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The goal is to recall the local Langlands correspondence and its refined form for quasi-
split groups, and then move towards non-quasisplit groups. Finally, we’ll explain the con-
nection to the upcoming conjecture.

1 The quasisplit case

1.1 The basic conjecture

Let E be a local field of characteristic 0 and G a connected reductive group over E. The basic
problem is to understand irreducible admissible representations of G(E). The Langlands
correspondence reduces us to understanding the tempered representations Πtemp(G).

Definition 1.1. Let Γ = Gal(E/E). We denote by LE the local Langlands group of E, which
is

LE :=

WE archimedean
WE × SU2(R) non-arch

Definition 1.2. The L-group of G is is

LG := Ĝ o Γ

with Weil form Ĝ oWE .

Example 1.3. For G = GLn, Ĝ = GLn. For G = SLn, Ĝ = PGLn.

Example 1.4. For split groups the L-group splits as a direct product. Inner forms of the
same group have the same L-group.

Definition 1.5. We define Φtemp(G) to be the set of tempered L-homomorphisms

φ : LE →
LG.

which are homomorphisms φ as above such that
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• φ commutes with projection to the Weil group,

LE
φ //

  

LG

}}
WE

• (tempered) φ has bounded image in Ĝ, and

• (admissible) φ maps the Weil group to semisimple elements in Ĝ.

Conjecture 1.6 (Conjecture A). There exists a map

LL : Πtemp(G)→ Φtemp(G)

with finite fibers Πφ(G) := LL−1(φ), which are called L-packets for the tempered parameter
φ.

Example 1.7. For GLn this is a bijection (each Πφ is a singleton). But SLn already has two
elements in its discrete series L-packets.

Remark 1.8. The map has nice properties.

• We understand the image (it should be those φ factoring through parabolic subgroups
relevant to G).

• In the unramified case the correspondence is controlled by the Satake isomorphism.

• We understand how this behaves with respect to parabolic induction.

Main question: How can we address representations in Πφ(G) individually?

1.2 Refined Langlands conjectures

Langlands realized the importance of the group

S φ = {g ∈ Ĝ | gφ(LE)g−1 = φ}

i.e. the centralizer of the L-parameter. Kottwitz showed that S 0
φ is a reductive group (this

uses the admissibility condition). We have Z(Ĝ)Γ ⊂ S φ, and we define

S φ = S φ/Z(Ĝ)Γ.

We now assume that G is quasi-split, which allows us to choose a Whittaker datum ω =

(B, ψ) where ψ : U → C∗ is a non-degenerate character. The parametrization of the L-
packet depends on the choice of Whittaker datum.
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Conjecture 1.9 (Conjecture B). There is an injective map ιω : Πφ(G) ↪→ Irr(π0(S φ)) which
is bijective if E is p-adic.

The importance of the centralizer S φ comes up in connection to global computations,
using the trace formula. That the Whittaker datum is necessary comes from a conjecture of
Shahidi that there is a unique generic constituent of the L-packet and it should correspond
under iω to the trivial representation.

Conjecture 1.10 (Conjecture C). There is a unique generic constituent of Πφ(G) corre-
sponding to the trivial representation under ιω.

There is another part of the conjecture that we’re not going to say anything about. Part
of the motivation for why we want to access member of the L-packet individually is to make
sense of some calculations coming out of the trace formula, namely stabilization and what
happens on the spectral side. Because of that, there should be some character relations that
are encoded in this map.

Conjecture 1.11 (Conjecture D). If E is non-archimedean, then the bijection

Πφ(G) � Irr(π0(S φ))

can be re-interpreted as a “perfect pairing” (one has to be careful about what this means
in the non-abelian case)

〈·, ·〉 : Πφ(G) × π0(S φ)→ C

which defines a virtual character attached to an L-homomorphism φ and s ∈ π0(S φ):

Θs
φ =

∑
π∈Πφ(G)

〈π, s〉Θπ

where Θπ is the Harish-Chandra character. This pairing should satisfy certain endoscopic
relations.

We won’t say more other than that these endoscopic relations come from global moti-
vations.

2 The non-quasisplit case

2.1 Problems for non-quasisplit groups

Now suppose G is not quasisplit. Obviously Conjecture C doesn’t make sense because it
depends on having a Whittaker datum. Although it is not clear from our brief discussion,
Conjecture D also cannot be formulated because the endoscopy relations depend on transfer
factors which require the quasi-splitness to normalize. Even if you had a way of looking at
transfer factors “up to scalars”, it turns out that the map giving the right character relations
doesn’t exist, because Conjecture 1.9 is false.
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Example 2.1. Let E be a p-adic field and F/E a quadratic extension. Let G = SL2 /E and
G′ = (D×)Nm=1, where D is a quaternion algebra over E (so G′ is an inner form of SL2). (F
is a maximal commutative subalgebra of D, since any quadratic extension embeds into any
quaternion algebra.) Let σ ∈ Gal(F/E) be the non-trivial element. Choose a character

θ : F× → C×

such that θ−1 · (θ ◦ σ) is non-trivial of order 2. We define an L-parameter

φ : WF/E → PGL2(C)

by

f 7→
(
θ( f )

θ(σ( f ))

)
Then it turns out that

S φ = S φ =

{(
1 0
0 1

)
,

(
−1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
−1 0

)}
Langlands-Labesse found #Πφ(G) = 4 but #Πφ(G′) = 1. For the π ∈ Πφ(G′) the hypotheti-
cal character relations would imply that 〈π, 1〉 = 2 and 〈π, s〉 = 0 for s ∈ S φ \ {1}, which is
not a character even up to scalars.

