Beauville-Laszlo Uniformization

Notes by Tony Feng for a talk by Yakov Varshavsky

April 6, 2016

1 Statement of the results

1.1 Setup

Let

- G be a split reductive group over $k = \overline{k}$ an algebraically closed field of characteristic p.
- *X* be a smooth projective geometrically connected curve over *k*.
- $x \in |X|$ and $X^0 = X x$.
- *S* be a scheme over *k*.
- \mathcal{F} be a *G*-bundle over $X \times S$.

1.2 Statement of Theorems

Theorem 1.1. There is a surjective étale map $S' \to S$ such that the *G*-bundle $\mathcal{F} \times_S S' \to X \times_S S'$ has a *B*-structure.

Definition 1.2. Let $\mathcal{F} \to Y$ be a *G*-bundle and $B \subset G$ a fixed Borel subgroup. By a *B*-structure of \mathcal{F} we mean a pair (\mathcal{E}, η) such that *E* is a *B*-bundle and

Remark 1.3. There is a natural bijection

(*B*-structures of $\mathcal{F} \to Y$) \leftrightarrow (sections $s: Y \to B \backslash \mathcal{F}$).

Here $B \setminus \mathcal{F} = G \setminus B \times^G \mathcal{F}$.

Theorem 1.4. If G is semisimple, then there exists a faithfully flat morphism $S' \to S$ of finite presentation such that $\mathcal{F} \times_S S'|_{X^0 \times_S S'}$ is trivial. In general, if $p \nmid \#\pi_1(G)$ then $S' \to S$ can be chosen to be étale (if p = 0, then there are no restrictions).

Remark 1.5. The statements and proofs generalize immediately to a relative curve $X \xrightarrow{\pi} S$, e.g. in Theorem 2 and $D \subset X$ a divisor such that $\pi|_D \colon D \cong S$ then $\mathcal{F}|_{X-D}$ is trivial after base change.

1.3 The affine Grassmannian

Recall that $Gr_G = LG/L^+G$ is an ind-scheme classifying

$$\begin{cases} (\mathcal{F}, i) \colon \mathcal{F} = G\text{-bundle}/D = \text{Spec } k[[t]] \\ i = \text{ trivialization of } \mathcal{F}|_{D^{\times}} \end{cases}$$

Definition 1.6. Define $Gr_{G,x}$ to be the moduli space defined by

$$\operatorname{Gr}_{G,x}(S) = \left\{ (\mathcal{F}, i) \colon \frac{\mathcal{F} = G \operatorname{-bundle}/X \times S}{i \colon \mathcal{F}|_{X^0 \times S} \xrightarrow{\sim} \mathcal{F}^0|_{X^0 \times S}} \right\}$$

where F^0 is the trivial bundle.

It is easy to see by a "gluing Lemma" that

$$\operatorname{Gr}_{G,x} \cong \operatorname{Gr}_G$$
.

This isomorphism is almost canonical (up to a choice of uniformizer at *x*).

Why is this relevant? There is a natural map

$$\pi \colon \operatorname{Gr}_{G,x} \to \operatorname{Bun}_n(X)$$

sending $(\mathcal{F}, i) \mapsto \mathcal{F}$.

Theorem 1.7. Theorem 1.4 says that the map π is surjective in the the faithfully flat topology.

This statement of the theorem will be generalized to the Fargues-Fontaine curve.

2 **Proof of Theorem 1.1**

2.1 A simple case

Suppose $S = k = \overline{\mathbb{F}}_p$. For the function field of a curve, Steinberg's Theorem in characteristic 0 or Springer's Theorem in characteristic *p* tells us that $H^1(k(X), G) = 0$. From this it follows that any *G*-bundle over the generic point $\eta = \text{Spec } k(X)$ is trivial. Of course the trivial bundle has a *B*-structure, which by Remark 1.3 is equivalent to a section of $B \setminus \mathcal{F}|_{\eta}$ at the generic point. Such a section spreads out to some open subset $U \subset X$. By the valuative criterion for properness applied to $B \setminus \mathcal{F} \to X$, the section extends (uniquely) to all of *X*.

2.2 Moduli space of *B*-structures

Remark 2.1. We can replace G by G/Z^0 , and so assume that G is semisimple.

The idea is to consider the moduli space of all B-structures. We want to show that this has a section after an étale cover; for this it suffices to show that the map from the moduli space to S is smooth and surjective.

Definition 2.2. (1) Let $T \subset B$ be the maximal torus and $\Delta = \{\alpha_1, \ldots, \alpha_r\}$ the set of simple roots. For all *i* and all *B*-bundles $\mathcal{E} \to X$ we can form a line bundle $\alpha_i(\mathcal{E}) \to X$ via $\alpha_i \colon B \to T \to \mathbb{G}_m$, and we define

$$\deg_i(\mathcal{E}) := \deg \alpha_i(\mathcal{E}).$$

(2) Let $M_{\mathcal{F}}$ be the moduli space of *B*-structures of *F*, so

 $M_{\mathcal{F}}(T) = \{B\text{-structures of } \mathcal{F} \times_S T\}.$

By the way, there are no automorphisms because a *B*-structure is a section, and sections have no automorphisms.

