
INTERSECTION THEORY ON STACKS

MICHAEL RAPOPORT

The aim is to introduce intersection theory on stacks which are only locally of finite
type, like the moduli stack of shtukas. Fortunately, we only need theQ-theory, which
makes things easier.

1. Definition of Ch(X)Q

1.1. Chow groups for finite type.
Definition 1.1. Let X/k be a DM stack, finite type over k. Then we define

Ch∗(X)Q = Z∗(X)Q/∂W∗(X)Q

where
• Z∗(X)Q =

⊕
V Q with V running over irreducible reduced closed substacks

of dimension ∗, and
• W∗(X)Q =

⊕
W k(W )∗ ⊗Z Q with the same index set, and k(W ) viewed as

a rational function to A1
k; the inclusion into Z∗(X) is by the “boundary” as

in the usual case for schemes.

1.2. Generalization to locally finite type. When X is locally finite type over k,
we replace Z∗(X)Q with Zc,∗(X)Q and Wc,∗(X)Q, where the subscript c indicates
that we only take substacks proper over Spec k. We have

Chc(X) = lim−→
Y f.t. ⊂X

Ch∗(Y )Q = lim−→
U open ⊂X

Ch∗,c(U)Q.

1.3. Degree map. We want to define a map

deg : Chc,0(X)Q → Q.

Since we are working with stacks, we need to account for stabilizers.
Definition 1.2. Let x ∈ X be represented by a geometric point x : Spec ks → X.
We define

deg x := [(ksep)Γx : k] · 1

|Aut(xs)|
.

1.4. Intersection pairing. Now let X be smooth, locally of finite type, and pure
dimension n. Then we have an intersection product

Chc,i(X)Q × Chc,j(X)Q → Chc,i+j−n(X)Q (1.1)

defined as follows. Let Y1, Y2 be closed substacks of X, which are proper over k.
Then (1.1) is the colimit of the finite-type intersection products

Chi(Y1)Q × Chj(Y2)Q → Chi+j−n(Y1 ∩ Y2)→ Chc,i+j−n(X)Q.
1
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The first map is subtle to define: it is the refined intersection product

(ζ1, ζ2) 7→ X ×(X,X) (ζ1 × ζ2).

What does this mean? It is a special case of the refined Gysin morphism. Start with
the fibered product diagram

W V

X Yi

where i is a regular embedding of codimension e. Then we get a refined Gysin
morphism

i! : Chi(V )Q → Chi+e(W )Q

and we define

X ×(X,X) (ζ1 × ζ2) := ∆!(ζ1 × ζ2).

Thus we have finally constructed the product

Chc,i(X)Q × Chc,j(X)Q → Chc,i+j−n(X)Q

Then composing with the degree map, we get an intersection pairing

〈, 〉X : Chc,j(X)Q × Chc,n−j(X)Q → Q.

Remark 1.3. (i) We have a cycle class map

clX : Chc,j(X)Q → H2n−2j
c (X ⊗k k,Q`(n− j))

and the intersection product is compatible with cup product.
(ii) Consider

c Chn(X ×X)Q = lim−→
Z⊂X×X

Ch∗(Z)Q

such that pr1|Z is proper. This is a Q-algebra. It acts on each Chc,j(X)Q via

(ξ, ζ) = pr2∗(ξ ·(X×X) pr∗1ζ).

Now that we have a definition, the problem is that we can’t really calculate. So
instead we pass to K groups.

2. Relation to K-theory

For technical reasons, we need to relate the Chow groups to K-theory. First we re-
call K-theory of schemes of finite type over k. Let K ′0(X) be the Grothendieck group
of the abelian category of coherent OX -modules. Let K ′0(X)Q be the rationalization.
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2.1. The naïve filtration. We have a filtration

K ′0(X)naive
Q,≤m = Im (K0(Coh(X)≤m)Q → K ′0(X)Q)

where Coh(X)≤m is the subcategory of coherent sheaves with support of dimension
at most m.

We have a natural graded map

φX : Ch∗(X)Q → Grnaive
∗ (K ′0(X))Q

sending
[V ] : 7→ class of OV .

This is an isomorphism: we have a commutative diagram

K0(Coh(X)≤m)Q Grnaive
m (X)Q

Zm(X)Q Chm(X)Q

supp ψX

where the map supp sends F 7→
∑

dimV=m µV (F) · [V ].
This discussion was for schemes. For stacks, all definitions extend but it’s not

clear if the map
K0(Coh(X)≤m)Q

Zm(X)Q Chm(X)Q

factors through K ′0(X)naive
≤m .

2.2. The not-so-naïve filtration. This problem is solved in the paper under the
assumption

(*) there exists a finite flat presentation U → X where U is an
algebraic space of finite type over k.

