
DEFINITION AND PROPERTIES OF Md

JOCHEN HEINLOTH

1. Goal

Let X be a (smooth, projective, geometrically connected) curve over a finite field
k, and ν : X ′ → X a degree 2 étale cover.

Let T := (ResX′/X Gm)/Gm. We can embed T into “ PGL2 ” = Aut(ν∗OX′)/O∗X .
Remark 1.1. We can also view T as the norm-1 subgroup of the Weil restriction:

1→ T → ResX′/X Gm
Nm−−→ Gm → 1

We can put these two definitions together to get an exact sequence

1→ Gm → ResX′/X Gm
t7→t(σ∗t)−1

−−−−−−−→ ResX′/X Gm
Nm−−→ Gm → 1. (1.1)

The goal is to compute the intersection number

〈ShtT , hD ∗ ShtT 〉ShtG

where G = PGL2.

2. The moduli space Md

2.1. Relation to intersection numbers. Recall the shtuka space is

ShtT Hkµ

BunT BunT ×BunT
Id,Frob

The idea is that the shtuka construction is complicated, so we should try to do the
BunT intersection first. So we should try to compute “ BunT ∩hD ∗ BunT ”.

Every time we want to do a PGL2-computation we actually push it to a GL2-
computation. So as usual, set T̃ = ResX′/X Gm and G̃ = GL2. Note that Bun

T̃
can just be thought of as parametrizing line bundles on X, by the definition of Weil
restriction.
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So we want to compute the intersection

? Hkd

Bun
T̃
×Bun

T̃
Bun2×Bun2

(L,L′) (ν∗L, ν∗L′)

In terms of the previous talks, d = degD. Recall that Hkd parametrizes maps of
vector bundles E ↪→ E ′ with quotient a torsion sheaf of degree d.
Definition 2.1. We define M̃d to be the fibered product

M̃d Hkd

Bun
T̃
×Bun

T̃
Bun2×Bun2

Remark 2.2. What we are calling M̃d is called M̃♥d in the paper, but we’re going
to omit it because we’ll be working with it most often.

2.2. The functor of points. Let’s try to compute the functor of points of M̃d.
View Bun

T̃
as PicX′ . The bottom horizontal map sends

(L,L′) 7→ (ν∗L, ν∗L′).

The space M̃d (which is analogous to a “Hitchin space”) parametrizes

{(L,L′, ψ : ν∗L → ν∗L′) | deg cokerψ = d}.

Let’s digest this. We need L,L′ ∈ Pic∗X ×Pic∗+dX , and ψ is equivalent to (by adjunc-
tion)

ϕ : ν∗ν∗L → L′

We have ν∗ν∗L = L ⊕ σ∗L. So ϕ is equivalent to

ν∗ν∗L = L ⊕ σ∗L α,β−−→ L′

which amounts to the data of two maps

L α−→ L′

σ∗L β−→ L′
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2.3. Compactification. We now introduce a compactification ofMd.

Definition 2.3. We define M̃d to be the moduli space classifying
• L,L′ ∈ Pic∗X′ ×Pic∗+dX′ ,
• Maps

α : L → L′

β : L → σ∗L′

such that α, β are not both 0.

Remark 2.4. The bar on M̃d is because we haven’t imposed an injectivity condition
on ψ. This space is just called M̃d in the paper.

There is an action of PicX on M̃d, and we finally defineMd := M̃d/PicX .

Remark 2.5. Obviously M̃d isn’t of finite type, since it has infinitely many com-
ponents. Since ν∗ : Pic∗X → Pic2∗X′ hits “half” the components,Md is of finite type.
In fact it has exactly 2 components.

The map
ψ : ν∗L → ν∗L′

when pulled back to X ′ becomes

ν∗ψ : ν∗ν∗L → ν∗ν∗L′

and is given by

ν∗ψ =

(
α σ∗β
β σ∗α

)
so det ν∗ψ = Nmα−Nmβ. We have

M̃d = M̃d \ {Nmα = Nmβ},

and
Md = [M̃d/PicX ].

2.4. The moduli space Ad.
Definition 2.6. We define the moduli space Ad parametrizing

• ∆ ∈ PicX ,
• a, b ∈ H0(X,∆) where a and b never simultaneously vanish.

Thus
Ad = X̂d ×PicX X̂d − Z(PicdX)

where Z(PicdX) = (PicX ×PicX X̂d ∪ X̂d ×PicX PicX), embedding as the locus where
a or b vanish.
Remark 2.7. Again we point out that the notation has changed from the paper
and previous talks. What is being called Ad used to be called Ad, and what is being
called Ad is called A♥d in the paper.
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2.5. The map f . There is a map

f : Md → Ad = X̂d ×PicX X̂d − Z(PicdX)

sending

(L,L′, α, β) 7→ (Nm(L′)⊗Nm(L)−1, a := Nm(α), b := Nm(β))

SoMd is the pre-image of Ad := 〈(L, a, b) : a = b).

