
AN OVERVIEW OF THE GROSS-ZAGIER AND WALDSPURGER
FORMULAS
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1. The modular curve X0(N)

1.1. The open modular curve. To state the Gross-Zagier formula, we need to
introduce modular curves. We begin by defining the open modular curve Y0(N).
Over a field of characteristic 0, it is the moduli space of pairs (E′, C) where E′ is an
elliptic curve and C is a subgroup of E′ isomorphic to Z/NZ.

The complex points Y0(N)(C) have the structure of the locally symmetric space
Γ0(N)\H, where

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

The point τ ∈ H parametrizes the curve C/Z + τZ, with N -torsion point being τ
N .

1.2. Cusps. The cusps of Γ0(N) are in bijection with the set

Γ0(N)\P1(Q) =
⊔
d|N

(Z/fdZ)× fd = gcd(d,N/d).

We define X0(N) as the compactification of Y0(N) obtained by adjoining a point for
each cusp. There is a moduli interpretation of X0(N) as parametrizing isogenies of
generalized elliptic curves

φ : E′ → E′′

such that kerφ ∼= Z/NZ and kerφ meets every component of E′. A generalized
elliptic curve is a family whose geometric fibers are either an elliptic curve or a
“Néron n-gon” of P1’s.

There are two special cusps on X0(N):
• The cusp ∞ corresponds to the n-gon for n = 1, which is the nodal cubic.
• The cusp 0 corresponds to the N -gon.

1.3. CM points. In terms of the uniformization of X0(N) by H, CM points corre-
spond to τ ∈ H such that there exist a, b, c ∈ Z such that

aτ2 + bτ + c = 0.

We can assume that gcd(a, b, c) = 1. With this assumption, the discriminant D =

b2 − 4ac is the discriminant of EndC(Eτ ) ∼= Z + Z[D+
√
D

2 ].
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1.4. Heegner points. Heegner points are a special type of CM points. Fix K to
be an imaginary quadratic field of discriminant D over Q. Assume D is odd. The
Heegner condition says that for all p | N ,

(1) p is split or ramified in K, and
(2) p2 - N .

Remark 1.1. These conditions are equivalent to saying thatD is a square (mod 4N).
The Heegner condition is equivalent to the existence of a point x := (φ : E′ →

E) ∈ X0(N)(Q) satisfying

EndQ(E′) = EndQ(E′′) = OK .

The theory of complex multiplication implies that Heegner points are defined
over the Hilbert class field of K, which we denote by H. In terms of the complex
uniformization, the Heegner point x corresponds to

x = [C/OK → C/N−1OK ]

where N ⊂ OK is an ideal of norm N . Its existence is guaranteed by the Heegner
condition as follows. For every p | N we can choose p ⊂ OK such that Nm p = p,
and then set N =

∏
p p

vp(N).
Finally, we can form a degree 0 divisor on X0(N) from the Heegner point, which

will actually be defined over K, as follows: let

P :=
∑

σ∈Gal(H/K)

(σ(x)−∞).

2. Néron-Tate height

We now define the “Néron-Tate height”. This construction can be done for any
abelian variety, but we will only do it for Jacobians; this is all we need to state
Gross-Zagier.

Suppose we have a line bundle L on J0(N), corresponding to twice a theta divisor
Θ. (More This is ample, so we can use it to define a height. Namely, we can pick a
large power of n and use L⊗n to embed

L⊗n : J0(N) ↪→ Pm.

On projective space we have the standard height function due to Weil, which we can
restrict to J0(N) to obtain a height function 1

nh
K
L⊗n . To make this well defined, we

normalize: define hKL on J0(N)(K) by 1
nh

K
L⊗n .

Definition 2.1. The Néron-Tate height for J0(N) is defined to be

ĥ := lim
n→∞

hKL (2nx)

4n
.

This satisfies
ĥ(2x) = 4ĥ(x).

Remark 2.2. The Néron-Tate height can be decomposed into a sum of local terms,
which is used in the original proof of the Gross-Zagier formula.
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3. L-functions

Let f be a weight 2 newform for Γ0(N). (This means that f is a cuspidal Hecke
eigenform, orthogonal to modular forms coming from smaller level.) We have a
Fourier expansion

f =
∑
n≥1

anq
n.

If an ∈ Z for all n, then by Eichler-Shimura we have an elliptic curve E/Q with
conductor N . Conversely, for an elliptic curve E/Q the modularity theorem (Wiles,
Taylor-Wiles, Breuil-Conrad-Diamond-Taylor) produces a modular form with the
same L-function.

The modular form f can be viewed as an automorphic form for GL2 /Q. If fk
denotes its base change to K, then

L(fK , s) = L(f, s)L(f ⊗ ηK/Q, s) (3.1)

where ηK/Q is the quadratic character associated to K/Q by class field theory.
Explicitly, we can write

L(f, s) =
∑

anq
n

L(f ⊗ ηK/Q, s) =
∑

η(n)anq
n

Remark 3.1. The base change for automorphic forms can be understood concretely
in terms of elliptic curve. If f corresponds to the elliptic curve E under Eichler-
Shimura, then

L(fK , s) = L(EK , s).

