AN OVERVIEW OF THE GROSS-ZAGIER AND WALDSPURGER FORMULAS

YUNQING TANG

1. THE MODULAR CURVE $X_0(N)$

1.1. The open modular curve. To state the Gross-Zagier formula, we need to introduce modular curves. We begin by defining the *open modular curve* $Y_0(N)$. Over a field of characteristic 0, it is the moduli space of pairs (E', C) where E' is an elliptic curve and C is a subgroup of E' isomorphic to $\mathbf{Z}/N\mathbf{Z}$.

The complex points $Y_0(N)(\mathbf{C})$ have the structure of the locally symmetric space $\Gamma_0(N)\backslash H$, where

$$
\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : c \equiv 0 \pmod{N} \right\}.
$$

The point $\tau \in \mathbf{H}$ parametrizes the curve $\mathbf{C}/\mathbf{Z} + \tau \mathbf{Z}$, with N-torsion point being $\frac{\tau}{N}$.

1.2. **Cusps.** The cusps of $\Gamma_0(N)$ are in bijection with the set

$$
\Gamma_0(N)\backslash \mathbf{P}^1(\mathbf{Q}) = \bigsqcup_{d|N} (\mathbf{Z}/f_d\mathbf{Z})^\times \quad f_d = \gcd(d, N/d).
$$

We define $X_0(N)$ as the compactification of $Y_0(N)$ obtained by adjoining a point for each cusp. There is a moduli interpretation of $X_0(N)$ as parametrizing isogenies of generalized elliptic curves

$$
\phi\colon E'\to E''
$$

such that ker $\phi \cong \mathbf{Z}/N\mathbf{Z}$ and ker ϕ meets every component of E'. A generalized elliptic curve is a family whose geometric fibers are either an elliptic curve or a "Néron *n*-gon" of \mathbf{P}^1 's.

There are two special cusps on $X_0(N)$:

- The cusp ∞ corresponds to the *n*-gon for $n = 1$, which is the nodal cubic.
- The cusp 0 corresponds to the N -gon.

1.3. CM points. In terms of the uniformization of $X_0(N)$ by H, CM points correspond to $\tau \in \mathbf{H}$ such that there exist $a, b, c \in \mathbf{Z}$ such that

$$
a\tau^2 + b\tau + c = 0.
$$

We can assume that $gcd(a, b, c) = 1$. With this assumption, the discriminant $D =$ $b^2 - 4ac$ is the discriminant of $\text{End}_{\mathbf{C}}(E_{\tau}) \cong \mathbf{Z} + \mathbf{Z}[\frac{D + \sqrt{D}}{2}]$ $\frac{1}{2}$.

2 YUNQING TANG

1.4. **Heegner points.** Heegner points are a special type of CM points. Fix K to be an imaginary quadratic field of discriminant D over Q . Assume D is odd. The Heegner condition says that for all $p \mid N$,

- (1) p is split or ramified in K , and
- $(2) \, p^2 \nmid N.$

Remark 1.1. These conditions are equivalent to saying that D is a square (mod $4N$). The Heegner condition is equivalent to the existence of a point $x := (\phi : E' \rightarrow$

 $E \in X_0(N)(\mathbf{Q})$ satisfying

$$
\mathrm{End}_{\overline{\mathbf{Q}}}(E')=\mathrm{End}_{\overline{\mathbf{Q}}}(E'')=\mathcal{O}_K.
$$

The theory of complex multiplication implies that Heegner points are defined over the Hilbert class field of K , which we denote by H . In terms of the complex uniformization, the Heegner point x corresponds to

$$
x = [\mathbf{C}/\mathcal{O}_K \to \mathbf{C}/\mathcal{N}^{-1}\mathcal{O}_K]
$$

where $\mathcal{N} \subset \mathcal{O}_K$ is an ideal of norm N. Its existence is guaranteed by the Heegner condition as follows. For every $p \mid N$ we can choose $\mathfrak{p} \subset \mathcal{O}_K$ such that $Nm \mathfrak{p} = p$, and then set $\mathcal{N} = \prod_p \mathfrak{p}^{v_p(N)}$.

Finally, we can form a degree 0 divisor on $X_0(N)$ from the Heegner point, which will actually be defined over K , as follows: let

$$
P := \sum_{\sigma \in \text{Gal}(H/K)} (\sigma(x) - \infty).
$$

2. Néron-Tate height

We now define the "Néron-Tate height". This construction can be done for any abelian variety, but we will only do it for Jacobians; this is all we need to state Gross-Zagier.

