LTF FOR COHOMOLOGICAL CORRESPONDENCES

DAVESH MAULIK

1. MOTIVATION

We want to compute an intersection number

$$
\mathbb{I}_r(h_D) = \langle \text{Sht}'_T, \text{Sht}'_T, \rangle_{\text{Sht}'_G}.
$$

The shtuka involves some sort of Frobenius.

We'll rewrite this intersection in another order, so that at the end the answer will be presented as a refined Gysin pullback via Frobenius, which we can then compute in terms of a cohomological trace.

Recall the "usual" Grothendieck-Lefschetz trace formula.

Theorem 1.1. Let X_0 be a variety over \mathbf{F}_q , and $X = X_0 \times_{\mathbf{F}_q} \overline{\mathbf{F}_q}$.

$$
\sum_{i} (-1)^{i} \operatorname{Tr}(\operatorname{Frob} \mid H_{c}^{i}(X, \mathcal{E})) = \sum_{x \in X_{0}(\mathbf{F}_{q})} \operatorname{Tr}(\operatorname{Frob}_{x} \mid \mathcal{E}_{\overline{x}}).
$$

Outline of

- (1) Cohomological correspondences.
- (2) Trace formula.
- (3) Application.

2. Cohomological correspondences

2.1. Setup. To convey the idea, we're just going to work with schemes. Let $k = \overline{k}$ be an algebraically closed field, and X a scheme of finite type over k. Let $D(X) :=$ $D_c^b(X, \mathbf{Q}_\ell)$. If $f : X \to Y$ is a map then we have functors

$$
f_*, f_! \colon D^b(X) \to D^b(Y)
$$

and

$$
f^*, f^!: D^b(Y) \to D^b(X)
$$

and adjunctions

$$
\mathrm{Id} \to f_* f^*
$$

$$
f_! f^! \to \mathrm{Id}.
$$

$$
\frac{1}{1}
$$

2 DAVESH MAULIK

2.2. Borel-Moore homology. Let $\pi: X \to \text{Spec } k$, then $K_X = \pi^! \mathbf{Q}_\ell$ is the dualizing sheaf.

Example 2.1. If X is smooth of dimension n, then $K_X = \mathbf{Q}_{\ell}[2n](n)$. **Definition 2.2.** We define the Borel-Moore homology

$$
H_d^{BM}(X) := H^{-d}(K_X).
$$

If $f: X \to Y$ is proper, then we have a trace map

Tr:
$$
H_0^{BM}(X) \to H_0^{BM}(Y)
$$

via

$$
f_!K_X = f_!f^!K_Y \to K_Y.
$$

using that $K_X = f^! K_Y$.

Think of H_0^{BM} as being a receptacle for 0-cycles (it is the target of cycle class map from Ch_0), and this as being pushforward of cycles. In particular, if X is proper over k then the pushforward for the structure map $X \to \text{Spec } k$ is the degree map

$$
H_0^{BM}(X) \xrightarrow{\deg} \mathbf{Q}_\ell.
$$

2.3. Cohomological correspondences.

Definition 2.3. Given X_1, X_2 a correspondence between X_1, X_2 is a diagram

Given $\mathcal{F}_i \in D(X_i)$, a cohomological correspondence is an element

$$
u \in \text{Hom}_C(c_1^* \mathcal{F}_1, c_2^! \mathcal{F}_2) = \text{Hom}_{X_2}(c_{2!}c_1^* \mathcal{F}_1, \mathcal{F}_2).
$$

Example 2.4. For a morphism $f: X \to Y$, we have $f^* \mathbf{Q}_\ell = \mathbf{Q}_\ell = \text{Id}^! \mathbf{Q}_\ell$. This gives a cohomological correspondence, which is admittedly trivial.

Example 2.5. Let X_2 be smooth of dimension n. Then $K_{X_2} = \mathbf{Q}_{\ell}[2n](n)$, so $c_2^{\rm l} \mathbf{Q}_\ell = K_C[-2n](-n)$. So the cohomological correspondences between \mathbf{Q}_ℓ and \mathbf{Q}_ℓ are maps

$$
\mathbf{Q}_{\ell} \to K_C[-2n](-n) = H_{2n}^{BM}(c)(-n).
$$

We get a Borel-Moore homology class from any cycle, which gives a map

$$
Ch(C) \to Corr_C(\mathbf{Q}_{\ell}, \mathbf{Q}_{\ell}).
$$

2.4. Maps on cohomology. If c_1 is proper, then from a cohomological correspondence u we can define a map

$$
R\Gamma_c(u) \colon R\Gamma_c(X_1, \mathcal{F}_1) \to R\Gamma_c(X_2, \mathcal{F}_2).
$$