Thus (3.1) becomes
L(EK , s) = L(E, s)L(ED, s)

where ED is the quadratic twist of E by D. This has an Euler product

L(EK , s) =
∏

v finite place of K

Lv

where for good reduction v,

Lv = (1− avq−sv + q1−2s
v )−1, av = qv + 1−#E(Fv),

and in the bad reduction case,

Lv = (1− avq−sv )−1

where av = 1 for split multiplicative reduction, av = −1 for a nonsplit multiplicative
reduction, and av = 0 for additive reduction. (This can again be phrased in terms
of a point count for the non-singular locus of the reduction.)

The Heegner condition implies that

ε(L(fK , s)) = −1 =⇒ L(fK , 1) = 0.
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4. Gross-Zagier

4.1. The elliptic curve case. Let φ : X0(N)→ E be the modular parametrization,
sending ∞ 7→ e. Thanks to the modularity theorem of Wiles, this parametrization
is induced by a modular form f . We define

P (φ) :=
∑

σ∈Gal(H/K)

φ(σ(x)) ∈ E(K).

Theorem 4.1 (Gross-Zagier). We have

ĥ(P (φ)) =
deg φ · u2 · |D|1/2

8π2||f ||Pet
L′(EK , 1)

where u = |O×K |, and

||f ||Pet :=

∫
Γ0(N)\H

f(z)f(z) dxdy

We can rewrite this in terms of modular forms, which fits better with the gener-
alization to automorphic forms.
Definition 4.2. The Hecke algebra is the algebra of correspondences on X0(N)
generated by

Tm : [E
φ−→ E′] 7→

∑
C⊂C :
#C=m

C∩kerφ=e

[E/C → E′/C].

It acts on X0(N), hence also on J0(N). Let P (f) be the isotypic component of
J0(N)⊗Q, where we need to extend scalars because the idempotent has denomina-
tors. Then the reformulation of Gross-Zagier is:

ĥ(P (f)) =
u2 · |D|1/2

8π2

L′(FK , 1)

||f ||Pet
.

Remark 4.3. The proof considers the height pairing

〈(x−∞), TM (σ(x)−∞)〉NT
for X0(N). This is the Fourier coefficient of a cusp form of weight 2 on X0(N). It is
part of a general philosopy of Kudla that the generating series for special cycles is a
modular form. The L-function is also associated to a modular form. The proof goes
by arguing that these two forms coincide, up to an old form. The higher Gross-Zagier
also has to do with this.

5. Generalized Heegner conditions

We now explain a generalization of of Heegner points, following work of Zhang
and Yuan-Zhang-Zhang.

Let (N,D) = 1. Assume N = N+N− where N− is squarefree and its number of
prime factors is even. In this case we can have a quaternion algebra B ramified at
N−, giving rise to a Shimura curve

X = B×(Q)\H± ×B×(Af )/U.
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From an elliptic curve E/Q we get a modular form f . By Jacquet-Langlands, we
get a modular parametrization X → E. For an embedding K → B(Q) of an
imaginary quadratic field K, we get a Heegner point x ∈ X(H), where H is the
Hilbert class field of K. (The Shimura curve parametrizes abelian surfaces with real
multiplication, while the CM point parametrizes things with endomorphism by OK .
The Heegner condition forces endomorphisms by the maximal order. In particular,
this implies that the CM point is defined over H. )
Definition 5.1. We define the generalized Heegner point

P (φ) :=
∑

σ∈Gal(H/K)

φ(σ(x)) ∈ E(K).

Theorem 5.2 (Zhang, YZZ). We have

ĥ(P (φ)) =
L′(E/K, 1)

||f ||Pet
.

6. Waldspurger formula

We normalize so that the center of the L-function is 1/2.
Let F be a number field and A = AF . Let B be a quaternion algebra over F ,

and G the algebraic group associated to B×. Denote the center of G by ZG = F×.
Let K/F be a quadratic extension with a given embedding K ↪→ B. Let T =
ResK/F Gm; note that we can naturally view T ⊂ G. Let η be the quadratic Hecke
character associated to K/F .

Let π be an irreducible cuspidal automorphic representation of G, and ωπ the
central character. Let πK denote the base change of π to K. Let

χ : T (F )\T (A)→ C×

be a unitary character, such that ωπ ·χ|A× = 1. (The purpose of χ is to get a trivial
central character.)

The Waldspurger formula concerns a period integral. We define

Pχ : π → C

by

f 7→ Pχ(f) =

∫
T (F )\T (A)/A×

f(t)χ(t) dt.

Theorem 6.1 (Waldspurger). For f1 ∈ π and f2 ∈ π̃ (the contragredient represen-
tation), we have

Pχ(f1)Pχ(f2) ∼ L(πK ⊗ χ, 1/2)

L(π,Ad, 1)
α(f1 ⊗ f2)

where α =
∏
v αv is a product of local terms

αv ∈ HomK×
v

(πv ⊗ χv,C)⊗HomK×
v

(π̃v ⊗ χ−1
v ,C),

normalized by Waldspurger (so in particular, they are 1 in the spherical case).
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