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1 Overview

Let X/Fq be a smooth, projective, geometrically connected curve. The aim is to show that if
E is a geometrically irreducible local system of rank 2 on X, then there is a Hecke eigensheaf
AutE =: AE on Bun2 with eigenvalue E. Under the function-sheaf correspondence this AutE

gives the automorphic function fE .
Let us recall the strategy from the very beginning: the rank 1 case. If L is a local system

of rank 1 then we knew how to construct a local system on the symmetric power

X(d)

��
Picd(X)

We can think of X(d) as the classifying space of line bundles of degree d plus a section.
There we constructed the sheaf L(d), the symmetric products of L. The idea is that X(d) →

Picd(X) is a fiber bundle with fibers being projective spaces (for large enough d), so any
local system descends.

In Stefan’s talk, we saw how to construct a candidate function/sheaf A′E on a space Bun′2
lying over Bun2:

Bun′2

��

= {Ω ↪→ E}.

Bun2

Just as in the rank 1 case, over a large open subset the fibers are projective spaces, so if the
A′E were a local system we were be done by descent. Unfortunately it is not a local system,
so we need to find some other way to descend A′E to AE on Bun2.

Aims. The rest of the argument breaks up into three steps.

1. Show that A′E is a perverse sheaf.
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2. Descend A′E to AE on Bun2.

3. Show that AE is a Hecke eigensheaf. (This is sort of independent of the other two
steps.)

Some of the constructions only work over large open subsets because the map is only a
fibration on such. We will happily ignore these issues.

2 Construction of the Laumon sheaf

We briefly remind you about the construction of the Laumon sheaf. There is a moduli space
Modd parametrizing degree d modifications of vector bundles:

Modd =


E,E′ ∈ Bun2
ι : E′ ↪→ E

deg(coker ι) = d

 .
We have a map Modd → Cohd sending (E′ ⊂ E) 7→ (E/E′). This is a smooth map, since the
fibers are parametrized by a choice of E ∈ Bun2 plus choices of points in projective spaces
specifying the modifications.

But while Modd is infinite-dimensional, the space Cohd is a finite-dimensional space
related to symmetric powers of the curve. So we can think of it as a finite-dimensional
model for Modd. A resolution of singularities for Cohd is given by specifying a “flag” of
torsion sheaves with subquotients of length one (which will be uniquely determined for
most torsion sheaves).

C̃oh
d

π

��

=
{
T1⊂...⊂Td

degTi+1/Ti=1

}
��

Cohd = {Td}

Oh Cohd, we defined the Laumon sheaf Ld
E as follows. We have a commutative diagram

C̃oh
d
0

gr //

π

��

(Coh1
0)d // Xd

��
Cohd

0
// X(d)

Then we defined
LE := Rπ∗(gr∗E�d)S d .

This is formally similar to what we did in the case of GL1. Yesterday Stefan defined it
slightly differently, as LE = j!∗E(d)|(X(d)\∆). The two definitions turn out to coincnide,
giving a way of computing this middle extension sheaf.
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3 Construction of the sheaf A′E
As Dennis discussed yesterday, one wants to consider another moduli space

Q =


E ∈ Bun2

J ∈ Ext1(O,Ω)
J ↪→ E


Recall that Bun′2 is the moduli space parametrizing {(E ∈ Bun2,Ω ↪→ E)}. There is a map

ν : Q → Bun′2

by sending (J ↪→ E) to (E,Ω ↪→ J ↪→ E).
In addition, we have maps

1. ext : Q → A1, sending the datum (J ↪→ E) to the class ofJ in Ext1(O,Ω) = H1(Ω) �
H0(O).

2. q : Q → Coh sending the datum (J ↪→ E) to the torsion sheaf E/J .

This all fits together in the following diagram.

Q
ext×q //

ν

��

A1 × Coh

Bun′2

��
Bun2

Definition 3.1. Let Lχ be an Artin-Schreier sheaf on A1. We define

A′E = ν!(ext∗(ASA1) ⊗ q∗(LE))

where LE is the Laumon sheaf on Coh.