Suppose we have a line bundle $\mathcal L$ on $J_0(N)$, corresponding to twice a theta divisor Θ. (More This is ample, so we can use it to define a height. Namely, we can pick a large power of n and use $\mathcal{L}^{\otimes n}$ to embed

$$
\mathcal{L}^{\otimes n} \colon J_0(N) \hookrightarrow \mathbf{P}^m.
$$

On projective space we have the standard height function due to Weil, which we can restrict to $J_0(N)$ to obtain a height function $\frac{1}{n} h_{\mathcal{L}^{\otimes n}}^K$. To make this well defined, we normalize: define $h_{\mathcal{L}}^{K}$ on $J_{0}(N)(K)$ by $\frac{1}{n}h_{\mathcal{L}^{\otimes n}}^{K}$.

Definition 2.1. The *Néron-Tate height* for $J_0(N)$ is defined to be

$$
\hat{h} := \lim_{n \to \infty} \frac{h_{\mathcal{L}}^K(2^n x)}{4^n}.
$$

This satisfies

$$
\hat{h}(2x) = 4\hat{h}(x).
$$

Remark 2.2. The Néron-Tate height can be decomposed into a sum of local terms, which is used in the original proof of the Gross-Zagier formula.

3. L-functions

Let f be a weight 2 newform for $\Gamma_0(N)$. (This means that f is a cuspidal Hecke eigenform, orthogonal to modular forms coming from smaller level.) We have a Fourier expansion

$$
f = \sum_{n \ge 1} a_n q^n.
$$

If $a_n \in \mathbf{Z}$ for all n, then by Eichler-Shimura we have an elliptic curve E/\mathbf{Q} with conductor N. Conversely, for an elliptic curve E/\mathbf{Q} the modularity theorem (Wiles, Taylor-Wiles, Breuil-Conrad-Diamond-Taylor) produces a modular form with the same *L*-function.

The modular form f can be viewed as an automorphic form for GL_2/Q . If f_k denotes its base change to K , then

$$
L(f_K, s) = L(f, s)L(f \otimes \eta_{K/\mathbf{Q}}, s)
$$
\n(3.1)

where $\eta_{K/\mathbf{Q}}$ is the quadratic character associated to K/\mathbf{Q} by class field theory. Explicitly, we can write

$$
L(f,s) = \sum a_n q^n
$$

$$
L(f \otimes \eta_{K/\mathbf{Q}}, s) = \sum \eta(n) a_n q^n
$$

Remark 3.1. The base change for automorphic forms can be understood concretely in terms of elliptic curve. If f corresponds to the elliptic curve E under Eichler-Shimura, then

$$
L(f_K, s) = L(E_K, s).
$$

Thus [\(3.1\)](#page-2-0) becomes

$$
L(E_K, s) = L(E, s)L(E^D, s)
$$

where E^D is the quadratic twist of E by D. This has an Euler product

$$
L(E_K, s) = \prod_{v \text{ finite place of } K} L_v
$$

where for good reduction v ,

$$
L_v = (1 - a_v q_v^{-s} + q_v^{1-2s})^{-1}, \quad a_v = q_v + 1 - \#E(\mathbf{F}_v),
$$

and in the bad reduction case,

$$
L_v = (1 - a_v q_v^{-s})^{-1}
$$

where $a_v = 1$ for split multiplicative reduction, $a_v = -1$ for a nonsplit multiplicative reduction, and $a_v = 0$ for additive reduction. (This can again be phrased in terms of a point count for the non-singular locus of the reduction.)

The Heegner condition implies that

$$
\epsilon(L(f_K, s)) = -1 \implies L(f_K, 1) = 0.
$$

4 YUNQING TANG

4. Gross-Zagier

4.1. The elliptic curve case. Let $\phi: X_0(N) \to E$ be the modular parametrization, sending $\infty \mapsto e$. Thanks to the modularity theorem of Wiles, this parametrization is induced by a modular form f . We define

$$
P(\phi) := \sum_{\sigma \in \text{Gal}(H/K)} \phi(\sigma(x)) \in E(K).
$$

Theorem 4.1 (Gross-Zagier). We have

$$
\hat{h}(P(\phi)) = \frac{\deg \phi \cdot u^{2} \cdot |D|^{1/2}}{8\pi^{2}||f||_{\text{Pet}}} L'(E_K, 1)
$$

where $u = |\mathcal{O}_K^{\times}|$, and

$$
||f||_{\text{Pet}} := \int_{\Gamma_0(N) \backslash \mathbf{H}} f(z) \overline{f(z)} \, dxdy
$$

We can rewrite this in terms of modular forms, which fits better with the generalization to automorphic forms.