A section can be identified with a subscheme of the product. By the theory of Hilbert schemes, $M_{\mathcal{F}} \rightarrow S$ is a scheme locally of finite presentation (we do not say "locally of finite type" because S may not be Noetherian).

We said that we would like the map $M_{\mathcal{F}} \to S$ to be smooth and surjective. Actually it is surjective but not smooth. To rectify this, we look at a certain subspace of it.

(3) For every geometric point $y \in M_{\mathcal{F}}$ (corresponding to a *B*-bundle $\mathcal{E}_y \to X$) we can consider $d_i(y) := \deg \alpha_i(\mathcal{E}_y) \in \mathbb{Z}$. Then $d_i : M_{\mathcal{F}} \to \mathbb{Z}$ is locally constant. Define $M_{\mathcal{F}}^+ \subset M_{\mathcal{F}}$ to be the set of $y \in M_{\mathcal{F}}$ such that $d_i(Y) < \min\{1, 2-2g\}$ for all *i*. This is a union of connected components.

Then Theorem 1.1 follows from the two propositions.

Proposition 2.3. The map $M_{\mathcal{F}}^+ \to S$ is smooth.

Proposition 2.4. The map $M^+_{\mathcal{F}} \to S$ is surjective.

2.3 **Proof of Proposition 2.3**

The first proposition is standard deformation theory. Indeed, a geometric point $y \in M_{\mathcal{F}}^+$ corresponds to a section $\sigma: X \to B \setminus \mathcal{F}$. A deformation of this *B*-structure is controlled by $H^0(X, \sigma^*T_{(B\setminus \mathcal{F})/X})$. One checks that $\sigma^*T_{(B\setminus \mathcal{F})/X} = (\text{Lie } G/\text{Lie } B) \times^B \mathcal{E}_y$ where \mathcal{E}_y is the *B*-bundle corresponding to *y*. By deformation theory it is enough that the obstruction space

 $H^1(X, (\text{Lie } G/\text{Lie } B) \times^B \mathcal{E}_y) = 0$ for all geometric points $y \in M_F^+$.

The reason is that

$$\operatorname{Lie} G/\operatorname{Lie} B = \bigoplus_{\alpha < 0} \mathfrak{g}_{\alpha}.$$

In particular, it is enough to show that $H^1(X, \mathfrak{g}_{\alpha}) = 0$ for all $\alpha < 0$. But we assumed that deg $\mathfrak{g}_{\alpha_i} < 2 - 2g$ for each simple root α_i , so each simple negative weight space has degree at least 2g - 2. By Riemann-Roch, $H^1(X, \mathfrak{g}_{\alpha}) = 0$.

Remark 2.5. There was some confusion about why we need the assumption $d_i(Y) < 1$. The answer is that otherwise if g = 0 then we could have $d_i(Y) = 1$. For $\alpha = \alpha_i + \alpha_j$ we would then have deg $\alpha = 2$, so $H^1(X, g_{-\alpha})$ would have non-vanishing cohomology.

2.4 **Proof of Proposition 2.4**

We can check Proposition 2 at the level of geometric points. It follows from a more precise result:

Proposition 2.6. Let $\mathcal{F} \to X$ be a *G*-bundle. Then for all *N* there exists a *B*-structure \mathcal{E} of \mathcal{F} such that deg_i $\mathcal{E} < -N$ for all *i*.

Example 2.7. Let $G = SL_2$ and $\mathcal{F} \to X$ a rank 2 bundle. The proposition is saying that there is a line sub-bundle of degree as small as desired; this is an easy consequence of Riemann-Roch.

Proof. We proceed with several reductions.

Step 1: we may assume that \mathcal{F} is the trivial bundle \mathcal{F}_0 . The reason is that we know that $\mathcal{F}|_{\eta}$ is trivial (by Steinberg's or Springer's theorems), so there is an isomorphism

$$\mathcal{F}|_{X-D} \cong \mathcal{F}^0|_{X-D}$$

for some divisor $D \subset X$. But then every *B*-structure of \mathcal{F} gives one for \mathcal{F}^0 , by the valuative criterion. If the isomorphism $v|_{X-D} \cong \mathcal{F}^0|_{X-D}$ has "relative position *h*" then there exists c(h) such that for every *B*-structure \mathcal{E} of \mathcal{F} the corresponding *B*-structure \mathcal{E}^0 of \mathcal{F}^0 satisfies

$$-c(h) < \deg_i \mathcal{E} - \deg_i (\mathcal{E}^0) < c(h).$$

Step 2: we may assume that $X = \mathbb{P}^1$ and *G* is simply connected. Indeed, take any map $X \to \mathbb{P}^1$. The pullback of a *B*-structure for the trivial bundle on \mathbb{P}^1 will be a *B*-structure for the trivial bundle on *X*.

