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1. Motivation

We want to compute an intersection number

Ir(hD) = 〈Sht′T , Sht′T , 〉Sht′G
.

The shtuka involves some sort of Frobenius.

Sht H

M M ×MΓ:=Id×Frob

We’ll rewrite this intersection in another order, so that at the end the answer will
be presented as a refined Gysin pullback via Frobenius, which we can then compute
in terms of a cohomological trace.

Recall the “usual” Grothendieck-Lefschetz trace formula.

Theorem 1.1. Let X0 be a variety over Fq, and X = X0 ×Fq Fq.∑
i

(−1)i Tr(Frob | H i
c(X, E)) =

∑
x∈X0(Fq)

Tr(Frobx | Ex).

Outline of
(1) Cohomological correspondences.
(2) Trace formula.
(3) Application.

2. Cohomological correspondences

2.1. Setup. To convey the idea, we’re just going to work with schemes. Let k = k
be an algebraically closed field, and X a scheme of finite type over k. Let D(X) :=
Db
c(X,Q`). If f : X → Y is a map then we have functors

f∗, f! : D
b(X)→ Db(Y )

and
f∗, f ! : Db(Y )→ Db(X)

and adjunctions

Id→ f∗f
∗

f!f
! → Id .
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2.2. Borel-Moore homology. Let π : X → Spec k, then KX = π!Q` is the dual-
izing sheaf.
Example 2.1. If X is smooth of dimension n, then KX = Q`[2n](n).
Definition 2.2. We define the Borel-Moore homology

HBM
d (X) := H−d(KX).

If f : X → Y is proper, then we have a trace map

Tr: HBM
0 (X)→ HBM

0 (Y )

via
f!KX = f!f

!KY → KY .

using that KX = f !KY .
Think of HBM

0 as being a receptacle for 0-cycles (it is the target of cycle class map
from Ch0) , and this as being pushforward of cycles. In particular, if X is proper
over k then the pushforward for the structure map X → Spec k is the degree map

HBM
0 (X)

deg−−→ Q`.

2.3. Cohomological correspondences.
Definition 2.3. Given X1, X2 a correspondence between X1, X2 is a diagram

C

X1 X2

c1 c2

Given Fi ∈ D(Xi), a cohomological correspondence is an element

u ∈ HomC(c∗1F1, c
!
2F2) = HomX2(c2!c

∗
1F1,F2).

Example 2.4. For a morphism f : X → Y , we have f∗Q` = Q` = Id! Q`. This
gives a cohomological correspondence, which is admittedly trivial.
Example 2.5. Let X2 be smooth of dimension n. Then KX2 = Q`[2n](n), so
c!

2Q` = KC [−2n](−n). So the cohomological correspondences between Q` and Q`

are maps
Q` → KC [−2n](−n) = HBM

2n (c)(−n).

We get a Borel-Moore homology class from any cycle, which gives a map

Ch(C)→ CorrC(Q`,Q`).

2.4. Maps on cohomology. If c1 is proper, then from a cohomological correspon-
dence u we can define a map

RΓc(u) : RΓc(X1,F1)→ RΓc(X2,F2).

Indeed, we have a map of sheaves

F1 → c1∗c
∗
1F1 = c1!c

∗
1F1

(using that c1 is proper in the second equality) which induces on cohomology

RΓc(X1,F1)→ RΓc(C, c
∗
1F1)

u−→ RΓc(C, c
!
2F2) = RΓc(X2, c2!c

!
2F2)→ RΓc(X2,F2).
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More generally, given a diagram of correspondences

X1 C X2

Y1 D Y2

f1

c1 c2

f f2

d1 d2

if (a) f and f1 are proper, and (b) c1 and d1 are proper then we can define a
pushforward

[f ]! : CorrC(F1,F2)→ CorrD(f1!F1, f2!F2).

This generalizes the previous construction, which is the special case with Y1 = D =
Y2 = Spec k sending a correspondence u 7→ RΓC(u) ∈ Corrpt(RΓc(F1), RΓc(F2)).

3. Trace formula

3.1. Self correspondences. Suppose we have a correspondence between X and
itself:

C

X X

c1 c2

If c1 is proper, then we have an endomorphism of RΓc(u) on RΓc(X,F ). The
fundamental question is: what is its trace?

In a relative situation, if we have a map of correspondences

C

X X

S

S S

c1 c2

f f

then [f ]!(u) is an endomorpism of f!F .

3.2. The trace. Consider the cartesian square

Fix(c) C

X X ×X

∆′

c′ c=c1×c2

∆

Definition 3.1. We define a trace map

RH omC(c∗1F , c!
2F)→ ∆′∗KFix(c). (3.1)

as follows. We have

RH omC(c∗1F , c!
2F) ∼= c!(D(F) � F)→ c!(∆∗KX)



4 DAVESH MAULIK

where D(−) = RH om(−,KC) is Verdier duality, and then we apply base change.
Applying H0 to (3.1), we get

Tr: CorrC(F ,F)→ H0(Fix,KFix(c)) = HBM
0 (Fix(c)).

