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1 The classical affine Grasmannian

Let me first recall the classical story. Let X be a smooth projective connected curve over an
algebraically closed field k = k, x ∈ X(k), and G/k a semisimple group.

We consider the affine Grassmannian GrG, which is an ind-(projective scheme). Recall
that GrG parametrizes G-torsors F /X plus a trivialization over the punctured curve:

F |X\{x} � G × (X \ {x}).

Forgetting the trivialization induces a map

GrG → BunG

where BunG is the (Artin) moduli stack of G-bundles. We have only defined the map on
objects, but we all know how to relativize it in this case. In the case of the Fargues-Fontaine
curve, it will be more subtle.

Theorem 1.1 (Drinfeld-Simpson). This map is surjective in the fppf topology.

Remark 1.2. If X = P1 then we can replace “semisimple” by “reductive”. This may be
useful for understanding the behavior for the Fargues-Fontaine curve, which behaves like a
mix between genus 0 and genus 1 curves.

2 The B+
dR-affine Grassmannian

2.1 The ring B+
dR

Let R be any perfectoid algebra. Fix R+ ⊂ R and a pseudo-uniformizer $[. (Ultimately
everything will be independent of these choices.) Then we have the map

θ : W(R[+)→ R+

with ker θ = (ξ).
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Definition 2.1. We define B+
dR(R) to be the ξ-adic completion of W(R[+)[ 1

[$[] ]. We think of
this as “the completion of Spa R ×? SpaZp along the graph map

ΓSpa R→SpaZp : Spa R ↪→ Spa R × SpaZp.”

We also define Filn B+
dR(R) = ξnB+

dR(R) and BdR(R) = B+
dR(R)[ξ−1].

Proposition 2.2. The ring B+
dR(R) enjoys the following properties:

1. B+
dR(R) is ξ-adically complete, ξ-torsion free, and B+

dR(R)/ξ = R. (It looks like the
completion along something of codimension one.)

2. Assume p = 0 in R. Then one can take ξ = p, obtaining B+
dR(R) = W(R). (Thus the

characteristic 0 version can be thought of as a deformation of W(R).)

Remark 2.3. If R = Cp then we get Fontaine’s ring B+
dR = B+

dR(Cp) of p-adic periods.
This B+

dR is a complete DVR with uniformizer ξ and residue field Cp. That means that it
is abstractly isomorphic to Cp[[ξ]]. However, the topology and Galois structures are not
compatible.

We would like to play the game of affine Grassmannians in this situation. (Whenever
you have a DVR you can take think of the affine Grassmannian as the space of lattices in its
fraction field.)

2.2 The B+
dR-affine Grassmannian

Let G/Qp be a reductive group.

Definition 2.4. We define Gr
B+

dR
G to be the (pre)sheaf (which will be a sheaf for all our

topologies) on PerfFp with the following functor of points: if Spa(R,R+) = S then

Gr
B+

dR
G (S ) =


R# = untilt of R/Qp

F = G-bundle / Spec B+
dR(R#)

ι : F |Spec BdR(R#) � G × Spec BdR(R#)


Remark 2.5. There is a map

Gr
B+

dR
G → SpaQ�p

which in terms of the functor of points is

(R#,F ) 7→ R#.

Therefore, we can consider Gr
B+

dR
G as a (pre)sheaf on PerfFp /SpaQ�p. But we have seen that

this slice category is precisely PerfQp . Under this identification Gr
B+

dR
G has the functor of

points

B ∈ PerfQp 7→

{
F = G-bundle / Spec B+

dR(B)
+ trivialiation on Spec BdR(B)

}
(1)

This is maybe the more natural definition, but we have chosen to give a definition that
already lives in the worlds of diamonds.
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Example 2.6. If G = GLn, then the right side of (1) is simply the set of finite projective
B+

dR(B)-modules M plus an isomorphism M[1/ξ] � BdR(R)n. In general, we can think in
these terms using the Tannakian philosophy.

2.3 Schubert cells

Let µ be a conjugacy class of cocharacters Gm → G. This may not be defined until an
extension of Qp, but let’s assume it’s defined over Qp for simplicity. Then we have a closed
Schubert cell

Gr
B+

dR
G,µ ⊂ Gr

B+
dR

G

parametrizing bundles such that at all geometric points, the relative position is bounded by
µ.