3. Properties of Md

We begin with an important alternate description ofMd. There is a map

ι : Md → X̂ ′d ×PicX X̂ ′d.

Recall that X̂ ′d ×PicX X̂ ′d parametrizes
• L,L′ ∈ PicX′ ,
• α ∈ H0(X ′,L), β ∈ H0(X ′,L′) not both 0,
• c : Nm(L) ∼= Nm(L′)}.

In these terms, ι sends

(L,L′, α, β) 7→ (L′ ⊗ L−1,L′ ⊗ σ∗L−1, α, β, canonical).

Proposition 3.1. Keeping the notation above, the map ι is an isomorphism onto
the open subset where a, b don’t both vanish.

Proof. We can ignore the sections; the interesting part is to keep track of the map
on bundles, which looks like

(Pic∗X′ ×Pic∗+dX′ )/PicX → (PicdX′ ×PicX PicdX′)

sending
(L,L′) 7→ (L′ ⊗ L−1,L′ ⊗ σ∗L−1). (3.1)

We’ll show that this is an isomorphism by describing the inverse.
By “looping” the sequences

1→ T → ResF ′/F Gm
Nm−−→ Gm → 1

and
1→ Gm → ResF ′/F Gm → T → 1

we obtain exact sequences of groups stacks

1→ BunT → PicX′
L⊗σ∗L−−−−→ PicX → 1 (3.2)

and
1→ PicX → PicX′

L⊗σ∗L−1

−−−−−−→ BunT → 1. (3.3)
Suppose we have a point (M,M′, c : Nm(M) ∼= Nm(M′)) on the right hand side of
(3.1). Then (3.2) tells us that sinceM andM′ have the same norm, they differ by a
T -bundle. By (3.3), there exist L,L′ such thatM = L′⊗L−1 andM′ = L′⊗σ∗L−1,
and this choice is unique up to multiplication by an element of PicX .

�



DEFINITION AND PROPERTIES OF Md 5

Proposition 3.2. If chark 6= 2 then Md is a Deligne-Mumford stack.

Proof. Md is covered by the open stacks X ′d×PicX X̂
′
d and X̂ ′d×PicX X

′
d, describing

when the sections α and β don’t vanish, respectively. By symmetry, it suffices to
show that one of these is Deligne-Mumford. Consider the cartesian diagram

X ′d ×PicX X̂ ′d X̂ ′d

PicX′

X ′d PicX′ PicX

π

Nm

Nm

The map π is representable, since the fiber over L is H0(X ′,L).
The map Nm is a torsor under ker(PicX′

Nm−−→ PicX), which is the Prym variety
Prym(X ′/X)/µ2, since µ2 is precisely the group of automorphisms of the norm map
on line bundles.

This implies that the fibered product is Deligne-Mumford. �

Remark 3.3. Alternatively, we can establish the Deligne-Mumford property by
showing that the automorphisms groups are étale, i.e. have vanishing tangent space.
We can compute the tangent space to the map

PicX′
Nm−−→ PicX

as follows. The map on tangent spaces is

TNm = H1(X ′,OX′) = H1(X, ν∗OX)
trace−−−→ H1(X,OX)

and the infinitesimal deformations of this map is the kernel of H0(X ′,OX′)
trace−−−→

H0(X,OX), which is just multiplication by 2.

Corollary 3.4. Md is smooth if d > 2g′ − 1.

Proof. The map X̂ ′d → PicdX′ is a vector bundle if d > 2g′ − 1 by Riemann-Roch,
and X̂ ′d ×PicX X ′d =Md. �

Proposition 3.5. The morphism f : Md → Ad is proper. Therefore its restriction
to f : Md → Ad is also proper.

Proof. Recall that f is the map

X̂ ′d ×PicX X̂ ′d − (both 0) Nm−−→ X̂d ×PicX X̂d − (both 0)

where (both 0) refers to the substack where both global sections vanish. So it suffices
to show that the norm map X̂ ′d → X̂d is proper. Note that this is obvious on fibers,
since both X ′d

νd−→ Xd and PicX′
Nm−−→ PicX are proper, the first map being even finite

and the second map having the Prym variety as its kernel.
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To give a formal proof, we compactify. If we define

X̂d = {L ∈ PicdX , s ∈ PH0(X,L ⊕OX)}

then the natural map X̂d → PicX is obviously proper, so X̂d is proper. We have an
open embedding X̂d ↪→ X̂d sending (L, s) 7→ (L, [s : 1]). Note that

X̂ ′d = [(X̂ ′d ×A1 − both 0)/Gm]

X̂d = [(X̂d ×A1 − both 0)/Gm]

where X̂d×A1 parametrizes (L, s ∈ H0(L), f ∈ H0(OX)), and similarly for X ′. The
substack (both 0) refers to the locus where s = f = 0. Then we have a cartesian
diagram

X̂ ′d X̂ ′d

X̂d X̂d

and X̂ ′d → X̂d is proper, so X̂ ′d → X̂d is proper. �
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