Now suppose β is a connected component of Fix(c), so we have

HBM
0 (Fix) =

⊕
β∈πC(Fix)

HBM
0 (Fixβ).

Assume further that β is proper over k. Then we can push forward to k and take
the degree.
Definition 3.2. In the situation above, we define the local terms

LTβ(u) = deg(Tr(u)β) ∈ Q`.

Example 3.3. For the correspondence

k

k k

c1 c2

the cohomological correspondences are just Hom(F ,F) and the trace as defined
above coincides with the usual trace.

3.3. The local-global formula.
Example 3.4. ForX smooth of dimension n and F = Q`, we have CorrC(Q`,Q`) =
HBM

2n (C)(−n). There is a cycle class map

Chn(C)→ CorrC(Q`,Q`) = HBM
2n (C)(−n)

Tr−→ HBM
0 (Fix)

The claim is that the diagram commutes:

Chn(C) CorrC(Q`,Q`) = HBM
2n (C)(−n)

Ch0(Fix) HBM
0 (Fix)

∆! Tr

Theorem 3.5. The trace commutes with proper pushforward. In other words, if

C

X X

D

Y Y

f f
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is a map of correspondences, with f proper, then the following diagram commutes:

CorrC(F, F ) HBM
0 (Fix(c))

CorrD(f!F, f!F ) HBM
0 (Fix(d))

Tr

[f ]! f!

Tr

(3.2)

Corollary 3.6. If C,X are proper over k, then

Tr(RΓc(u)) =
∑
β

LTβ(u).

Proof. The left side corresponds to the left path of the commutative diagram in
(3.2), and the right side corresponds to the right path in (3.2). �

This is what is usually called the Lefschetz-Verdier trace formula.

3.4. The naïve local terms. There are two issues with the trace formula. First,
how do you actually compute the local terms? Consider a correspondence

C

X X

c1 c2

with c2 is quasifinite. Given y ∈ Fix(c), with x = c1(y) = c2(y), we can define

uy : Fx → Fx

as follows. We have a cohomological correspondence

(c2!, c
∗
1F ) =

⊕
z 7→x

c∗1F |z → Fx

by adjunction from

Fx ↪→
⊕
z 7→x

F |c1(z).

Definition 3.7. The Tr(uy) defined above is called the naïve local term.
Example 3.8. The naïve local term does not necessarily coincide with the local
terms computed above. Consider translation x 7→ x+ 1 on P1 → P1. Then

LT∞(u) = 2

whereas the naive local term is Tr(u∞) = 1. The naïve local term doesn’t know
that the fixed point ∞ should have multiplicity 2; it only counts the physical fixed
points. An example in the same spirit is the map x 7→ x+ 1 on A1.

Another issue is that we need properness. We can solve that by compactifying
everything, but then you get local terms at infinity, which may be non-zero (as we
saw in the preceding example).
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3.5. A special case. Let X0 be a variety over k = Fq and X = X0×FqFq. Consider
the correspondence

XFrob

X X

Let u = Frob∗ E → E . Then the local terms coincide with the naïve local terms. In
other words,

(1) For all s ∈ X0(Fq), we have

LTs(u) = Tr(us).

(2) We have

Tr(RΓc(u)) =
∑
s

Tr(us, Es).

Why? The idea is that Frobenius is contracting near fixed points. For s ∈ Fix,

Frob−1(mn
x)OX ⊂ mn+1

x OX
for some n ≥ 0. Geometrically, this means that if we pass to the normal cone we get
an endomorphism which contracts everything to the origin.

4. Applications to the appendix

Consider a correspondence

C

M M

c1 c2

Assume
• c1 is proper, and
• M is smooth of dimension n, and
• we have a proper map f : C → S.

Let γ ∈ Chn(C)Q. Suppose we have a map of cartesian squares

Sht C

M M ×M

S(Fq) S

S S × S

Γ

fΓ:=Id×Frob

∆

Id×Frob
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Then we can write
Sht =

∐
s∈S(Fq)

Shts .

We can pull back (Γ!γ)s = contribution of Shts. This is in Ch0(ShtS)Q, which is
proper, so we can apply the degree map to get something in Q. We want a formula
for it, so set

〈γ,ΓFrob〉s := deg(Γ!γ)s.

Theorem 4.1. We have

〈γ,ΓFrob〉s = Tr((f!cl(γ))s ◦ Frobs | (f!Q`)s).

The argument has two steps: compatibility of trace with proper pushforward, and
the special case discussed in §3.5.

The first idea is to replace the correspondence C with Frobenius, by composing
C

c1−→ M with C
c1−→ M

Frob−−−→ M . This gives a C ′ which lives over the Frobenius
correspondence for S.

C ′

M M

S

S S

f

Frob ◦c1

Frob

The second idea is to use the compatibility of trace with proper pushforward to
express this as a trace on S, from which one gets the answer.
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