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1 Huber rings

The basic building blocks of adic spaces are Huber rings.
Definition 1.1. A Huber ring is a topological ring A, such that there exists an open subring
A0 ⊂ A and a finitely generated ideal I ⊂ A0 such A has the I-adic topology. We call A0 the
ring of definition and I the ideal of definition.
Definition 1.2. We denote by A00 the set of topologically nilpotent elements of A and A0

the set of power-bounded elements. A0 ⊂ A is an open subring and A00 is an ideal in A0.
Definition 1.3. A Tate ring is a Huber ring A with a topologically nilpotent element $,
which we call a pseudo-uniformizer. Equivalently, a Tate ring is a Huber ring A such that
A00 ∩ A× , ∅.
Remark 1.4. If A is a Tate ring and $ is a pseudo-uniformizer, then

1. If ϕ : A→ B is a continuous homomorphism of Huber rings then B is a Tate ring and
ϕ($) is a pseudo-uniformizing unit of B, so B is automatically a Tate ring.

2. If A is a Tate ring then we may assume that A0 contains $ and I = $A0. It follows
that A = A0[1/$].

Example 1.5. Let k be a non-archimedean field, i.e. a topological field whose topology is
given by a non-archimedean absolute value of height 1:

| · | : k → R≥0.

Then k is a Tate ring, with k0 = Ok. We take k0 to be the ring of definition. Any $ ∈ k with
|$| < 1 is a pseudo-uniformizer.
Example 1.6. The Tate algebra

A = k〈X1, . . . , Xn〉 = {
∑

aI xI | aI → 0 for I → ∞}

is a Huber ring, with ring of definition

A0 := A0 = Ok〈X1, . . . , Xn〉.

This is a Tate ring, and a uniformizer is again any $ with |$| < 1.
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2 Affinoid adic spaces

2.1 Underlying set

Definition 2.1. A Huber pair (affinoid ring) is a pair (A, A+) where A is a Huber ring and
A+ ⊂ A0 is an open subring which is integrally closed.

To such a pair we will define an affinoid adic space. We begin by describing the under-
lying set:

Definition 2.2. For a Huber pair (A, A+) we define the adic spectrum (just a set for now) to
be

X = Spa(A, A+) :=
{
| · | : A→ Γ ∪ {0} | continuous, multiplicative, non-arch.

| f |≤1 for all f∈A+

}
.

where Γ is a totally ordered abelian group. The meaning of continuity is that for all γ,

{a ∈ A | |a| < γ} ⊂ A is open.

Remark 2.3. It is equivalent to demand that {a ∈ A : |a| ≤ γ} is open for all γ. Indeed, the
non-archimedean property implies that both versions (with strict or non-strict inequalities)
are groups, and any group containing an open subset is open.

For x ∈ X and f ∈ A, we denote

| f (x)| := x( f ).

2.2 Topology of rational subsets

Let T ⊂ A be a finite subset such that T · A generates an open ideal. (If A is a Tate ring then
this is equivalent to T A = A.)

Definition 2.4. We define a rational open subset of X := Spa(A, A+) to be a subset of the
form

X
(T

s

)
= {x ∈ X | ∀t, |t(x)| ≤ |s(x)| , 0}.

Theorem 2.5. There is a unique topology on X in which X
(

T
s

)
forms a basis consisting

of quasicompact open subsets such that the system of rational subsets stable under finite
intersections. With this topology, X is a spectral space. (i.e. homemorphic to Spa(R) for
some ring R).

This gives a functor

(Huber pairs)→ (spectral spaces).

Lemma 2.6. Spa(Â, Â+)→ Spa(A, A+) is a homeomorphism preserving rational subsets.

This means that we can always pass to the completion.

Proposition 2.7. Let (A, A+) be a Huber pair, and assume A is complete. Then
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1. Spa(A, A+) = ∅ ⇐⇒ A = 0,

2. f ∈ A is invertible if and only if | f (x)| , 0 for all x.

3. f ∈ A+ ⇐⇒ | f (x)| ≤ 1 for all x.

Remark 2.8. Where do we need the fact that A+ is integrally closed? It is used in the third
part of the preceding proposition.

This is everything that we need to say about the topological space underlying an affinoid
adic space. Next we describe the structure sheaf.

2.3 Structure (pre)sheaf

From now on, we abbreviate Huber pairs (A, A+) by A.