If R = C is algebraically closed and complete, and we choose T ⊂ GC , then we have a
Cartan decomposition

G(B+
dR(C))\G(BdR(C))/G(B+

dR(C)) = X∗(T )+.

For a proof, choose an isomorphism with Cp[[ξ]] (see Remark 2.3).

Remark 2.7. We can think of Gr
B+

dR
G as the sheafification of

R 7→ G(BdR(R))/G(BdR(R+)).

Theorem 2.8 (Scholze). Gr
B+

dR
G,µ is a diamond.

Example 2.9. (Caraiani-Scholze) If µ is miniscule and Pµ ⊂ G is the parabolic subgroup
corresponding to µ, then

Gr
B+

dR
G,µ � ( G/Pµ︸︷︷︸

rigid space/Qp

)�

This is an analogue of the result that for the classical affine Grassmannian, the Schubert
cells are the usual flag varieties.

Remark 2.10. There is a fully faithful embedding

{seminormal rigid spaces/Qp} ↪→ {diamonds/SpaQ�p}

sending X 7→ X�. Seminormality has to do with the topological difference between the
curve and its normalization. (A node is seminormal; a cusp is not.) The point is that if
X → Y is a universal homeomorphism, then X� � Y�. I like to think of diamonds as only
remembering topological information. So this fully faithful embedding is saying that up to
this defect, diamonds remember everything.
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Example 2.11. For G = GL2 and µ = (n, 0) for n ≥ 2,

Grµ := Gr
B+

dR
G,µ =

M = B+
dR − lattice ⊂ B2

dR :

ξn(B+
dR)2 n
⊆ M

n
⊆ (B+

dR)2


There is a Bott-Samuelson resolution

G̃rµ =


M ∈ Grµ + flag

M = Mn
1
⊆ Mn−1

1
⊆ . . .

1
⊆ M0 = (B+

dR)2

each Mi/Mi−1 is a line bundle over R


Then G̃rµ is a succesion of P1-fibrations over P1. You might think that because it is induc-
tively built from classical rigid spaces that it is itself a classical rigid space, but actually it is
not a rigid space. (However, we would still like to think of it as being “smooth”, whatever
that means.) Why?

Locally (say n = 2) it looks like an extension

0→ A1 → B+
dR/Fil2 → B+

dR/Fil1 = A1 → 0

(the left A1 may be twisted over Qp, but the twist goes away over Qcyc
p ). The middle space

B+
dR/Fil2 is an example of a Banach-Colmez space. This is not split étale locally, so it

cannot be a rigid space. (To split it we need to make a pro-étale extension adjoining all
p-power roots of something.)

3 BunG

3.1 Construction of BunG

Recall that the Fargues-Fontaine curve lives over Qp. We know what its vector bundles are,
but it is not clear what parametrizes families of vector bundles over X. The naïve guess is
rigid spaces overQp, but that’s wrong. Instead, we need to use the relative Fargues-Fontaine
curve over S ∈ PerfFp .

Definition 3.1. Let S ∈ PerfFp . Then we have a relative curve XS = YS /ϕ
Z, which is an

adic space over SpaQp. A G-bundle on XS is an exact faithful Qp-linear ⊗-functor

RepQp
G → BunXS .

Let BunG be the (pre)stack (which again will turn out to be a stack for all possible topolo-
gies) on PerfFp which sends

S 7→ {G-bundles/XS }.

Remark 3.2. A theorem of Kedlaya-Liu implies that BunXS is well-defined. Basically it
says that for any analytic adic space, the category of bundles behaves as one would expect
(with respect to gluing, etc.).
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Remark 3.3. Say S/Fp and b ∈ G(Q̆p). Then we can form Eb over XS . If we wrote the
internal definition we would say that this is “the trivial G-torsor on YS , descended via b to
XS ”.

Proposition 3.4. BunG is a stack for the v-topology.

This uses that vector bundles form a stack for the v-topology, which was discussed in
Eugen Hellman’s talk.

Remark 3.5. In the algebraic case one only gets a stack for the fppf topology. Thus, the
proposition is stronger than you might have expected from reasoning by analogy with
schemes. But for perfect schemes one also gets it for the v-topology, so it’s the perfec-
tion that makes this possible.

3.2 “Smooth Artin stacks” in the category of diamonds

One of the main ideas is that BunG is a “smooth Artin stack” (i.e. admits a “smooth” cover
by a “smooth” perfectoid space). Unfortunately, we haven’t yet figured out what “smooth”
should mean. We have some basic examples of things that should be smooth.