Step 3: Let $\operatorname{Bun}_B^{<-N}$ be the space of *B*-bundles \mathcal{E} with $\deg_i \mathcal{E} < -N$ for all *i*. Then we claim that $\operatorname{Bun}_B^{-N} \neq \emptyset$ for all *N*. Indeed, a *T*-bundle induces a *B*-bundle, and a *T*-bundle is just a direct sum of line bundles, which we can arrange to have any degree we want.

Step 4. We claim that the map $\operatorname{Bun}_B^{-N} \to \operatorname{Bun}_G$ is smooth by Proposition 2.3 if $N \gg 0$. Indeed the fibers of this map over a *G*-bundle are the *B*-structures on it, and Proposition 2.3 shows that this is smooth for N > 2g - 2.

Step 5. Since $X = \mathbb{P}^1$, $\operatorname{Bun}_G^{\operatorname{triv}} \subset \operatorname{Bun}_G$ is an open substack. To see this it suffices to calculate that the map $B(G = \operatorname{Aut}(\operatorname{triv})) \to \operatorname{Bun}_G$ is étale, which can be done using tangent spaces since both are smooth. The dimension of BG is $-\dim G$. To calculate the dimension of Bun_G , we use that its tangent complex is $\operatorname{Lie}(G)[1]$, so the dimension of the tangent space is

$$h^0(X, \operatorname{Lie}(G)) - h^1(X, \operatorname{Lie}(G))$$

This is a bundle of rank dim G and degree 0 (since it's self-dual by the Killing form). Then Riemann-Roch shows that

$$\chi(X, \text{Lie}(G)) = 0 + (\dim G)(1 - g).$$

The dimension of Bun_G is $(g - 1) \dim G$ in general.

Step 6. Finally, it is a general fact that if G is simply-connected then $\operatorname{Bun}_G(X)$ is irreducible. The trivial bundle is open in Bun_G , and the map $\operatorname{Bun}_B^{-N} \to G$ has open image because it is smooth, so its image intersects the trivial bundle.

3 Proof of Theorem 1.4

Step 1. We may assume that F comes from a T-torsor \mathcal{E}_T .

Proof. By Proposition 2.3, we may assume that *F* has a *B*-structure $\mathcal{E} \to X \times S$. We have

$$B \twoheadrightarrow T \hookrightarrow B$$

This gives a map

 $\operatorname{Bun}_B \to \operatorname{Bun}_T \to \operatorname{Bun}_B$.

In particular from $\mathcal{E} \in \operatorname{Bun}_B$ we get $\mathcal{E}' \in \operatorname{Bun}_B$.

We may assume that S is affine since we are proving a local assertion. We want to show that

$$G \times^{B} \mathcal{E}|_{X^{0} \times S} \cong G \times^{B} \mathcal{E}'|_{X^{0} \times S}$$

You'll see the idea if we just do the proof for GL₂. In that case a GL₂-bundle is a rank 2 bundle \mathcal{F}/X . A *B*-structure \mathcal{E} corresponds to a line sub-bundle $\mathcal{F}_0 \hookrightarrow \mathcal{F}$. In terms of the notation above, the *G*-bundle obtained from \mathcal{E}' is $\mathcal{F}_0 \oplus \mathcal{F}/\mathcal{F}_0$. The claim then boils down to the assertion that

$$\mathcal{F} \cong \mathcal{F}_0 \oplus \mathcal{F} / \mathcal{F}_0.$$

The result then follows from $X^0 \times S$ is affine, so all the extension groups $Ext^1(...)$ vanish. \Box

Step 2: Reduce to G being simply-connected.

Step 3. Reduce to the GL_2 case. The point is that if G is simply-connected then all T-bundles are controlled by coroots. One can then reduce to showing that two T-bundles differing by a single coroot are isomorphic locally on S, which moves us into the rank 2 case.

Step 4. Doing the case of GL_2 . This isn't semisimple, so one has to find an appropriate formulation. The statement becomes:

Let $\mathcal{F}, \mathcal{F}' \to S$ be two rank 2 bundles such that $\det \mathcal{F} \cong \det \mathcal{F}'$. Then we have

$$\mathcal{F}|_{X^0 \times S} \cong \mathcal{F}^0|_{X^0 \times S}$$

after Zariski localization on S.

The proof is that after localizing on *S* we have a filtration

$$0 \to \mathcal{O} \to \mathcal{F}|_{X^0 \times S} \to \det \mathcal{F}|_{X^0 \times S} \to 0$$

since any bundle has "enough" sections after localizing on S and puncturing X. Then the result follows form the fact that extension groups will vanish after localizing (e.g. so that S is affine).