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1 Some recollections

1.1 Notation

Let

• X/Fq =: k be a smooth projective geometrically connected curve.

• F = k(X),

• for all x ∈ |X| we denote Ox, Fx to be the completed local ring and its fraction field,
respectively.

• G = GLn, Gx := G(Fx),

• Kx := G(OX),

• Hx the spherical Hecke algebra at x,

• OF =
∏
Ox.

1.2 Goal

Given an everywhere unramified σ : Gal(F/F)→ GLn(Q`), i.e. a local system E on X, we
want to

1. Construct an unramified automorphic form

fσ : G(F)\G(A)/G(O)→ Q`

such that for all x ∈ |X|, the actionHx on Q` · fσ, the eigencharacter for the action of
is

Hx
Sat
� R(G∨)

χγx
−−→ Q`

given by
V 7→ Tr(γx |V )

where γx = [σ(Frobx)ss].
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2. Upgrade fσ to a (perverse Hecke eigen-)sheaf AutE on Bunn, recalling that

|Bunn(Fq)| = G(F)\G(A)/G(OF).

In this talk we’ll get as far as we can along the construction of a sheaf (not quite the
AutE) on a Bun′n which maps to Bunn. Roughly speaking, Bun′n is the moduli space of pairs
(L,Ω⊗(n−1) ↪→ L) where L is a GLn-bundle, so the map to Bunn is the forgetful map. In
Heinloth’s talk, this sheaf will be shown to descend.

2 Classical motivation

This section will be about how, given a Galois representation σ, we could make a guess of
AutE . By analogy, suppose you had an elliptic curve over Q and you wanted to show that it
was modular. A naïve strategy might be to write down the Fourier expansion of the modular
form from the local data. Then you have to check some invariance properties. This is hard
to carry out in that setting, but it’s basically what we’ll try to do here.

2.1 Fourier expansion of cusp forms on GLn

For n = 2, let
ϕ : GL2(F)\GL2(A)→ Q`

be a cusp form. Fix g ∈ GL2(A). Then the function

x 7→ ϕ

((
1 x

1

)
g
)

is periodic, i.e. descends to a function on F\AF . This gives a Fourier expansion in the
characters F̂\A:

ϕ

((
1 x

1

)
g
)

=
∑
F̂\A

. . .

Fixing a nontrivial character Ψ of F, we can identify F̂\A � F by

γ ∈ F 7→ (x 7→ Ψ(γx)).

Then the Fourier expansion of Ψ is

ϕ

((
1 x

1

)
g
)

=
∑
γ∈F

(∫
F\A

ϕ

((
1 y

1

)
g
)
Ψγ(y)−1dy

)
· Ψγ(x).

For γ = 0 the integral vanishes by cuspidality. For γ , 0, a change of variables g∫
F\A

ϕ

((
1 y

1

) (
γ

1

)
g
)
Ψ(y)−1 dy.
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The conclusion (taking x = 0) is that

ϕ(g) =
∑
γ∈F∗

Wϕ,ψ

((
γ

1

)
g
)

where

Wϕ,ψ(g) =

∫
F\A

ϕ

((
1 y

1

)
g
)
Ψ(y)−1 dy

=

∫
N(F)\N(A)

ϕ(ng)Ψ(n)−1 dn.

More generally, for GLn we get the Fourier expansion

ϕ(g) =
∑

Nn−1(F)\GLn−1(F)

Wϕ,ψ

((
γ

1

)
g
)
. (1)

The Whittaker property is
Wϕ,ψ(ng) = Ψ(n)Wϕ,ψ(g)

for all n ∈ N(A). Here Ψ(n) is defined by

n =


1 u12

. . .
. . .

1 un−1,n
1

 7→ Ψ
(∑

ui,i+1
)
.

More precisely, this expansion yields a G(A)-equivariant isomorphism

C∞(G(A))(N(A),ψ) G(A)
� C∞(P1(F)\G(A))cusp

where P1 is the mirabolic subgroup

P1 =

(
∗ ∗

1

)
⊂ P =

(
∗ ∗

∗

)
the isomorphism being given by ϕ 7→ Wϕ,ψ, and the inverse being the Whittaker expansion
(1).

