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1 Statement of the results

1.1 Setup
Let

e G be a split reductive group over k = k an algebraically closed field of characteristic
p.

e X be a smooth projective geometrically connected curve over k.

x €|X]and X° = X — x.

S be a scheme over k.

F be a G-bundle over X x S.

1.2 Statement of Theorems

Theorem 1.1. There is a surjective étale map S’ — S such that the G-bundle ¥ Xg S’ —
X Xs S’ has a B-structure.

Definition 1.2. Let ¥ — Y be a G-bundle and B C G a fixed Borel subgroup. By a B-
structure of ¥ we mean a pair (&, n7) such that E is a B-bundle and

n:GxB& - F

~.,

Y

Remark 1.3. There is a natural bijection
(B-structures of ¥ — Y) < (sections s: Y — B\¥F).

Here B\¥ = G\B xS F.



Theorem 1.4. If G is semisimple, then there exists a faithfully flat morphism S — S of
finite presentation such that ¥ Xs S’|xo. s is trivial. In general, if p £ #71(G) then S" — S
can be chosen to be étale (if p = 0, then there are no restrictions).

Remark 1.5. The statements and proofs generalize immediately to a relative curve X 5s,
e.g. in Theorem 2 and D C X a divisor such that |p: D = S then F|x_p is trivial after base
change.

1.3 The affine Grassmannian
Recall that Grg = LG/L*G is an ind-scheme classifying

{ Fi): F = G-bundle/D = Spec k[[t]]}

i = trivialization of ¥ |px
Definition 1.6. Define Grg x to be the moduli space defined by

Gro.(S) = {(?,’ i F = G-bundle/X x S}

i 7_~|X0><S - 7:0|X0><S
where FY is the trivial bundle.
It is easy to see by a “gluing Lemma” that
GI‘G,X = Grg .

This isomorphism is almost canonical (up to a choice of uniformizer at x).
Why is this relevant? There is a natural map

n: Grgx — Bun,(X)

sending (¥,i) — F.
Theorem 1.7. Theorem[l.4]says that the map r is surjective in the the faithfully flat topol-
0gy.

This statement of the theorem will be generalized to the Fargues-Fontaine curve.

2  Proof of Theorem [1.1]

2.1 A simple case

Suppose S =k = Fp. For the function field of a curve, Steinberg’s Theorem in characteristic
0 or Springer’s Theorem in characteristic p tells us that H'(k(X),G) = 0. From this it
follows that any G-bundle over the generic point 7 = Spec k(X) is trivial. Of course the
trivial bundle has a B-structure, which by Remark is equivalent to a section of B\F |, at
the generic point. Such a section spreads out to some open subset U C X. By the valuative
criterion for properness applied to B\ — X, the section extends (uniquely) to all of X.



2.2 Moduli space of B-structures

Remark 2.1. We can replace G by G/Z°, and so assume that G is semisimple.

The idea is to consider the moduli space of all B-structures. We want to show that this
has a section after an étale cover; for this it suffices to show that the map from the moduli
space to S is smooth and surjective.

Definition 2.2. (1) Let T C B be the maximal torus and A = {a;,...,a,} the set of simple
roots. For all i and all B-bundles & — X we can form a line bundle @;(&) — X via
a;: B—> T — G, and we define

deg;(E) := deg a;i(E).
(2) Let M# be the moduli space of B-structures of F, so
Mg(T) = {B-structures of ¥ xg T'}.

By the way, there are no automorphisms because a B-structure is a section, and sections
have no automorphisms.

A section can be identified with a subscheme of the product. By the theory of Hilbert
schemes, My — S is a scheme locally of finite presentation (we do not say “locally of
finite type” because S may not be Noetherian).

We said that we would like the map M# — S to be smooth and surjective. Actually it
is surjective but not smooth. To rectify this, we look at a certain subspace of it.

(3) For every geometric point y € Mg (corresponding to a B-bundle &, — X) we can
consider d;(y) := deg @;(&,) € Z. Then d;: My — Z is locally constant. Define M;_ C Mg
to be the set of y € M such that d;(Y) < min{1, 2—2g} for all i. This is a union of connected
components.

Then Theorem [[.T| follows from the two propositions.
Proposition 2.3. The map M;; — S is smooth.

Proposition 2.4. The map M;; — S is surjective.

2.3 Proof of Proposition 2.3]

The first proposition is standard deformation theory. Indeed, a geometric point y € M;;
corresponds to a section o: X — B\¥. A deformation of this B-structure is controlled
by H(X, 0*T(s\7)x)- One checks that o*T(z s x = (Lie G/ Lie B) xE &, where &, is the
B-bundle corresponding to y. By deformation theory it is enough that the obstruction space

H 1(X, (Lie G/ Lie B) xB &y) = 0 for all geometric points y € M;.