4 Perversity

We want to convine you that A′E is a perverse sheaf. To do this, it would suffice to rewrite
it as an iterated sequence of Laumon’s Fourier transforms, since we know that Fourier
transforms latter preserves perversity.

We need the following basic vanishing result.

Lemma 4.1. For all k < n and all bundles E,E′ ∈ Bunk with degE′ ≤ degE − d with
d > kn(2g − 2), we have

H∗(Hominj(E′,E) ⊂ Mod, q∗LE) = 0.
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Example 4.2. Let’s unravel the statement of the lemma for n = 2. By twisting, we can
assume that E′ is trivial. Then the claim is that on the spaceH0(E) − 0, the cohomology of
the Laumon sheaf vanishes.

Here is an equivalent formulation. Consider the diagram

Cohd

Modd

h→

##

quot

OO

h←

zz
Bun∗−d

k Bun∗k

Define the averaging functor

AvE : Db(Bunk)→ Db(Bunk)

by
K 7→ h→! (h←∗(K) ⊗ quot∗LE).

Then the claim is that this is identically 0 for d > kn(2g−2) and E irreducible of rank n > k.
This goes back to Dennis’s “formula” for producing Hecke eigensheaves from yesterday:
the formula is to pull back, convolve with the Laumon sheaf, and push forward. This is
telling us that if you perform this process when the rank is too small, so that you don’t
expect to get any eigensheaves, then you’ll get 0.

For n = 2, k = 1 the statement is easy: for E(d) on X(d) AJ
−−→ Picd, we have

R(AJ∗)E(d) = 0 if E is irreducible.

This is a result of Deligne.

Proof sketch. First check that this is a local system by checking that the map is locally
acyclic. Then since Pic has abelian fundamental group, if there is a non-trivial cohomology
sheaf we can tensor with a local system of rank 1 to make one summand trivial, so in
particular it has sections. But then one would find a non-trivial cohomology group upstairs
on X(d) by the Leray spectral sequence.

On the other hand, one can compute the cohomology using the Künneth formula on X.
By duality the only non-zero group must be in H1, and the cohomology of the symmetric
power is the exterior power of the cohomology, which vanishes for dimension reasons. �

♠♠♠ TONY: [there was then a discussion of the Fourier transform, but I could not
follow it]
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5 The descent step

An irreducible perverse sheaf is a local system over an open subset. Then we can apply this
theorem if we know that the open subset contains one pulled back from downstairs. How
do we prove something like this?

The general trick is that if you have a perverse sheaf A′ on a smooth space, it is locally
constant if and only if the Euler characteristics of stalks are constants. Why? Assume that
A′ is irreducible (hence an IC sheaf); it’s easy to reduce to this case. Then over an open set
it’s a local system. We know that A′ is a middle extension (since it’s an IC sheaf), so think
about what happens when we form the middle extension. Since we’re on a smooth space,
the only action happens at the codimension one stalks, and there you take invariants under
inertia, so the Euler characteristic can only stay constant if it extends to a local system in
codimension one.

So we want the Euler characteristics to be constant along fibers of the map Bun′ → Bun.
In the Frenkel-Gaitsgory-Vilonen article this is argued as follows. If we hadn’t constructed
our sheaf by Fourier transform, but instead by a procedure that only uses pushforward from
proper maps, then we would know that the Euler characteristic only depends on the local
isomorphism classes of the input sheaves. (In characteristic 0, this is clear from the topol-
ogy perspective because, since the sheaves are locally isomorphic, we can take a small tri-
angulation in which they are isomorphic, and then the Euler characteristics would coincide
because cohomology can be computed locally. In characteristic p, it follows by reduction
to the case of curves and using the Grothendieck-Ogg-Shafarevich formula.)

