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1 Statement of the results

1.1 Setup

Let

• G be a split reductive group over k = k an algebraically closed field of characteristic
p.

• X be a smooth projective geometrically connected curve over k.

• x ∈ |X| and X0 = X − x.

• S be a scheme over k.

• F be a G-bundle over X × S .

1.2 Statement of Theorems

Theorem 1.1. There is a surjective étale map S ′ → S such that the G-bundle F ×S S ′ →
X ×S S ′ has a B-structure.

Definition 1.2. Let F → Y be a G-bundle and B ⊂ G a fixed Borel subgroup. By a B-
structure of F we mean a pair (E, η) such that E is a B-bundle and

η : G ×B E
∼ //

$$

F

��
Y

Remark 1.3. There is a natural bijection

(B-structures of F → Y)↔ (sections s : Y → B\F ).

Here B\F = G\B ×G F .
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Theorem 1.4. If G is semisimple, then there exists a faithfully flat morphism S ′ → S of
finite presentation such that F ×S S ′|X0×S S ′ is trivial. In general, if p - #π1(G) then S ′ → S
can be chosen to be étale (if p = 0, then there are no restrictions).

Remark 1.5. The statements and proofs generalize immediately to a relative curve X
π
−→ S ,

e.g. in Theorem 2 and D ⊂ X a divisor such that π|D : D � S then F |X−D is trivial after base
change.

1.3 The affine Grassmannian

Recall that GrG = LG/L+G is an ind-scheme classifying{
(F , i) :

F = G-bundle/D = Spec k[[t]]
i = trivialization of F |D×

}
Definition 1.6. Define GrG,x to be the moduli space defined by

GrG,x(S ) =

{
(F , i) :

F = G-bundle/X × S
i : F |X0×S

∼
−→ F 0|X0×S

}
where F0 is the trivial bundle.

It is easy to see by a “gluing Lemma” that

GrG,x � GrG .

This isomorphism is almost canonical (up to a choice of uniformizer at x).
Why is this relevant? There is a natural map

π : GrG,x → Bunn(X)

sending (F , i) 7→ F .

Theorem 1.7. Theorem 1.4 says that the map π is surjective in the the faithfully flat topol-
ogy.

This statement of the theorem will be generalized to the Fargues-Fontaine curve.

2 Proof of Theorem 1.1

2.1 A simple case

Suppose S = k = Fp. For the function field of a curve, Steinberg’s Theorem in characteristic
0 or Springer’s Theorem in characteristic p tells us that H1(k(X),G) = 0. From this it
follows that any G-bundle over the generic point η = Spec k(X) is trivial. Of course the
trivial bundle has a B-structure, which by Remark 1.3 is equivalent to a section of B\F |η at
the generic point. Such a section spreads out to some open subset U ⊂ X. By the valuative
criterion for properness applied to B\F → X, the section extends (uniquely) to all of X.
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2.2 Moduli space of B-structures

Remark 2.1. We can replace G by G/Z0, and so assume that G is semisimple.

The idea is to consider the moduli space of all B-structures. We want to show that this
has a section after an étale cover; for this it suffices to show that the map from the moduli
space to S is smooth and surjective.

Definition 2.2. (1) Let T ⊂ B be the maximal torus and ∆ = {α1, . . . , αr} the set of simple
roots. For all i and all B-bundles E → X we can form a line bundle αi(E) → X via
αi : B→ T → Gm, and we define

degi(E) := degαi(E).

(2) Let MF be the moduli space of B-structures of F, so

MF (T ) = {B-structures of F ×S T }.

By the way, there are no automorphisms because a B-structure is a section, and sections
have no automorphisms.

A section can be identified with a subscheme of the product. By the theory of Hilbert
schemes, MF → S is a scheme locally of finite presentation (we do not say “locally of
finite type” because S may not be Noetherian).

We said that we would like the map MF → S to be smooth and surjective. Actually it
is surjective but not smooth. To rectify this, we look at a certain subspace of it.

(3) For every geometric point y ∈ MF (corresponding to a B-bundle Ey → X) we can
consider di(y) := degαi(Ey) ∈ Z. Then di : MF → Z is locally constant. Define M+

F
⊂ MF

to be the set of y ∈ MF such that di(Y) < min{1, 2−2g} for all i. This is a union of connected
components.

Then Theorem 1.1 follows from the two propositions.

Proposition 2.3. The map M+
F
→ S is smooth.

Proposition 2.4. The map M+
F
→ S is surjective.

2.3 Proof of Proposition 2.3

The first proposition is standard deformation theory. Indeed, a geometric point y ∈ M+
F

corresponds to a section σ : X → B\F . A deformation of this B-structure is controlled
by H0(X, σ∗T(B\F )/X). One checks that σ∗T(B\F )/X = (Lie G/Lie B) ×B Ey where Ey is the
B-bundle corresponding to y. By deformation theory it is enough that the obstruction space

H1(X, (Lie G/Lie B) ×B Ey) = 0 for all geometric points y ∈ M+
F .
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The reason is that
Lie G/Lie B =

⊕
α<0

gα.