The strategy for producing fσ is to use the local theory write down an element Wσ on
the left side, and then take the Fourier expansion to get an element of the right side. The
hard work is the descent on the right hand side.
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2.2 Building Wσ

Let γx be the semisimpole conjugacy class of σ(Frobx). It is a fact that for all G and all
x ∈ |X|, there exists a unique Wγx : G(Fx)→ Q` satisfying the conditions:

1. (normalization) Wγx(1) = 1,

2. (sphericalWhittaker condition) for all n ∈ N(Fx), g ∈ G(Fx), k ∈ G(Ox)

Wγx(ngk) = ψx(n)Wγx(g)

3. (Hecke eigenvalues) for all h ∈ Hx,

h ·Wγx = χγx(h)Wγx .

This builds local Whittaker functions. To build the global ones, we take their product.

Definition 2.1. Define Wσ : G(A)→ Q` by

Wσ((gx)) =
∏

Wγx(gx).

We then define f ′σ to be the Fourier expansion of Wσ, as in (1). This is a priori only left
invariant under the mirabolic, so

f ′σ ∈ C∞(P1(F)\G(A)/G(O))

and f ′σ has the correct Hecke eigenvalues.

Remark 2.2. For general G the local Whittaker functions exist, but not global (what is a
generalization of the mirabolic?).

Conjecture 2.3. The function f ′σ is (left) GLn(F)-invariant.

3 Geometrization

The aim of the rest of the talk is to geometrize f ′σ on a subset of its domain, corresponding
to |Bun′n(Fq)| ⊂ P1(F)\G(A)/G(O). We won’t elaborate on this yet, but we emphasize that
this applies to a particular subset of the domain.

3.1 Setup

We now replace GLn by a group scheme over X, denoted GLJ
n , whose functor points is

GLJ
n(R) = {invertible n × n matrices (A) ∈ Γ(Spec R,Ω j−i)}.

Example 3.1. For GL2,

GLJ
2 =

(
O Ω1

Ω−1 O

)
.
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Likewise, we define NJ , PJ
1 , B

J , . . .

We can then construct a (more) canonical character

Ψ : N(F)\N(A)/N(O)→ Q
∗

`

which depends only on the choice of character of the residue field ψ : k → Q
∗

` , setting

Ψ =
∏

Ψx

where

Ψx :


1 u12

. . .
. . .

1 un−1,n
1

 7→
n−1∏
i=1

ψ(Trk(x)/k Resx(ui,i+1 ∈ Ω1)).

This is invariant by N(O) and N(F) by the residue theorem.
Now construct Wσ and f ′σ on GLJ

n(A) in the same way as before.

3.2 Difficulties with geometrization

Now we’ve arrived at the proper work, which has to do with trying to geometrize this. There
are difficulties in doing this. Perhaps the two main ones are:

1. Local: If we were to try to geometrize the local Whittaker functions, then we would
run into the problem that the orbits of N(Fx) on the affine Grassmanin G(Fx)/G(OX)
on∞-dimensional over k.

2. Global: P1(F)\G(A)/G(O) are n-dimensional bundles L plus “generic embeddings”
Ωn−1 ↪→ L. There can be poles with no control. Thus this is not an object of classical
algebraic geometry.

A lot of the work in geometric Langlands in recent years is about developing a sensible
theory of such things. However, in this case there is a hack to get around the obstacles:
there are two things which come together to save us.

1. Local: we have the Shintani (for GL(n)) and Casselman-Shalika (for general G)
formula, which tells us about the support of the spherical Whittaker function.

2. Global: G(A)+/G(O) is the set of Fq-points of a scheme, where (using G = GLn)
G(Fx)+ := GLn(Fx) ∩ Mn(OX).

It turns out that modulo center, the interesting part of the Whittaker function is sup-
ported on the scheme underlying G(A)+/G(O).
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3.3 Casselman-Shalika formula

We have the NAK decomposition. We know how the Whittaker function transforms under
left translation by N and right translation by K, so we need to figure out what happens on
A. The answer is that for all x ∈ |X| and γx a semisimple conjugacy class (which gives rise
to the Whittaker function Wγx):

1. Wγx(λ($x)) = 0 for λ ∈ X∗(T ) − X∗(T )+ (non-dominant cocharacters).

2. For λ ∈ X∗(T )+,
Wγx(λ($x)) = qscalar(λ)

x Tr(γx |V(λ)).

the right hand side being “trace of γ on the highest weight representation with weight
λ of G∨”.

