LTF FOR COHOMOLOGICAL CORRESPONDENCES

DAVESH MAULIK

1. MOTIVATION
We want to compute an intersection number
L.(hp) = (Shty, Sht7, Jgpe. -
The shtuka involves some sort of Frobenius.

Sht ——— H

| |

I':=Id x Frob
M =M x M

We’ll rewrite this intersection in another order, so that at the end the answer will
be presented as a refined Gysin pullback via Frobenius, which we can then compute
in terms of a cohomological trace.

Recall the “usual” Grothendieck-Lefschetz trace formula.

Theorem 1.1. Let Xo be a variety over Fy, and X = Xo Xp, E-
> (~1)' Tr(Frob | H(X,&))= > Tr(Frob, | &).
i 2€X0(Fy)

Outline of

(1) Cohomological correspondences.
(2) Trace formula.
(3) Application.

2. COHOMOLOGICAL CORRESPONDENCES

2.1. Setup. To convey the idea, we're just going to work with schemes. Let k = k
be an algebraically closed field, and X a scheme of finite type over k. Let D(X) :=
D%(X,Qy). If f: X — Y is a map then we have functors

fe, i DY(X) — D*(Y)
and
£ 1 DY) = DY(X)
and adjunctions
Id — fof”

f]f! — Id.
1



2 DAVESH MAULIK

2.2. Borel-Moore homology. Let m: X — Spec k, then Kx = 7' Qg is the dual-
izing sheaf.
Example 2.1. If X is smooth of dimension n, then Kx = Q[2n](n).
Definition 2.2. We define the Borel-Moore homology
HBPM(X):= H 4(Kx).
If f: X — Y is proper, then we have a trace map
Tr: HPM(X) — HPM(Y)
via
hEx = fif Ky — Ky.
using that Ky = f'Ky-.
Think of HPM as being a receptacle for O-cycles (it is the target of cycle class map

from Chy) , and this as being pushforward of cycles. In particular, if X is proper
over k then the pushforward for the structure map X — Spec k is the degree map

d
HyM(X) == Qe

2.3. Cohomological correspondences.
Definition 2.3. Given X1, Xo a correspondence between X1, X9 is a diagram

C
2N
Xy X5
Given F; € D(X;), a cohomological correspondence is an element

u € Home (] Fi, 0!2]-“2) = Homy, (coic] F1, F2).

Example 2.4. For a morphism f: X — Y, we have f*Q; = Q; = Id' Q. This
gives a cohomological correspondence, which is admittedly trivial.
Example 2.5. Let X3 be smooth of dimension n. Then Kx, = Q[2n](n), so
cbQ = Kc[—2n](—n). So the cohomological correspondences between Q and Q,
are maps

Q¢ = Kc[-2n)(-n) = Hy" (c)(—n).
We get a Borel-Moore homology class from any cycle, which gives a map

Ch(C) — Corrc(Qe, Qo).

2.4. Maps on cohomology. If ¢; is proper, then from a cohomological correspon-
dence u we can define a map

RT.(u): RT.(X1,F1) = RT (X2, Fa).
Indeed, we have a map of sheaves
F1 — 1.1 F1 = enci Fu
(using that ¢; is proper in the second equality) which induces on cohomology

RT.(X1,F1) — RU.(C, i F1) = RT(C,chFs) = RLo(Xa, carchFa) — RT(Xo, Fa).
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More generally, given a diagram of correspondences

X +2 025X,

lfl if ifz
v, <8 p %,y

if (a) f and f1 are proper, and (b) ¢; and d; are proper then we can define a
pushforward

[f]y: Corrc(]:l,]-"g) — COI"I“D(fu]:l, fg!fz).
This generalizes the previous construction, which is the special case with Y1 = D =
Y> = Spec k sending a correspondence u — RI'c(u) € Corrp (R (F1), RT(F2)).

3. TRACE FORMULA

3.1. Self correspondences. Suppose we have a correspondence between X and

itself:
RN

X X

If ¢; is proper, then we have an endomorphism of RI'.(u) on RI'.(X,F). The
fundamental question is: what is its trace?
In a relative situation, if we have a map of correspondences

C
c1 c2
/ \ N

X

f S f
S S
then [f]i(u) is an endomorpism of fi.F.
3.2. The trace. Consider the cartesian square

Fix(c) N

\LC/ lczcl Xco

X 2 XxX

Definition 3.1. We define a trace map
R omc (¢} F, chF) — AL Krix(e)- (3.1)
as follows. We have
RAomc(ciF, chF) 2 ! (D(F) R F) — /(A Kx)
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where D(—) = Rs#om(—, K¢) is Verdier duality, and then we apply base change.
Applying H to (3.1)), we get
Tr: Corre(F, F) — HO(Fix, Kpiy(e)) = Hy ™ (Fix(c)).
Now suppose f3 is a connected component of Fix(c), so we have
HPM(Fix) = @ HPY (Fixg).
Beme (Fix)

Assume further that g8 is proper over k. Then we can push forward to k& and take
the degree.