Theorem 2.9 (Localization). Let T, s be as above. Then there exists a morphism of Huber
pairs A → A〈T

s 〉 which is universal for morphisms of Huber pairs ϕ : A → B with B
complete such that ϕ(s) ∈ B× and for all t ∈ T we have ϕ(t)ϕ(s)−1 ∈ B+. (This implies that
A〈T

s 〉 is a complete ring.)

Remark 2.10. By the preceding proposition, the property we are asking for is exactly that
the induced morphism of adic spectra factors through the open subset X

(
T
s

)
.

Lemma 2.11. The natural map

Spa(A〈
T
s
〉)→ Spa(A)

is an open embedding, with image X
(

T
s

)
.

Let X = Spa(A). We now define the structure presheaf (OX ,O
+
X) by

OX

(
X

(T
s

))
= A〈

T
s
〉

and
O+

X

(
X

(T
s

))
= A〈

T
s
〉+.

In particular, OX(X) = Â. This is a presheaf of complete topological rings with basis X
(

T
s

)
.

Definition 2.12. We call A sheafy if OX is a sheaf (which automatically implies that O+
X is a

sheaf).

Any point x ∈ X is a valuation, and induces a valuation on OX,x (the usual stalk in the
category of ringed spaces). You can check that mx = v−1

x (0) is the unique maximal ideal in
OX,x, so the latter is a local ring.

Definition 2.13. We define the categoryV to have objects tuples (X,OX , {vx}x∈X) where
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• X is a topological space,

• OX is a sheaf of complete topological rings such that OX,x is local, and

• vx a valuation on κ(x).

Morphisms are the natural morphisms of such data.

Proposition 2.14. The functor

(sheafy Huber pairs)→V

sending A 7→ Spa(A) is fully faithful.

The image of this functor are the affinoid adic spaces.

3 Adic spaces

Definition 3.1. A adic space is an object of V which is locally isomorphic to Spa(A) where
A is a sheafy Huber ring.

It is annoying that A is not always sheafy. However, here are some conditions that
guarantee the sheafiness.

Theorem 3.2. Let (A, A+) be a complete Huber pair. It is sheafy if any of the following are
satisfied:

1. A has a Noetherian ring of definition.

2. A is a Tate ring and A〈X1, . . . , Xn〉 is noetherian for all n ≥ 0.

3. A is a Tate ring and for every rational subset U ⊂ Spa(A, A+) the ring of power-
bounded elements OX(U)0 is a ring of definition.

Example 3.3. There is a fully faithful embedding

(locally noetherian formal schemes) ↪→ (adic spaces)

sending
Spf(A) 7→ Spa(A, A).

In fact, (A, A+) is also sheafy if A has the discrete topology, so A 7→ Spa(A, A) embeds the
full category of schemes into the category of adic spaces.

Example 3.4. If k is a non-archimedean field, then there is a fully faithful embedding

(rigid analytic spaces/k) ↪→ (adic spaces)

sending
Spm(A) 7→ Spa(A, A0).
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We haven’t yet said what perfectoid spaces are, but they form a subcategory of adic
spaces.

Example 3.5. Let k be a non-archimedean field with absolute value | · | and k0 = Ok. Then
we have an embedding

Spa(k, k0) = {| · |} ↪→ Spa(k0, k0).

This is not surjective: Spa(k0, k0) has the valuation(k0)× 7→ 1
k00 7→ 0

which obviously does not extend to k.
Suppose Ok is a DVR. Then we have a fully faithful functor

(formal schemes l.f.t. / Ok,) ↪→ (adic spaces/Spa(Ok,Ok)).

The local finite type hypothesis on a formal scheme X means that X = Spf(A) where there
exists a surjection Ok[[T1, . . . ,Tn]]〈X1, . . . , Xn〉 � A. The theory of Raynaud/Bertholot
attaches to such a scheme its generic fiber, which is a rigid analytic space over k. This also
embeds fully faithfully into adic spaces over Spa(k,Ok) via “taking the generic fiber” (or
more precisely base chang against Spa(k,Ok) → Spa(Ok,Ok), and we have the following
commutative diagram:

(formal schemes l.f.t. / Ok,) �
� //

Raynaud-Bertholot
��

(adic spaces/Spa(Ok,Ok))

��
(rigid analytic space / k) �

� // (adic spaces/Spa(k,Ok))
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