Indeed, we have a map of sheaves

$$
\mathcal{F}_1\rightarrow c_{1*}c_1^*\mathcal{F}_1=c_{1!}c_1^*\mathcal{F}_1
$$

(using that c_1 is proper in the second equality) which induces on cohomology

$$
R\Gamma_c(X_1,\mathcal{F}_1)\to R\Gamma_c(C,c_1^*\mathcal{F}_1)\xrightarrow{u} R\Gamma_c(C,c_2^!\mathcal{F}_2)=R\Gamma_c(X_2,c_2;c_2^!\mathcal{F}_2)\to R\Gamma_c(X_2,\mathcal{F}_2).
$$

More generally, given a diagram of correspondences

$$
X_1 \xleftarrow{c_1} C \xrightarrow{c_2} X_2
$$

\n
$$
\downarrow f_1 \qquad \qquad \downarrow f \qquad \qquad \downarrow f_2
$$

\n
$$
Y_1 \xleftarrow{d_1} D \xrightarrow{d_2} Y_2
$$

if (a) f and f_1 are proper, and (b) c_1 and d_1 are proper then we can define a pushforward

$$
[f]_!\colon \text{Corr}_C(\mathcal{F}_1, \mathcal{F}_2) \to \text{Corr}_D(f_1, \mathcal{F}_1, f_2, \mathcal{F}_2).
$$

This generalizes the previous construction, which is the special case with $Y_1 = D =$ $Y_2 = \text{Spec } k \text{ sending a correspondence } u \mapsto R\Gamma_C(u) \in \text{Corr}_{pt}(R\Gamma_c(\mathcal{F}_1), R\Gamma_c(\mathcal{F}_2)).$

3. Trace formula

3.1. Self correspondences. Suppose we have a correspondence between X and itself:

If c_1 is proper, then we have an endomorphism of $R\Gamma_c(u)$ on $R\Gamma_c(X, F)$. The fundamental question is: what is its trace?

In a relative situation, if we have a map of correspondences

then $[f]_!(u)$ is an endomorpism of $f_!\mathcal{F}$.

3.2. The trace. Consider the cartesian square

Fix(c)
$$
\xrightarrow{\Delta'}
$$
 C
\n
$$
\downarrow^{c'} \qquad \qquad \downarrow^{c=c_1 \times c_2}
$$
\n
$$
X \xrightarrow{\Delta} X \times X
$$

Definition 3.1. We define a trace map

$$
\mathcal{R}\mathcal{H}om_{C}(c_{1}^{*}\mathcal{F},c_{2}^{!}\mathcal{F}) \to \Delta'_{*}K_{\text{Fix}(c)}.
$$
\n(3.1)

as follows. We have

$$
\mathcal{R}\mathcal{H}om_C(c_1^*\mathcal{F},c_2^!\mathcal{F})\cong c^!(\mathbf{D}(\mathcal{F})\boxtimes\mathcal{F})\to c^!(\Delta_*K_X)
$$

4 DAVESH MAULIK

where $\mathbf{D}(-) = \mathbf{R}\mathcal{H}$ om $(-, K_C)$ is Verdier duality, and then we apply base change. Applying H^0 to [\(3.1\)](#page-2-0), we get

Tr: Corr_C(F, F)
$$
\rightarrow H^0
$$
(Fix, $K_{Fix(c)}$) = H_0^{BM} (Fix(c)).

Now suppose β is a connected component of $Fix(c)$, so we have

$$
H_0^{BM}(\text{Fix}) = \bigoplus_{\beta \in \pi_C(\text{Fix})} H_0^{BM}(\text{Fix}_{\beta}).
$$

Assume further that β is proper over k. Then we can push forward to k and take the degree.

Definition 3.2. In the situation above, we define the local terms

$$
LT_{\beta}(u) = \deg(\text{Tr}(u)_{\beta}) \in \mathbf{Q}_{\ell}.
$$

Example 3.3. For the correspondence

the cohomological correspondences are just $Hom(\mathcal{F}, \mathcal{F})$ and the trace as defined above coincides with the usual trace.

3.3. The local-global formula.

Example 3.4. For X smooth of dimension n and $\mathcal{F} = \mathbf{Q}_\ell$, we have $\text{Corr}_C(\mathbf{Q}_\ell, \mathbf{Q}_\ell) =$ $H_{2n}^{BM}(C)(-n)$. There is a cycle class map

$$
Ch_n(C) \to \text{Corr}_C(\mathbf{Q}_{\ell}, \mathbf{Q}_{\ell}) = H_{2n}^{BM}(C)(-n) \xrightarrow{\text{Tr}} H_0^{BM}(\text{Fix})
$$

The claim is that the diagram commutes:

$$
\operatorname{Ch}_n(C) \longrightarrow \operatorname{Corr}_C(\mathbf{Q}_{\ell}, \mathbf{Q}_{\ell}) = H_{2n}^{BM}(C)(-n)
$$

$$
\downarrow \Delta^! \qquad \qquad \downarrow \operatorname{Tr}
$$

$$
\operatorname{Ch}_0(\operatorname{Fix}) \longrightarrow H_0^{BM}(\operatorname{Fix})
$$