Example 3.6. If X → Y is a smooth rigid space over Qp or Fp((t)), then X� → Y� should
be “smooth”. (In these cases taking the diamond is like taking the perfection.) Why? We
are in the process of developing a six-functor sheaf formalism. Smooth maps should imply
that f ! = f ∗ up to shift. Because all étale information is preserved by taking the diamond,
if this is satisfied for X → Y then it should also be satisfied at the level of diamonds.

Example 3.7. If you believe this then you run into funny phenomena. For instance, con-
sidering the classifying stack BQp for Qp-torsors. Then we claim that SpaQcyc,�

p × BQp is
smooth.

Under the equivalence of categories of

PerfFp /SpaQcyc �
p � PerfQcyc

p

the two stacks correspond:
SpaQcyc �

p × BQp ↔ BQp

There is an exact sequence (in the category of pro-étale sheaves on PerfQcyc
p

):

0→ Qp → µ̃p∞
an
→ Ga → 0

which induces a map Ga � BQp with fiber µ̃p∞
an (the surjectivity is because the map from

a point to BQp is always surjective; this just says that every torsor is locally trivial). We’ve
declared Ga to be smooth, since it comes from a smooth rigid analytic space, but also µ̃p∞

an

is smooth because it is the perfection of the open unit disk. Therefore we are forced to
believe that BQp is smooth.
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Theorem 3.8 (Kedlaya-Liu, Fargues). The semistable locus Bunss
G ⊂ BunG is open, and

BunGss,Fp
�

∐
b∈B(G)basic

κ
�π1(G)Γ

BJb(Qp)

(If G is a locally finite group then G is the sheaf G(S ) = Mapcont(|S |,G).)

Remark 3.9. This is not what you get in the algebraic case (where the semistable locus is
open). That may be surprising; it’s because we took a different notion of family.

Note that the automorphisms of the trivial G-torsor are a locally profinite group G(Qp),
and not the algebraic group G. That’s the reason p-adic groups appear. In the usual case we
take the classifying space for a smooth group so it makes sense that we get an Artin stack,
but here we are taking the classifying space for a p-adic group and we’re not sure what we
should get.

3.3 Uniformization of G-bundles

We have seen that if S = Spa(R,R+) ∈ PerfQp , then we get a relative Cartier divisor

S ↪→ XS [ .

As discussed in Definition 2.1, we can think of B+
dR(R) as the completion of XS [ along S .

Lemma 3.10. There is a functor

{B+
dR − lattices in BdR(R)⊕n} → Bun(XS [)

given by modifying the trivial vector bundle.

This is the Beauville-Laszlo Lemma in this setting. It was also proved by Kedlaya-Liu.

By the Tannakian formalism, for any G we get a map

Gr
B+

dR
G (R,R+)→ BunG(R[,R[+).

Theorem 3.11 (Fargues). Assume G is quasisplit. Then the map

Gr
B+

dR
G → BunG

is surjective. More precisely, for C/Qp we get a point ∞ ∈ X := XC[ , and any G-bundle on
X is trivial on X \ {∞}.

This follows easily from the classification of G-bundles
We claim that one can use this map and its surjectivity to give a smooth cover of G from

a smooth space.
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Example 3.12. Let G = GL2 and µ = (1, 0). We have a Schubert cell Gr
B+

dR
G,µ ⊂ Gr

B+
dR

G . What
does it look like under the uniformization map?

P1 = Gr
B+

dR
G,µ ⊂ Gr

B+
dR

G

��
BunGL2

Inside P1 we have Drinfeld’s upper half space Ω2 ⊂ P1 and its complement P1(Qp) ⊂ P1.
The former maps to O(1/2) and P1(Qp) maps to O ⊕ O(1).

Ω2

��

P1(Qp)

��
O(1/2) O ⊕ O(1)

So we see that the stratifications on flag varieties are highly non-algebraic!

What is the image of the Schubert cell Gr
B+

dR
G,µ? It is a subset of B(G) called B(G)(µ),

familiar from the theory of Shimura varieties.
The map is GL2(Qp)-equivariant. If you quotient by the GL2(Qp)-action then the map

is surjective in some smooth topology.
The semistable locus has dimension 0, while its complement has negative dimension.

For example, the bundle [O ⊕ O(1)] ∈ BunGL2 has automorphism scheme

B

Q∗p µ̃p∞
an

Q∗p

 .
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