Define K ′0(X)Q,≤m to be the set of α ∈ K ′0(X)Q such that there exists a finite
presentation π : U → X with π∗(α) ∈ K ′0(U)naive

Q,≤m.
Example 2.1. It may happen that K ′0(X)Q,≤m is non-zero for m < 0. (Of course,
this doesn’t happen for the naïve filtration.) Let X = [∗/G]. Then K ′0(X)Q =
RepQ(G), and K ′0(X)Q,≤−1 is the augmentation ideal (in particular, non-zero). In-
deed, when we pull back via the cover ∗ → [∗/G], anything in the augmentation
ideal becomes 0 in K0(∗).

In general, we have an inclusion K ′0(X)naive
Q,≤m ⊂ K ′0(X)Q,≤m, which is an equality

if X is an algebraic space.

The filtration just defined enjoys expected functoriality properties: compatibility
with flat pullback and under proper pushforward.

Let X be a DM stack satisfying (*). Then there is a homomorphism

ψX : Grm(K ′0(X)Q)→ Ch∗(X)Q
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induced by a commutative diagram

K0(Coh(X)≤m)Q K ′0(X)naive
Q,≤m K ′0(X)Q,≤m

Zm(X)Q Chm(X)Q

ψX

We now come to a key technical point, which the compatibility of K-theory with
the refined Gysin homomorphism. We will describe two situations in which we can
deduce a good compatibility relationship.

2.3. (A): Compatibility with the refined Gysin homomorphism. Consider
the cartesian diagram

X ′ Y ′

X Y

g

f ′

h

f

Assumptions (A).
• Assume that X ′ satisfies (*).
• Assume that f is the composition of a regular embedding of codimension
e and smooth morphism of relative dimension e − d. (Note that this is
automatic if X and Y are smooth.)

We have two maps: the refined Gysin morphism

f ! : Ch∗(Y
′)Q → Ch∗−d(X

′)Q

and the pullback on K-theory

f∗ : K ′0(Y ′)Q → K ′0(X ′)Q

sending F 7→ (f ′)−1(F)
L
⊗(f◦g)−1OY

(f ′)−1(OY ).

Proposition 2.2. Under the assumptions (A):
(1) The pullback f∗ sends K ′0(Y ′)naive

Q,≤m to K ′0(X ′)Q,≤m and hence induces a map

Grnaive
m f∗ : Grnaive

m K ′0(Y ′)Q → Grm−dK
′
0(X ′)Q.

(2) We have a commutative diagram

Grnaive
m K ′0(Y ′)Q

K0(Coh(X)≤m)Q Grm−d(X
′)Q

Zm(Y ′)Q Chm−d(X
′)Q

Grnaive(f ′)∗

supp
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If we also assume that Y ′ satisfies ∗, then we can fill this in to

Grnaive
m K ′0(Y ′)Q

K0(Coh(X)≤m)Q GrmK
′
0(Y ′)Qs Grm−d(X

′)Q

Zm(Y ′)Q Chm(Y ′)Q Chm−d(X
′)Q

Grnaive(f ′)∗

supp

2.4. (B): Compatibility with Gysin map. Again consider a cartesian diagram

X ′ Y ′

X Y

g

f ′

h

f

Assumptions (B).

• Assume h is representable.
• Assume that the normal cone of f is a vector bundle of constant virtual
dimension. (We will apply this to (Id,Frob) : X → X × X, where X is
smooth, so this is certainly satisfied.)
• Assume that there exists a commutative diagram

U V

X Y

u v

f

where U and V are smooth surjective maps from schemes of finite type and
i is a regular embedding.

Write dimY ′ = n and dimX ′ = n− d.

Proposition 2.3. Under the assumptions (B), the following diagram is commuta-
tive:

K ′0(Y ′)Q K ′0(X ′)Q

Chn(Y ′)Q = Zn(Y ′)Q Zn−d(X
′)Q = Chn−d(X

′)Q.

f∗

supp
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3. The octahedron lemma

Consider a commutative diagram

A X B

U S V

C Y D

Let N be the fiber product as in

N A×B × C ×D

X ×S Y ×S U ×S V (X ×S U)× (X ×S Y )× (Y ×S U)× (X ×S V )

Lemma 3.1. There are canonical isomorphisms

(C ×Y D)×U×SV (A×X B) ∼= N ∼= (C ×U A)×Y×SX (D ×V B).

Theorem 3.2. Assume everybody is smooth, except B (the “bad” object) of dimen-
sion dA, dB, . . .. Also assume that the fiber products (on the left) C ×Y D, U ×S V ,
C ×U A, Y ×S X have the expected dimension. Further assume that each of the fiber
diagrams

A×X B B

A X

and
D ×V B B

D V

satisfy the compatibility conditions (A) or (B). Finally assume that both fiber dia-
grams

N A×X B

C ×Y D U ×S V
and

N D ×V B

C ×U A Y ×S X



INTERSECTION THEORY ON STACKS 7

satisfies the compatibility condition (A). Let n = dimN . For the diagram

N D ×V B B

N A×X B B

α d

δ a

we have δ!a![B] = d!α![B].

Roughly speaking, the proof proceeds by using the relation toK-theory, and lifting
the statement to the level of derived stacks.
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