To summarize, the idea is to show that this is independent of E! This holds because we
can rewrite the construction using proper maps only. That’s where the Drinfeld compacti-
fication is useful. Recall that this was a compactification of Q by cutting up E into a flag
with subquotients being powers of Ω; in terms of Plücker coordinates it could be described
(for GL2) as

Q
d

=
{

Ω↪→E
Ω⊗O↪→∧2E

}
{J ⊂ E}

��ww

Q
d

= { Ω↪→E
Ω⊗O↪→∧2E

}

��

Modd

ww
Bun

where the left down map is proper after dividing by Gms. You then rewrite the construction
in terms of Q

d
.

The upshot of this discussion is that we only need the result for one E (irreducible or
not). Now there are several options. For example, we could try the trivial bundle. Then
we would get a purely geometric statement, which is unclear how to prove. In the paper,
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Frenkel-Gaitsgory-Vilonen give the following argument instead. We took the Fourier trans-
form, so we know that if we start with a pure local system then we end up with a pure
perverse sheaf. So to get constancy along fibers it suffices to show that the trace function is
constant along fibers. So we need a local system E such that f ′E comes from fE downstairs.
That is, all we need an automorphic function for one local system. We could try to construct
this by cyclic base change, which is what they do, but it is hard!

There’s also a different argument by Gaitsgory, which goes by comparing the construc-
tion with Eisenstein series for a generic E =

⊕
Li. If you look at how people construct

geometric Eisenstein series, then you see that they also use bundles with flags, so one could
expect a comparison. The first problem with this approach is that the identity j! = j∗ no
longer holds for reducible local systems. But recall how we proved this in rank 2: it was
again a computation that something was locally acyclic. So again the we can try to prove
that the Euler characteristic doesn’t depend on the local system. In the end, it comes down to
comparing the intermediate extension and extension-by-zero using the Euler characteristic.

Anyway, this proves that A′E descends.

6 The Hecke eigensheaf property

We first reduce to checking the eigensheaf property for the first Hecke operator T1, which
comes from the correspondence

{(x,E′ ⊂ E) : E/E′ � k(x)}

vv ))
Bund

n Bund−1
n ×X

The point is that the S 2 symmetry implies that this is an eigensheaf for all Hecke operators.

Example 6.1. Consider modifications of length 2 for rank 2 bundles.

Hecke =
{

E′↪→E
length E/E′=2

}
ww ((

Bund
2 Bund−2

2 ×X(2)

The Hecke eigensheaf property describes what happens if we start with AE viewed as a
perverse sheaf on Bun2, pull it back to Hecke and convolve with the IC sheaf, and then
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apply proper pushforward. Consider the diagram

H̃ecke = {E′ ⊂ E1 ⊂ E}

π

��

// Bund−2
2 ×C̃oh

��

// Bun2 ×X × X

��

Hecke //

vv ))

Bund−2
2 ×Coh

��
Bund

2 Bund−2
2 ×X(2)

Instead of pulling and pushing, consider going around the top of the diagram. The only
difference is that we get AE � E � E pushing up through the top of the diagram. The map
H̃ecke→ Hecke is a small resolution, which is locally modelled by C̃oh→ Coh. Therefore,
for n = 2 the fibers of π are finite except over the diagonal points k(x)⊕2, where they are P1.
So we know that the pushforward is a sum of perverse sheaves (which are their own middle
extensions). Then Rπ∗Q has an action of S 2, and (Rπ∗Q)S 2 gives the Hecke operator T 2

supported on the diagonal.
♠♠♠ TONY: [I didn’t understand this example.]

So how do you check the Hecke eigensheaf property for T1? The easiest thing to say
in 2 minutes is that we just compute. Perhaps we should also say the Laumon sheaf has
a Hecke property. You also check this by computation. A useful approach is to use the
diagram

[Jd−1 ⊂ Jd]

yy &&
Cohd

0 Cohd−1
0

and check that it transform Ld
E to Ld−1

E � L1
E = E.
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