Gm).
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Now H2(A,Gm) = Br(A), which because the Brauer groups of Ov turn out to be trivial is
�

⊕
v Br(Kv). Then the pairing is the sum of the invariant maps to Q/Z.

Example 2.3. How should dim Selp E be distributed as E varies in an algebraic family
whose generic member has rank 18 over Q(t)? We can adjust the model to guess the answer
to such a question.

The 18 rational point generators map to an 18-dimensional subspace of H1(A, E[p]),
containing Im α and Im β. This suggests the following model.

Let R ≤ V be isotropic of dimension 18. Then the answer should be the conditional
probability

lim
n→∞

Prob(dim(Z ∩W) = d : Z,W ⊃ R).

The result is that the distribution on N shifts by +18.

3 Variants

Now, what if we were interested in modelling Selpe E? The Theorem still holds, but what
is a “random maximal isotropic subgroup of ((Z/4Z)2n,

∑
xiyi)? In the p-Selmer case au-

tomorphisms acted transitively on maximal isotropic subspaces, but in this case the max-
ial isotropic subgroups can even have different shapes, even as abelian groups. Should
(Z/4Z)n × {0} and (2Z/4Z)2n be equally likely?

We were stuck on this for a while, but eventually we realized that the only solution
which is consistent with the model for p-Selmer groups is to only consider direct sum-
mands (e.g. assigning probability 0 to (2Z/4Z)2n). Then automorphisms act transitively on
such subgroups, and the same model applies.

Consider the sequence

0→ E(k) ⊗
p−eZp

Zp
→ Selpe E →X[pe]→ 0.

Taking the direct limit over e, we get

0→ E(k) ⊗
Qp

Zp
→ Selp∞ E →X[p∞]→ 0. (1)

Can one model the “distribution” of this whole short exact sequence?

Let (V � Z2n
p ,Q =

∑
xiyi) be a quadratic space.

Definition 3.1. A Lagrangian submodule Z is a rank n submodule such that

• Z is a direct summand,

• Q|Z = 0.
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Choose a Lagrangian subspace Z,W ≤ V at random, and form

0→ (Z ∩W) ⊗
Qp

Zp︸            ︷︷            ︸
R

→

(
Z ⊗
Qp

Zp

)
∩

(
W ⊗

Qp

Zp

)
︸                       ︷︷                       ︸

S

→ T → 0

We are thinking of R as a model for the rational points, S as a model for the Selmer group,
and T as a model for the Tate-Shafarevich group in (1), after letting n→ ∞.

Theorem 3.2 (RST Theorem). The limit

lim
n→∞

(distribution of 0→ R→ S → T → 0)

exists.

Conjecture 3.3. The limit equals the distribution of (1) as E varies over all elliptic curves
over k (ordered by height).

Consequences.

• Conjecture 3.3 implies the “50-50” conjecture that 50% of E/k have rank 0 and 50%
have rank 1 (cf. Goldfeld, Katz-Sarnak).

• Conjecture 3.3 implies that the average size of # Seln E is σ1(n). (As stated, this only
holds for n a prime power.) This was proved by Bhargava-Shankar for n = 2, 3, 4, 5.

• Conjecture 3.3 implies that X[p∞] is finite for 100% of E. In fact, as E ranges over
rank r curves the distribution of X[p∞] is as conjectured by Delaunay in 2001, 2007
(at least for r = 0, 1; there is a variant for higher r).

Model for X. We described a another linear algebra model for X. For large n ≡ r mod 2,

choose A ∈ Mn(Zp) subject to AT = −A and rank Zp ker A = r. We view coker(Zn
p

A
−→ Zn

p)tors
as a model for X.

Theorem 3.4 (BKLPR). Fix r. The following distributions coincide:

1. The distribution of T in the RST theorem,

2. Delaunay’s distribution,

3.
lim
n→∞

n≡r mod 2

(
dist. of coker(Zn

p
A
−→ Zn

p)tors

)
tors
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4 Modelling ranks

The theorem suggests that the rank of the elliptic curve is modelled by the rank of A. (This
idea goes back further, cf. Deninger 2010.)

Clearly this will predicts that 100% of ranks should be as small as possible (0 or 1). We
can restrict to matrices of bounded height, and ask how quickly the percentage of higher
ranks goes to 0.

To model E/Q of height H := max(|4A3), |27B2|), choose a random variable A ∈ Mn(Z)
subject to AT = −A and the entries are bounded in absolute value by X, where n = n(H) and
X = X(H) are functions of the height such that n mod 2 is random and Xn = H1/12+o(1).
(This is calibrated so that the average size of X for rank 0 curves is as predicted by standard
conjectures.)

Conjecture 4.1. “(coker A)tors models X” and “rank Z(ker A) models rank E(Q)”.

Theorem 4.2 (PPVW). With probability 1,

{E/Q : rank Z(ker AE) > 21} is finite.

This suggests that
{E/Q : rank Z E(Q) > 21} is finite.
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