INTERSECTION THEORY ON STACKS

MICHAEL RAPOPORT

The aim is to introduce intersection theory on stacks which are only locally of finite type, like the moduli stack of shtukas. Fortunately, we only need the **Q**-theory, which makes things easier.

1. Definition of $Ch(X)_{\mathbf{Q}}$

1.1. Chow groups for finite type.

Definition 1.1. Let X/k be a DM stack, finite type over k. Then we define

$$Ch_*(X)_{\mathbf{Q}} = Z_*(X)_{\mathbf{Q}}/\partial W_*(X)_{\mathbf{Q}}$$

where

- $Z_*(X)_{\mathbf{Q}} = \bigoplus_V \mathbf{Q}$ with V running over irreducible reduced closed substacks of dimension *, and
- $W_*(X)_{\mathbf{Q}} = \bigoplus_W k(W)^* \otimes_{\mathbf{Z}} \mathbf{Q}$ with the same index set, and k(W) viewed as a rational function to \mathbf{A}_k^1 ; the inclusion into $Z_*(X)$ is by the "boundary" as in the usual case for schemes.

1.2. Generalization to locally finite type. When X is *locally* finite type over k, we replace $Z_*(X)_{\mathbf{Q}}$ with $Z_{c,*}(X)_{\mathbf{Q}}$ and $W_{c,*}(X)_{\mathbf{Q}}$, where the subscript c indicates that we only take substacks proper over Spec k. We have

$$\operatorname{Ch}_{c}(X) = \varinjlim_{Y \text{ f.t. } \subset X} \operatorname{Ch}_{*}(Y)_{\mathbf{Q}} = \varinjlim_{U \text{ open } \subset X} \operatorname{Ch}_{*,c}(U)_{\mathbf{Q}}.$$

1.3. Degree map. We want to define a map

deg:
$$\operatorname{Ch}_{c,0}(X)_{\mathbf{Q}} \to \mathbf{Q}.$$

Since we are working with stacks, we need to account for stabilizers. **Definition 1.2.** Let $x \in X$ be represented by a geometric point \overline{x} : Spec $k^s \to X$. We define

$$\deg x := [(k^{\operatorname{sep}})^{\Gamma_x} \colon k] \cdot \frac{1}{|\operatorname{Aut}(x^s)|}.$$

1.4. Intersection pairing. Now let X be smooth, locally of finite type, and pure dimension n. Then we have an intersection product

$$\operatorname{Ch}_{c,i}(X)_{\mathbf{Q}} \times \operatorname{Ch}_{c,j}(X)_{\mathbf{Q}} \to \operatorname{Ch}_{c,i+j-n}(X)_{\mathbf{Q}}$$
 (1.1)

defined as follows. Let Y_1, Y_2 be closed substacks of X, which are proper over k. Then (1.1) is the colimit of the finite-type intersection products

$$\operatorname{Ch}_{i}(Y_{1})_{\mathbf{Q}} \times \operatorname{Ch}_{j}(Y_{2})_{\mathbf{Q}} \to \operatorname{Ch}_{i+j-n}(Y_{1} \cap Y_{2}) \to \operatorname{Ch}_{c,i+j-n}(X)_{\mathbf{Q}}$$

MICHAEL RAPOPORT

The first map is subtle to define: it is the *refined intersection product*

$$(\zeta_1, \zeta_2) \mapsto X \times_{(X,X)} (\zeta_1 \times \zeta_2).$$

What does this mean? It is a special case of the *refined Gysin morphism*. Start with the fibered product diagram

where i is a regular embedding of codimension e. Then we get a *refined Gysin* morphism

$$i^! \colon \operatorname{Ch}_i(V)_{\mathbf{Q}} \to \operatorname{Ch}_{i+e}(W)_{\mathbf{Q}}$$

and we define

$$X \times_{(X,X)} (\zeta_1 \times \zeta_2) := \Delta^! (\zeta_1 \times \zeta_2).$$

Thus we have finally constructed the product

$$\operatorname{Ch}_{c,i}(X)_{\mathbf{Q}} \times \operatorname{Ch}_{c,j}(X)_{\mathbf{Q}} \to \operatorname{Ch}_{c,i+j-n}(X)_{\mathbf{Q}}$$

Then composing with the degree map, we get an intersection pairing

 $\langle,\rangle_X \colon \operatorname{Ch}_{c,j}(X)_{\mathbf{Q}} \times \operatorname{Ch}_{c,n-j}(X)_{\mathbf{Q}} \to \mathbf{Q}.$

Remark 1.3. (i) We have a cycle class map

$$\operatorname{cl}_X \colon \operatorname{Ch}_{c,j}(X)_{\mathbf{Q}} \to H_c^{2n-2j}(X \otimes_k \overline{k}, \mathbf{Q}_\ell(n-j))$$

and the intersection product is compatible with cup product.