Theorem 3.5. The trace commutes with proper pushforward. In other words, if

is a map of correspondences, with f proper, then the following diagram commutes:

$$
\begin{aligned}\n\operatorname{Corr}_{C}(F, F) & \xrightarrow{\operatorname{Tr}} H_{0}^{BM}(\operatorname{Fix}(c)) \\
\downarrow [f]_{!} & \qquad \qquad \downarrow f_{!} \\
\operatorname{Corr}_{D}(f_{!}F, f_{!}F) & \xrightarrow{\operatorname{Tr}} H_{0}^{BM}(\operatorname{Fix}(d))\n\end{aligned} \tag{3.2}
$$

Corollary 3.6. If C, X are proper over k, then

$$
\text{Tr}(R\Gamma_c(u)) = \sum_{\beta} LT_{\beta}(u).
$$

Proof. The left side corresponds to the left path of the commutative diagram in (3.2) , and the right side corresponds to the right path in (3.2) .

This is what is usually called the Lefschetz-Verdier trace formula.

3.4. The naïve local terms. There are two issues with the trace formula. First, how do you actually compute the local terms? Consider a correspondence

with c_2 is quasifinite. Given $y \in Fix(c)$, with $x = c_1(y) = c_2(y)$, we can define

$$
u_y \colon F_x \to F_x
$$

as follows. We have a cohomological correspondence

$$
(c_{2!}, c_1^* F) = \bigoplus_{z \mapsto x} c_1^* F|_z \to F_x
$$

by adjunction from

$$
F_x \hookrightarrow \bigoplus_{z \mapsto x} F|_{c_1(z)}.
$$

Definition 3.7. The $Tr(u_y)$ defined above is called the *naïve local term*.

Example 3.8. The naïve local term does not necessarily coincide with the local terms computed above. Consider translation $x \mapsto x + 1$ on $\mathbf{P}^1 \to \mathbf{P}^1$. Then

$$
LT_{\infty}(u) = 2
$$

whereas the naive local term is $Tr(u_{\infty}) = 1$. The naïve local term doesn't know that the fixed point ∞ should have multiplicity 2; it only counts the physical fixed points. An example in the same spirit is the map $x \mapsto x + 1$ on \mathbf{A}^1 .

Another issue is that we need properness. We can solve that by compactifying everything, but then you get local terms at infinity, which may be non-zero (as we saw in the preceding example).

3.5. A special case. Let X_0 be a variety over $k = \overline{F}_q$ and $X = X_0 \times_{\mathbf{F}_q} \overline{F}_q$. Consider the correspondence

Let $u = \text{Frob}^* \mathcal{E} \to \mathcal{E}$. Then the local terms coincide with the naïve local terms. In other words,

(1) For all $s \in X_0(\mathbf{F}_q)$, we have

$$
LT_s(u) = \text{Tr}(u_s).
$$

(2) We have

$$
\text{Tr}(R\Gamma_c(u)) = \sum_s \text{Tr}(u_s, E_s).
$$

Why? The idea is that Frobenius is contracting near fixed points. For $s \in Fix$,

$$
\mathrm{Frob}^{-1}(\mathfrak{m}_x^n)\mathcal{O}_X \subset \mathfrak{m}_x^{n+1}\mathcal{O}_X
$$

for some $n \geq 0$. Geometrically, this means that if we pass to the normal cone we get an endomorphism which contracts everything to the origin.

4. Applications to the appendix

Consider a correspondence

Assume

- c_1 is proper, and
- M is smooth of dimension n , and
- we have a proper map $f: C \to S$.

Let $\gamma \in \text{Ch}_n(C)_{\mathbf{Q}}$. Suppose we have a map of cartesian squares

Then we can write

$$
Sht = \coprod_{s \in S(\mathbf{F}_q)} Sht_s.
$$

We can pull back $(\Gamma^!\gamma)_s =$ contribution of Sht_s. This is in Ch₀(Sht_S)_Q, which is proper, so we can apply the degree map to get something in Q. We want a formula for it, so set

$$
\langle \gamma, \Gamma_{\rm Frob} \rangle_s := \deg(\Gamma^! \gamma)_s.
$$

Theorem 4.1. We have

$$
\langle \gamma, \Gamma_{\text{Frob}} \rangle_s = \text{Tr}((f_! \text{cl}(\gamma))_s \circ \text{Frob}_s \mid (f_! \mathbf{Q}_\ell)_{\overline{s}}).
$$

The argument has two steps: compatibility of trace with proper pushforward, and the special case discussed in [§3.5.](#page-5-0)

The first idea is to replace the correspondence C with Frobenius, by composing $C \xrightarrow{c_1} M$ with $C \xrightarrow{c_1} M \xrightarrow{\text{Frob}} M$. This gives a C' which lives over the Frobenius correspondence for S.

The second idea is to use the compatibility of trace with proper pushforward to express this as a trace on S , from which one gets the answer.