2.2 Inner twists

The fundamental idea is that you shouldn’t work with a single inner form of a quasi-split
group, but rather treat all of them together at once. Numerical computations for unitary
groups that suggest that this is reasonable.

Example 2.2. Let E = R. The unitary groups U(p, q) for p + q = n constitute a clas of
inner forms. If φ is a discrete parameter for U(n) (a quasisplit group), then #S φ = 2n and
#S φ = 2n−1. For G = U(p, q) we have #Πφ(G) =

(
p+q

q

)
. So if you add up the contributions

for all inner forms then you cover the size of the S φ. This suggests that we should treat
U(p, q) and U(q, p) as being distinct, even though they have the same L-group.

Vogan introduced the notion of inner twists to codify this phenomenon.

Definition 2.3. For G∗ a quasisplit form over E, an inner twist is an isomorphism class of
maps

ξ : G∗
E

∼
−→ G

such that ξ−1 ◦σ(ξ) is an inner automorphism of G∗
E

for every σ ∈ Γ, and isomorphisms are
diagram isomorphisms.

Example 2.4. Contrast this with the notion of inner form, which is an inner twist (G, ξ) but
forgetting ξ. This is badly behaved; for instance, you can think of GLn as an inner twist in
two ways: via identity or transpose maps. If you didn’t consider both you wouldn’t have a
chance of parametrizing the L-packet in a canonical way.
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Unfortunately, the refinement of inner twists is also not quite enough.

Example 2.5. Let E = R and G = SL2 /R (viewed as an inner twist of itself via the identity

map). There is a discrete series L-packet {π+, π−} such that for g =

(
i
−i

)
, the automor-

phism Ad(g) preserves the inner twist but acts on SO2(R) as x 7→ x−1. One can show that
Ad(g) exchanges π+ and π−, which shows that inner twists are also not sufficiently rigid to
provide a canonical parametrization of L-packets.

2.3 Extended pure inner forms

Definition 2.6. We need to refine further: a pure inner twist is the isomorphism class of a
pair (ξ, z) where

• ξ is an inner twist of G∗, and

• z ∈ Z1(Γ,G∗) is such that ξ−1 ◦ σ(ξ) = Ad(z(σ)) for all σ ∈ Γ. (This adds an extra
rigidification.)

These are parametrized by H1(Γ,G∗). Pure inner forms are defined analogously.

Conjecture 2.7. Let G∗ be a quasisplit connected reductive group over E. We have a
commutative diagram ∐

(ξ,z) Πφ(ξ, z)

(ξ,z)7→z

��

∼ // Irr(π0(S φ))

��
H1(Γ,G∗) ∼

// π0(Z(Ĝ)Γ)∗=dual

Here Πφ(ξ, z) is the L-packet corresponding to inner forms determined by (ξ, z).

Recall that inner forms for G are parametrized by H1(Γ,G∗ad). Here we see a problem:
the conjecture only gives access to the image of H1(Γ,G∗)→ H1(Γ,G∗ad). So this conjecture
doesn’t reach all inner forms. Therefore, we need to expand the notion of pure inner forms.

Definition 2.8. Recall the set

B(G∗)basic := G∗(Ĕ)/conjugacy

It turns out that any b ∈ B(G∗)basic determines an inner twist (b, ξ) with corresponding inner
form Jb. This pair (b, ξ) is called an extended pure inner twist.

As was discussed in Rapoport’s talk, Kottwitz defined a map

κ : B(G∗)basic → π1(G)Γ � X∗(Z(Ĝ)Γ).
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♠♠♠ TONY: [isomorphism seems hard to believe] This is compatible with the map from
Conjecture 2.7 for the inclusion H1(Γ,G∗) ↪→ B(G∗):

H1(Γ,G∗)

∼

��

� � // B(G∗)basic

∼ κ

��
π0(Z(Ĝ)Γ)∗ �

� // X∗(Z(Ĝ)Γ) � π1(G)Γ

Conjecture 2.9 (Conjecture F). Assume φ is a discrete parameter, i.e. S φ/Z(Ĝ)Γ is finite.
Then there exists a unique bijection

ιω :
∐
(ξ,b)

Πφ(ξ, b)
∼
−→ Irr(S φ)

such that the following diagram commutes:

∐
(ξ,b) Πφ((ξ, b))

(ξ,b)7→b

��

∼

ιω // Irr(S φ)

restriction

��
B(G∗)basic

∼

κ
// X∗(Z(Ĝ)Γ)
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