(ii) Consider

$$_{c}\operatorname{Ch}_{n}(X \times X)_{\mathbf{Q}} = \varinjlim_{Z \subset X \times X} \operatorname{Ch}_{*}(Z)_{\mathbf{Q}}$$

such that $pr_1|_Z$ is proper. This is a **Q**-algebra. It acts on each $Ch_{c,j}(X)_{\mathbf{Q}}$ via

$$(\xi,\zeta) = \operatorname{pr}_{2*}(\xi \cdot_{(X \times X)} \operatorname{pr}_1^* \zeta).$$

Now that we have a definition, the problem is that we can't really calculate. So instead we pass to K groups.

2. Relation to K-theory

For technical reasons, we need to relate the Chow groups to K-theory. First we recall K-theory of schemes of finite type over k. Let $K'_0(X)$ be the Grothendieck group of the abelian category of coherent \mathcal{O}_X -modules. Let $K'_0(X)_{\mathbf{Q}}$ be the rationalization.

2.1. The naïve filtration. We have a filtration

$$K_0'(X)_{\mathbf{Q},\leq m}^{\mathrm{naive}} = \mathrm{Im}\left(K_0(\mathrm{Coh}(X)_{\leq m})_{\mathbf{Q}} \to K_0'(X)_{\mathbf{Q}}\right)$$

where $\operatorname{Coh}(X)_{\leq m}$ is the subcategory of coherent sheaves with support of dimension at most m.

We have a natural graded map

$$\phi_X \colon \operatorname{Ch}_*(X)_{\mathbf{Q}} \to \operatorname{Gr}^{\operatorname{naive}}_*(K'_0(X))_{\mathbf{Q}}$$

sending

 $[V]: \mapsto \text{class of } \mathcal{O}_V.$

This is an isomorphism: we have a commutative diagram

$$K_{0}(\operatorname{Coh}(X)_{\leq m})_{\mathbf{Q}} \longrightarrow \operatorname{Gr}_{m}^{\operatorname{naive}}(X)_{\mathbf{Q}}$$

$$\downarrow^{\operatorname{supp}} \qquad \qquad \qquad \downarrow^{\psi_{X}}$$

$$Z_{m}(X)_{\mathbf{Q}} \longrightarrow \operatorname{Ch}_{m}(X)_{\mathbf{Q}}$$

where the map supp sends $\mathcal{F} \mapsto \sum_{\dim V = m} \mu_V(\mathcal{F}) \cdot [V]$.

This discussion was for schemes. For stacks, all definitions extend but it's not clear if the map

factors through $K'_0(X)^{\text{naive}}_{\leq m}$.

2.2. The not-so-naïve filtration. This problem is solved in the paper under the assumption

(*) there exists a finite flat presentation $U \to X$ where U is an algebraic space of finite type over k.

Define $K'_0(X)_{\mathbf{Q},\leq m}$ to be the set of $\alpha \in K'_0(X)_{\mathbf{Q}}$ such that there exists a finite presentation $\pi: U \to X$ with $\pi^*(\alpha) \in K'_0(U)_{\mathbf{Q},\leq m}^{\text{naive}}$.

Example 2.1. It may happen that $K'_0(X)_{\mathbf{Q},\leq m}$ is non-zero for m < 0. (Of course, this doesn't happen for the naïve filtration.) Let X = [*/G]. Then $K'_0(X)_{\mathbf{Q}} = \operatorname{Rep}_{\mathbf{Q}}(G)$, and $K'_0(X)_{\mathbf{Q},\leq-1}$ is the augmentation ideal (in particular, non-zero). Indeed, when we pull back via the cover $* \to [*/G]$, anything in the augmentation ideal becomes 0 in $K_0(*)$.

In general, we have an inclusion $K'_0(X)^{\text{naive}}_{\mathbf{Q},\leq m} \subset K'_0(X)_{\mathbf{Q},\leq m}$, which is an equality if X is an algebraic space.

The filtration just defined enjoys expected functoriality properties: compatibility with flat pullback and under proper pushforward.

Let X be a DM stack satisfying (*). Then there is a homomorphism

$$\psi_X \colon \operatorname{Gr}_m(K'_0(X)_{\mathbf{Q}}) \to \operatorname{Ch}_*(X)_{\mathbf{Q}}$$

induced by a commutative diagram

$$\begin{array}{cccc} K_0(\operatorname{Coh}(X)_{\leq m})_{\mathbf{Q}} & \longrightarrow & K'_0(X)_{\mathbf{Q},\leq m} & \longrightarrow & K'_0(X)_{\mathbf{Q},\leq m} \\ & & & & & \downarrow \\ & & & & & \downarrow \psi_X \\ & & & & Z_m(X)_{\mathbf{Q}} & \longrightarrow & \operatorname{Ch}_m(X)_{\mathbf{Q}} \end{array}$$

We now come to a key technical point, which the compatibility of K-theory with the refined Gysin homomorphism. We will describe two situations in which we can deduce a good compatibility relationship.