Definition 4.2. The *Hecke algebra* is the algebra of correspondences on $X_0(N)$ generated by

$$
T_m: [E \xrightarrow{\phi} E'] \mapsto \sum_{\substack{C \subset C:\\ \#C = m \\ C \cap \ker \phi = e}} [E/C \to E'/C].
$$

It acts on $X_0(N)$, hence also on $J_0(N)$. Let $P(f)$ be the isotypic component of $J_0(N) \otimes \mathbf{Q}$, where we need to extend scalars because the idempotent has denominators. Then the reformulation of Gross-Zagier is:

$$
\hat{h}(P(f)) = \frac{u^2 \cdot |D|^{1/2}}{8\pi^2} \frac{L'(F_K, 1)}{||f||_{Pet}}.
$$

Remark 4.3. The proof considers the height pairing

$$
\langle (x-\infty), T_M(\sigma(x)-\infty) \rangle_{NT}
$$

for $X_0(N)$. This is the Fourier coefficient of a cusp form of weight 2 on $X_0(N)$. It is part of a general philosopy of Kudla that the generating series for special cycles is a modular form. The L-function is also associated to a modular form. The proof goes by arguing that these two forms coincide, up to an old form. The higher Gross-Zagier also has to do with this.

5. Generalized Heegner conditions

We now explain a generalization of of Heegner points, following work of Zhang and Yuan-Zhang-Zhang.

Let $(N, D) = 1$. Assume $N = N^+N^-$ where N^- is squarefree and its number of prime factors is even. In this case we can have a quaternion algebra B ramified at N^- , giving rise to a Shimura curve

$$
X = B^{\times}(\mathbf{Q}) \backslash \mathbf{H}^{\pm} \times B^{\times}(\mathbf{A}_{f})/U.
$$

From an elliptic curve E/\mathbf{Q} we get a modular form f. By Jacquet-Langlands, we get a modular parametrization $X \to E$. For an embedding $K \to B(\mathbf{Q})$ of an imaginary quadratic field K, we get a Heegner point $x \in X(H)$, where H is the Hilbert class field of K. (The Shimura curve parametrizes abelian surfaces with real multiplication, while the CM point parametrizes things with endomorphism by \mathcal{O}_K . The Heegner condition forces endomorphisms by the maximal order. In particular, this implies that the CM point is defined over H .

Definition 5.1. We define the generalized Heegner point

$$
P(\phi) := \sum_{\sigma \in \text{Gal}(H/K)} \phi(\sigma(x)) \in E(K).
$$

Theorem 5.2 (Zhang, YZZ). We have

$$
\hat{h}(P(\phi)) = \frac{L'(E/K, 1)}{||f||_{\text{Pet}}}.
$$

6. Waldspurger formula

We normalize so that the center of the L -function is $1/2$.

Let F be a number field and $\mathbf{A} = \mathbf{A}_F$. Let B be a quaternion algebra over F, and G the algebraic group associated to B^{\times} . Denote the center of G by $Z_G = F^{\times}$. Let K/F be a quadratic extension with a given embedding $K \hookrightarrow B$. Let $T =$ $\operatorname{Res}_{K/F} \mathbf{G}_m$; note that we can naturally view $T \subset G$. Let η be the quadratic Hecke character associated to K/F .

Let π be an irreducible cuspidal automorphic representation of G, and ω_{π} the central character. Let π_K denote the base change of π to K. Let

$$
\chi\colon T(F)\backslash T(\mathbf{A})\to\mathbf{C}^\times
$$

be a unitary character, such that $\omega_{\pi} \cdot \chi|_{\mathbf{A}^{\times}} = 1$. (The purpose of χ is to get a trivial central character.)

The Waldspurger formula concerns a period integral. We define

$$
P_\chi\colon\pi\to{\bf C}
$$

by

$$
f \mapsto P_{\chi}(f) = \int_{T(F)\backslash T(\mathbf{A})/\mathbf{A}^{\times}} f(t)\chi(t) dt.
$$

Theorem 6.1 (Waldspurger). For $f_1 \in \pi$ and $f_2 \in \tilde{\pi}$ (the contragredient representation), we have

$$
P_{\chi}(f_1)P_{\chi}(f_2) \sim \frac{L(\pi_K \otimes \chi, 1/2)}{L(\pi, \text{Ad}, 1)} \alpha(f_1 \otimes f_2)
$$

where $\alpha = \prod_v \alpha_v$ is a product of local terms

$$
\alpha_v \in \text{Hom}_{K_v^{\times}}(\pi_v \otimes \chi_v, \mathbf{C}) \otimes \text{Hom}_{K_v^{\times}}(\widetilde{\pi}_v \otimes \chi_v^{-1}, \mathbf{C}),
$$

normalized by Waldspurger (so in particular, they are 1 in the spherical case).