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1 Introduction

Let E be an elliptic curve over Q. Let gE be the rank of E(Q). We write rE = ords=1 L(E, s).
A special case of more general theorem I’ll announce today is:

Theorem 1.1. If rE = 0 then gE = 0.

How do we prove the converse, gE = 0 =⇒ rE = 0? Even today, we know surprisingly
little about this.

The Main Conjecture tells us:

Theorem 1.2. If p is a sufficiently large good ordinary prime, then LE(1) , 0 ⇐⇒ gE = 0
and X(E)(p) is finite.

The problem with this theorem is that it is precisely for the primes p as in the hypothesis
that we do not know how to show that the p-primary part X(E)(p) is finite.

We would like to have a statement such as:

Conjecture 1.3. L(E, 1) , 0 ⇐⇒ gE = 0 and X(E)(2) is finite.

(Of course we would also like to have the result with 2 replaced by some other prime
as well.) One reason why we would like this is that we could then use descent to prove
specific cases of BSD which are currently out of reach. The methods we will discuss are
Iwasawa-theoretic. Morally, we think that they should be able to reach the result with p
being any good ordinary prime.

2 An example

Let A be a fixed elliptic curve and M the discriminant of a quadratic extension Q(
√

M)/Q.
Let E = A(M) be the twist of A by Q(

√
M)/Q.
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Example 2.1. Consider A = X0(49), which has minimal equation y2 + xy = x3 − x2 − 2x− 1
and discriminant ∆ = −73. It has CM by K = Q(

√
7). The prime 2 is good ordinary for this

curve, so it is in some sense the simplest of elliptic curves.

Theorem 2.2 (Rubin, Gonzalez-Aviles). Let E be any quadratic twist of X0(49). Then
L(E, 1) , 0 ⇐⇒ gE = 0 and X(E)(2) is finite. Moreover, when L(E, 1) , 0 then #X(E)
is finite and as predicted by BSD.

As far as I know, this is the only family of elliptic curves for which we can prove such
a theorem.

Corollary 2.3. Assume E is a quadratic twist of X0(49). Then gE = 0 and X(E)(2) = 0 if
and only if it is predicted by BSD (in other words, if and only if L(E, 1) , 0).

This has some interesting numerical consequences. Let

M = {M = q1 · . . . · qr : qi distinct primes ≡ 1 mod 4, inert in K}.

Let E = A(M) for some M ∈ M. The theorem says that E(Q) is finite and X(E)(2) = 0 =⇒

L(E, 1) , 0.

Example 2.4. A consequence of this result is that for any odd prime p ≤ 2357, there exists
M ∈ M such that E = A(M) has X(E) of order p2.

3 Consequences for the congruent number problem

Let C be the elliptic curve y2 = x3 − x. (This is the oldest elliptic curve; its quadratic twists
control congruent numbers.)

Theorem 3.1 (Tian, Yuan, Zhang). Assume E is a quadratic twist of C. Then gE = 0 and
X(E)(2) = 0 ⇐⇒ it is predicted by BSD.

Remark 3.2. The Tian-Yuan-Zhang proof is not Iwasawa-theoretic; they use an explicit
form of a formula of Waldspurger.

Let N be any square-free positive integer. By combining the preceding results with
analytic results of Heath-Brown, A. Smith showed that for N ≡ 1, 2, 3 (mod 8) (i.e. when
the root number of the twist C(N) is +1) roughly 50% are not congruent numbers (i.e. g = 0).
For N ≡ 5, 6, 7 (mod 8), roughly 50% are congruent numbers. Conjecturally, in the first
case 100% are not congruent, and in the second case all are congruent.

4 Statement of results

Let K = Q(
√
−q) where q is a prime ≡ 7 (mod 8). Let h be the class number of K (which is

odd because the discriminant is prime). Let H be the Hilbert class field of K; we know that
H = K( j(O)). Write J = Q( j(O)). Since j(O) is real (why?), this comes with an embedding
J ↪→ R. We also fix some embedding K ↪→ C.
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Theorem 4.1 (Gross). There exists a unique elliptic curve A = A(q) defined over J such
that

1. EndH(A) = O,

2. the minimal discriminant of A/H is the ideal (−q3),

3. A is isogenous to all of its conjugates over H.

In fact, Gross proved that this A(q) has a global minimal Weierstrass equation.

Example 4.2. For J = Q(α), with minimal equation α3 − α − 1 = 0, the global minimal
equation of A is

y2 + α3xy + (α + 2)y = x3 + 2x2 − (12α2 + 27α + 16)x − (73α2 + 99α + 62)

Write ψA/H for the Grossencharacter of A/H. (So the L-series of A/H is the product of that
for ψA/H and its conjugate.) Gross proved that gA/H = 0, by 2-descent. Rohrlich showed
that L(A/H, 1) , 0, which by aforementioned result gives another proof of this fact.

We would like to have an analogue of the theorem which we established for quadratic
twists of X0(49). Careful: we cannot consider all quadratic extensionf of K, but only those
twists coming from quadratic extensions of K.

So let Q(A) be the set of twists of A by quadratic extensions of H of the form HK′/H,
where K′/K is a quadratic extension of conductor prime to 2q.

Let E ∈ Q(A). Write ψE/H for the Grossencharacter of E/H, which is φ ◦ NH/K , where
φ is a Grossencharacter of K (in fact, the one attached to the restriction of scalars of A from
H to K). Let g be the conductor of φ.

Now I’ll describe joint work with Y. Kezuka, Y. Li, and Y. Tian. Let ω be the Neron
differential, which will be a generator of the differentials for the global minimal Weierstrass
equation. LetL be the period lattice ofω, which is of the formω = Ω∞O for some Ω∞ ∈ C

∗.
Let a be an integral ideal of K and σa the Artin symbol in G = G(H/K) for (a, g) = 1. Then
we have a canonical

ηE(a) : E → Eσa

Call the kernel of this map Ea. The Néron differential of Eσa will be denoted ωσa .
Define ξ(a) ∈ H∗ by

ηE(a)∗(ωσa) = ξ(a)ω.

Let
Ω∞(E/H) =

∏
a

(ξ(a)Ω∞)

Fact: for all n ≥ 1, Ω∞(E/H)−nL(ψn
E/H , n) ∈ K for all n = 1, 2, 3, . . ..

Consider a prime p split in K, suppose pO = pp∗. Suppose E has good reduction above
p, and (p, h) = 1. Let F∞ = H(E[p∞]).
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For time reasons, let me state our result in a simplified case. Assume p = 2. Let M∞ be
the maximal abelian p-extension of K unramified outside p .

M∞
X∞

F∞

G

H

K

In this case it can be proven that X∞ is a finitely generated Z2-module. We have G � O∗p, so
G = Γ × ∆ where ∆ = 〈1, δ〉 is cyclic of order 2. Let Y∞ = X∞/(δ + 1)X∞.

Theorem 4.3. Assume L(E/H, 1) , 0. Then

ordp(Ω∞(E/H)−1L(ψE/H , 1)) ≤ ordp(#X(E/H)(p)) + #B − 2

where B is the set of bad primes of E/H. Moreover, we have equality if and only if Y∞ has
no non-zero finite Γ-submodule.

Remark 4.4. We do not know how to prove the nonexistence of such a submodule, although
it’s an old theorem of Greenberg for X∞ itself. This problem disappears for X0(49), because
then (1 + δ)X∞ = 0.
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