Remark 3.2. The first part is an easy exercise.

3.4 Consequence

We’re going to draw a picture of where various things live.
Define

Q̃ := N(F)\N(A) ×N(O) G(A)+/G(O).

The Whittaker sheaf Wσ is supported mod center in G(A)+/G(O). The map (u, g) 7→ ug
presents Q̃ over a space

B(Fx)+ = N(Fx)(T (Fx)+ := T (Fx) ∩Matn(Ox)).

This is where the Whittaker function lives. It in admits a map down to

|Bun′n(Fq)| ⊂ P1(F)\G(A)/G(O)

where our fake automorphic form lives, which then maps down to where the actual auto-
morphic form lives

Q̃ := N(F)\N(A) ×N(O) G(A)+/G(O)

��
Q := N(F)\B(A)+/B(O) �

� //

��

N(F)\G(A)/G(O)

|Bunn(Fq)| := GLn(F)\GLn(A)/GLn(O).

We start with Wσ on the top and descend it to f ′σ on the second layer. To descend further
down the ladder, we want to geometrize, but we can only do so on the subsets Q̃ and Q.
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Theorem 3.3. There is a sheaf FE on an algebraic stack Q̃
ν̃
−→ Bun′n such that on Fq-points

|Q̃(Fq)| = Q̃

and admitting a map
ν̃ : Q̃ → |Bun′n(Fq)|

such that
Tr(̃ν!FE) = f ′σ|Bun′n(Fq).

In the last few minutes we’ll try to tell you as much as possible about the construction
of FE .

4 Laumon’s construction

The most significant part of FE is that which geometrizes the Casselman-Shalika formula.
This is a remarkable construction due to Laumon.

Laumon definedLE on a stack Cohn ← Q̃. Here Coh is the algebraic stack/Fq parametriz-
ing torsion coherent sheaves of finite length on X. That is, Hom(S ,Coh) is the groupoid
whose objects are coherent sheaves T on X × S that are finite flat over S .

We can then define a substack Cohn of Coh which is the open substack of those T such
that at each closed point of S , T |pt is a sum of at most n indecomposable summands:

T =
⊕

i

OX/OX(−Di).

This breaks up into a union of components by degree:

Cohn =
∏
m>0

Cohn,m

where Cohn,m is the “degree m part” of Cohn. For a local system E on X, we get a local
system E�m on Xm, which then admits an obvious map π to X(m). We descend

E�m  (π∗E�m)S m =: E(m).

Then E(m)|X(m),rss is a local system. We have a map

X(m),rss → Cohn,m,rss

and E(m)|X(m),rss descends to a local system Lrss
E,m on Cohn,m,rss. Finally, we define LE,m as a

middle extension sheaf for j : Cohn,m,rss ↪→ Cohn:

LE,m := j!∗Lrss
E,m.

Definition 4.1. Laumon’s sheaf LE is (up to shift) the perverse sheaf on Cohn whose re-
striction to each Cohn,m is LE,m.
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The relation to Casselman-Shalika is described in (the second part of) the following
theorem:

Theorem 4.2 (Laumon). The function Tr(LE) : Cohn(Fq)→ Q` is given by

1. Tr(LE,m)(T ) =
∏

x∈|X| TrLE,mx,x(Tx) where Cohn,m(x) → Cohn,m is defined in the
same way but for torsion sheaves supported at x, LE,mx,x is the pullback of LE,m, and
Tx is the restriction of T to a neighborhood of x where it is only supported at x.

2. We have
LE,m,x �

⊕
λ∈X∗(T )++,m

IC(Cohn,m,λ(x)) ⊗ Ex(λ)

(where indexing is means λ1 ≥ λ2 . . . ≥ λn ≥ 0 and m =
∑
λi). Here Cohn,m,λ are st

rata of Cohn,m(x) and Ex(λ) is obtained by composing Ex with the representation of
heighest weight λ. Then Frobx acts by Tr(σ(Frobx)|V(λ)) (i.e. the Casselman-Shalika
formula).
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