In particular, it is enough to show that H1(X, gα) = 0 for all α < 0. But we assumed that
deg gαi < 2 − 2g for each simple root αi, so each simple negative weight space has degree
at least 2g − 2. By Riemann-Roch, H1(X, gα) = 0.

Remark 2.5. There was some confusion about why we need the assumption di(Y) < 1. The
answer is that otherwise if g = 0 then we could have di(Y) = 1. For α = αi + α j we would
then have degα = 2, so H1(X, g−α) would have non-vanishing cohomology.

2.4 Proof of Proposition 2.4

We can check Proposition 2 at the level of geometric points. It follows from a more precise
result:

Proposition 2.6. Let F → X be a G-bundle. Then for all N there exists a B-structure E of
F such that degi E < −N for all i.

Example 2.7. Let G = SL2 and F → X a rank 2 bundle. The proposition is saying that
there is a line sub-bundle of degree as small as desired; this is an easy consequence of
Riemann-Roch.

Proof. We proceed with several reductions.

Step 1: we may assume that F is the trivial bundle F0. The reason is that we know that
F |η is trivial (by Steinberg’s or Springer’s theorems), so there is an isomorphism

F |X−D � F 0|X−D

for some divisor D ⊂ X. But then every B-structure of F gives one for F 0, by the valuative
criterion. If the isomorphism v|X−D � F 0|X−D has “relative position h” then there exists
c(h) such that for every B-structure E of F the corresponding B-structure E0 of F 0 satisfies

−c(h) < degi E − degi(E
0) < c(h).

Step 2: we may assume that X = P1 and G is simply connected. Indeed, take any map
X → P1. The pullback of a B-structure for the trivial bundle on P1 will be a B-structure for
the trivial bundle on X.

Step 3: Let Bun<−N
B be the space of B-bundles E with degi E < −N for all i. Then we

claim that Bun−N
B , ∅ for all N. Indeed, a T -bundle induces a B-bundle, and a T -bundle is

just a direct sum of line bundles, which we can arrange to have any degree we want.

Step 4. We claim that the map Bun−N
B → BunG is smooth by Proposition 2.3 if N � 0.

Indeed the fibers of this map over a G-bundle are the B-structures on it, and Proposition 2.3
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shows that this is smooth for N > 2g − 2.

Step 5. Since X = P1, Buntriv
G ⊂ BunG is an open substack. To see this it suffices to

calculate that the map B(G = Aut(triv)) → BunG is étale, which can be done using tangent
spaces since both are smooth. The dimension of BG is − dim G. To calculate the dimension
of BunG, we use that its tangent complex is Lie(G)[1], so the dimension of the tangent space
is

h0(X,Lie(G)) − h1(X,Lie(G)).

This is a bundle of rank dim G and degree 0 (since it’s self-dual by the Killing form). Then
Riemann-Roch shows that

χ(X,Lie(G)) = 0 + (dim G)(1 − g).

The dimension of BunG is (g − 1) dim G in general.

Step 6. Finally, it is a general fact that if G is simply-connected then BunG(X) is ir-
reducible. The trivial bundle is open in BunG, and the map Bun−N

B → G has open image
because it is smooth, so its image intersects the trivial bundle. �

3 Proof of Theorem 1.4

Step 1. We may assume that F comes from a T -torsor ET .

Proof. By Proposition 2.3, we may assume that F has a B-structure E → X × S . We have

B� T ↪→ B.

This gives a map
BunB → BunT → BunB .

In particular from E ∈ BunB we get E′ ∈ BunB.
We may assume that S is affine since we are proving a local assertion. We want to show

that
G ×B E|X0×S � G ×B E′|X0×S .

You’ll see the idea if we just do the proof for GL2. In that case a GL2-bundle is a rank 2
bundle F /X. A B-structure E corresponds to a line sub-bundle F0 ↪→ F . In terms of the
notation above, the G-bundle obtained from E′ is F0 ⊕F /F0. The claim then boils down to
the assertion that

F � F0 ⊕ F /F0.

The result then follows from X0×S is affine, so all the extension groups Ext1(. . .) vanish. �
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Step 2: Reduce to G being simply-connected.

Step 3. Reduce to the GL2 case. The point is that if G is simply-connected then all
T -bundles are controlled by coroots. One can then reduce to showing that two T -bundles
differing by a single coroot are isomorphic locally on S , which moves us into the rank 2
case.

Step 4. Doing the case of GL2. This isn’t semisimple, so one has to find an appropriate
formulation. The statement becomes:

Let F ,F ′ → S be two rank 2 bundles such that detF � detF ′. Then we have

F |X0×S � F
0|X0×S

after Zariski localization on S .

The proof is that after localizing on S we have a filtration

0→ O → F |X0×S → detF |X0×S → 0

since any bundle has “enough” sections after localizing on S and puncturing X. Then the
result follows form the fact that extension groups will vanish after localizing (e.g. so that S
is affine).
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