2.3. (A): Compatibility with the refined Gysin homomorphism. Consider the cartesian diagram

$$\begin{array}{ccc} X' & \stackrel{f'}{\longrightarrow} & Y' \\ \downarrow^g & & \downarrow^h \\ X & \stackrel{f}{\longrightarrow} & Y \end{array}$$

Assumptions (A).

- Assume that X' satisfies (*).
- Assume that f is the composition of a regular embedding of codimension e and smooth morphism of relative dimension e d. (Note that this is automatic if X and Y are smooth.)

We have two maps: the refined Gysin morphism

$$f^! \colon \operatorname{Ch}_*(Y')_{\mathbf{Q}} \to \operatorname{Ch}_{*-d}(X')_{\mathbf{Q}}$$

and the pullback on K-theory

$$f^* \colon K'_0(Y')_{\mathbf{Q}} \to K'_0(X')_{\mathbf{Q}}$$

sending $\mathcal{F} \mapsto (f')^{-1}(\mathcal{F}) \overset{\mathbf{L}}{\otimes}_{(f \circ g)^{-1}\mathcal{O}_Y} (f')^{-1}(\mathcal{O}_Y).$

Proposition 2.2. Under the assumptions (A):

(1) The pullback f^* sends $K'_0(Y')_{\mathbf{Q},\leq m}^{\text{naive}}$ to $K'_0(X')_{\mathbf{Q},\leq m}$ and hence induces a map

$$\operatorname{Gr}_m^{\operatorname{naive}} f^* \colon \operatorname{Gr}_m^{\operatorname{naive}} K'_0(Y')_{\mathbf{Q}} \to \operatorname{Gr}_{m-d} K'_0(X')_{\mathbf{Q}}.$$

(2) We have a commutative diagram

If we also assume that Y' satisfies *, then we can fill this in to

2.4. (B): Compatibility with Gysin map. Again consider a cartesian diagram

Assumptions (B).

- Assume *h* is representable.
- Assume that the normal cone of f is a vector bundle of constant virtual dimension. (We will apply this to (Id, Frob): $X \to X \times X$, where X is smooth, so this is certainly satisfied.)
- Assume that there exists a commutative diagram

$$\begin{array}{ccc} U & \longrightarrow & V \\ \downarrow u & & \downarrow v \\ X & \stackrel{f}{\longrightarrow} & Y \end{array}$$

where U and V are smooth surjective maps from schemes of finite type and i is a regular embedding.

Write dim Y' = n and dim X' = n - d.

Proposition 2.3. Under the assumptions (B), the following diagram is commutative:

3. The octahedron Lemma

Consider a commutative diagram

Let N be the fiber product as in

Lemma 3.1. There are canonical isomorphisms

 $(C \times_Y D) \times_{U \times_S V} (A \times_X B) \cong N \cong (C \times_U A) \times_{Y \times_S X} (D \times_V B).$

Theorem 3.2. Assume everybody is smooth, except B (the "bad" object) of dimension d_A, d_B, \ldots . Also assume that the fiber products (on the left) $C \times_Y D$, $U \times_S V$, $C \times_U A, Y \times_S X$ have the expected dimension. Further assume that each of the fiber diagrams

$$\begin{array}{ccc} A \times_X B \longrightarrow B \\ \downarrow & & \downarrow \\ A \longrightarrow X \end{array}$$

and

$$\begin{array}{cccc} D \times_V B & \longrightarrow & B \\ & \downarrow & & \downarrow \\ & D & \longrightarrow & V \end{array}$$

satisfy the compatibility conditions (A) or (B). Finally assume that both fiber diagrams

$$N \longrightarrow A \times_X B$$

$$\downarrow \qquad \qquad \downarrow$$

$$C \times_Y D \longrightarrow U \times_S V$$

$$N \longrightarrow D \times_V B$$

$$\downarrow \qquad \qquad \downarrow$$

$$C \times_U A \longrightarrow Y \times_S X$$

and

satisfies the compatibility condition (A). Let $n = \dim N$. For the diagram

$$\begin{array}{cccc} N & \stackrel{\alpha}{\longrightarrow} & D \times_V B & \stackrel{d}{\longrightarrow} & B \\ \\ \| & & & \| \\ N & \stackrel{\delta}{\longrightarrow} & A \times_X B & \stackrel{a}{\longrightarrow} & B \end{array}$$

we have $\delta^! a^! [B] = d^! \alpha^! [B]$.

Roughly speaking, the proof proceeds by using the relation to K-theory, and lifting the statement to the level of derived stacks.