The reason is that
Lie G/ Lie B = @ 0o

a<0

In particular, it is enough to show that H'(X, g,) = O for all @ < 0. But we assumed that
deg gy, < 2 — 2g for each simple root «;, so each simple negative weight space has degree
at least 2g — 2. By Riemann-Roch, H'(X, g,) = 0.

Remark 2.5. There was some confusion about why we need the assumption d;(Y) < 1. The
answer is that otherwise if g = 0 then we could have d;(Y) = 1. For @ = a; + a; we would
then have deg @ = 2, so H'(X, g_,) would have non-vanishing cohomology.

2.4 Proof of Proposition 2.4

We can check Proposition 2 at the level of geometric points. It follows from a more precise
result:

Proposition 2.6. Let ¥ — X be a G-bundle. Then for all N there exists a B-structure & of
F such that deg; & < —N for all i.

Example 2.7. Let G = SL, and ¥ — X a rank 2 bundle. The proposition is saying that
there is a line sub-bundle of degree as small as desired; this is an easy consequence of
Riemann-Roch.

Proof. We proceed with several reductions.

Step I: we may assume that ¥ is the trivial bundle 7. The reason is that we know that
¥ 1, is trivial (by Steinberg’s or Springer’s theorems), so there is an isomorphism

0
Flx-p = F " lx-p

for some divisor D c X. But then every B-structure of ¥ gives one for 7, by the valuative
criterion. If the isomorphism v|y_p = F Olx_p has “relative position & then there exists
c(h) such that for every B-structure & of ¥ the corresponding B-structure & of 7 satisfies

—c(h) < deg; & — deg;(E°) < c(h).

Step 2: we may assume that X = P! and G is simply connected. Indeed, take any map
X — P!. The pullback of a B-structure for the trivial bundle on P! will be a B-structure for
the trivial bundle on X.

Step 3: Let BunE‘N be the space of B-bundles & with deg; & < —N for all i. Then we
claim that Bun;}N # 0 for all N. Indeed, a T-bundle induces a B-bundle, and a 7-bundle is
just a direct sum of line bundles, which we can arrange to have any degree we want.

Step 4. We claim that the map Bunl;N — Bung is smooth by Proposition if N > 0.
Indeed the fibers of this map over a G-bundle are the B-structures on it, and Proposition [2.3|
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shows that this is smooth for N > 2g — 2.

Step 5. Since X = P!, BungiV C Bung is an open substack. To see this it suffices to
calculate that the map B(G = Aut(triv)) — Bung is étale, which can be done using tangent
spaces since both are smooth. The dimension of BG is —dim G. To calculate the dimension
of Bung, we use that its tangent complex is Lie(G)[1], so the dimension of the tangent space
is

1°(X, Lie(G)) — h' (X, Lie(G)).

This is a bundle of rank dim G and degree O (since it’s self-dual by the Killing form). Then
Riemann-Roch shows that
x(X,Lie(G)) = 0 + (dim G)(1 — g).

The dimension of Bung is (g — 1) dim G in general.

Step 6. Finally, it is a general fact that if G is simply-connected then Bung(X) is ir-
reducible. The trivial bundle is open in Bung, and the map Bunl‘gN — G has open image
because it is smooth, so its image intersects the trivial bundle. O

3 Proof of Theorem 1.4

Step 1. We may assume that ' comes from a 7'-torsor Er.

Proof. By Proposition [2.3] we may assume that F has a B-structure & — X X S. We have
B—»T—B.

This gives a map
Bung — Buny — Bung.

In particular from € € Bung we get & € Bung.
We may assume that S is affine since we are proving a local assertion. We want to show
that
G X8 Elyons = G xB & 504

You’ll see the idea if we just do the proof for GL;. In that case a GL;-bundle is a rank 2
bundle ¥ /X. A B-structure & corresponds to a line sub-bundle 7y < ¥ . In terms of the
notation above, the G-bundle obtained from &’ is Fo ® F /Fo. The claim then boils down to
the assertion that

F =FodF /Fo.

The result then follows from X°x is affine, so all the extension groups Ext'(...) vanish. O



Step 2: Reduce to G being simply-connected.

Step 3. Reduce to the GL, case. The point is that if G is simply-connected then all
T-bundles are controlled by coroots. One can then reduce to showing that two 7-bundles
differing by a single coroot are isomorphic locally on S, which moves us into the rank 2
case.

Step 4. Doing the case of GL,. This isn’t semisimple, so one has to find an appropriate
formulation. The statement becomes:

Let F,F' — S be two rank 2 bundles such that det ¥ = det F’. Then we have
Flxoxs = FOlyoxs
after Zariski localization on S .
The proof is that after localizing on S we have a filtration
0= 0 - Flyoxs = detFlyong = 0

since any bundle has “enough” sections after localizing on S and puncturing X. Then the
result follows form the fact that extension groups will vanish after localizing (e.g. so that S
is affine).
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