Definition 3.2. In the situation above, we define the local terms

LT3(u) = deg(Tr(u)g) € Qq.

Example 3.3. For the correspondence

k
N
k k

the cohomological correspondences are just Hom(F,F) and the trace as defined
above coincides with the usual trace.

3.3. The local-global formula.

Example 3.4. For X smooth of dimension n and F = Qy, we have Corrc(Qy, Q) =
HBM(C)(—n). There is a cycle class map

Chn(C) = Corre(Qe, Qe) = HzM (C)(—n) = HY'™ (Fix)
The claim is that the diagram commutes:
Ch,,(C) —— Corre(Qy, Qp) = HEM(C)(—n)

| I

Chy(Fix) HPM (Fix)

Theorem 3.5. The trace commutes with proper pushforward. In other words, if

C

SN

X X

f D f

Y/ \Y
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is a map of correspondences, with f proper, then the following diagram commutes:

Corrg(F, F) —2— HPM (Fix(c))

lm, lf! (3.2)

Corrp(fiF, iF) — HPM (Fix(d))
Corollary 3.6. If C, X are proper over k, then
Tr(RT(u)) = Y LTjs(u).
B

Proof. The left side corresponds to the left path of the commutative diagram in
(3.2), and the right side corresponds to the right path in (3.2)). O

This is what is usually called the Lefschetz-Verdier trace formula.

3.4. The naive local terms. There are two issues with the trace formula. First,
how do you actually compute the local terms? Consider a correspondence

N
X X

with ¢y is quasifinite. Given y € Fix(c), with = ¢;(y) = ca(y), we can define

uy: Fp — Fy
as follows. We have a cohomological correspondence

(ca, ¢iF) = @ ciF|. — F,
Z—T

by adjunction from

Fx — @ F|c1(z)'

2T

Definition 3.7. The Tr(u,) defined above is called the naive local term.

Example 3.8. The naive local term does not necessarily coincide with the local
terms computed above. Consider translation z — 2 + 1 on P! — P!, Then

LTso(u) =2

whereas the naive local term is Tr(us,) = 1. The naive local term doesn’t know
that the fixed point oo should have multiplicity 2; it only counts the physical fixed
points. An example in the same spirit is the map z + 4+ 1 on Al

Another issue is that we need properness. We can solve that by compactifying
everything, but then you get local terms at infinity, which may be non-zero (as we
saw in the preceding example).



6 DAVESH MAULIK

3.5. A special case. Let X be a variety over k = Fq and X = XoXp, Fq. Consider
the correspondence

XFrob

N

X X

Let u = Frob* & — £. Then the local terms coincide with the naive local terms. In
other words,

(1) For all s € Xo(F,), we have
LTs(u) = Tr(us).
(2) We have
Tr(Rle(u)) = Y Tr(us, Es).

Why? The idea is that Frobenius is contracting near fixed points. For s € Fix,
Frobfl(mg)(’)x - mZJrlOX

for some n > 0. Geometrically, this means that if we pass to the normal cone we get
an endomorphism which contracts everything to the origin.

4. APPLICATIONS TO THE APPENDIX

Consider a correspondence

Assume

e (; is proper, and
e M is smooth of dimension n, and
e we have a proper map f: C' — S.

Let v € Ch,(C)q. Suppose we have a map of cartesian squares

Sht — L ¢

|

M=
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Then we can write
Sht= JJ Sht,.
s€S(Fq)
We can pull back (I'y)s = contribution of Shts. This is in Chg(Shts)q, which is
proper, so we can apply the degree map to get something in Q. We want a formula
for it, so set
<’Yy I‘F‘rob>s = deg(F!’Y)s-
Theorem 4.1. We have

(s Prrob) s = Tr((ficl(v))s o Frobs | (fiQe)s)-

The argument has two steps: compatibility of trace with proper pushforward, and
the special case discussed in §3.5

The first idea is to replace the correspondence C' with Frobenius, by composing

C % M with ¢ % M % M. This gives a C’ which lives over the Frobenius

correspondence for S.

C’
Frob V \
M f M
S

SAb \5

The second idea is to use the compatibility of trace with proper pushforward to
express this as a trace on .S, from which one gets the answer.
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