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Learning kernels
Learning kernels in operators

Learn the kernel ¢: Rylu] + ¢ = f

from data: N
D = {(Uk, f) ket>  (Uk,Tx) € X XY

@ Operator Ry[u](x) = [ ¢(x — y)g[ul(x, y)dy
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Learning kernels
e0

Learning kernels in operators

Learn the kernel ¢: Rylu] + ¢ = f

from data: N
D = {(Uk, f) ket>  (Uk,Tx) € X XY

@ Operator Ry[u](x) = [ ¢(x — y)g[u](x, y)dy
» Interacting partlcles/agents

Rl = V(K] = -, () = o) % € B

1 — U o
Ro[Xi) = [~ 21 Ko(X{ = X1)],; = Xe + W4, R"™
j:
» Nonlocal PDEs:

Rylul(x / o(x — Y)[u(y) — u(x)]dy = Oyt — v.

» Integral operators, Toeplitz matrix: Ryu = (o(X; — X))u;) = f
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Learning kernels
o] ]

Learning kernels in operators

Learn the kernel ¢: Rylu] +e=f

from data:
D= {(Uk7 fk)}y:h (Uk, fk) ceXxY

@ Operator Ry[u](x) = [ ¢(x — y)g[ul(x, y)dy
@ Statistical Iearnlng () inverse problem

» random {(ux, f)}:  statistical learning
» deterministic (e.g., N small): inverse problem
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Learning kernels
[ ]

Learning kernels in operators

Classical learning Learning kernels Operator learning
{( p(x) +€)} (g Ryl] + mp)} { (g RIue] + 1) }
Local dependence Nonlocal dependence t Local dependence
e ._,.'."' BN S Valuesare  poi o N i
‘o e ee undetermined o -\, Lo :
# @ from data ® oe
T X X I u

@ Nonlocal dependence
@ low-dimensional structure; linear in ¢
@ methods: regression/Neural network
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Learning kernels
[ ]

Learning kernels in operators

Classical learning Learning kernels Operator learning
{( p(x) +€)} (g Ryl] + mp)} { (g RIue] + 1) }
Local dependence Nonlocal dependence t Local dependence
o) o s BN .,.'.(/)(X Values are Riul * &« 5 . _’_'.
‘o e ee undetermined o So o=
. &8 from data . @
T X x I u

@ Nonlocal dependence
@ low-dimensional structure; linear in ¢
@ methods: regression/Neural network

This talk: = Convergent estimator as mesh refines
@ understand the ill-posed inverse problem
@ introduce a new regularization norm
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Regression and regularization

Part 2: Regression and regularization



Regression and regularization
[ ]

Nonparametric regression

Loss functional: &(¢) = %Z,’L | Rplui] — f,-Hfz.

Hypothesis space: ¢ = >_7; ci¢j € Hp = span{¢;}] ;-

£(¢) = ¢ Anc—2¢ " by+Cl, = b1, = Y _ Cicbj, Where C = A, "By,
i
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Regression and regularization
[ ]

Nonparametric regression

Loss functional: &£(¢) = %Z,’L | Rplui] — f,-Hfz.
Hypothesis space: ¢ = 3L, ci¢j € Hn = span{¢;}7_;:
£(¢) = ¢ Anc—2¢ " by+Cl, = b1, = Y _ Cicbj, Where C = A by,
i
Three issues
o A ill-conditioned/singular

@ Choice of Hp: {9}/ and n
@ Convergence when data mesh refines Ax — 0
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Regression and regularization
000

Regularization

Regularization is necessary:
@ A, ill-conditioned
@ b,: noise or numerical error

Tikhonov/ridge Regularization:
— —T
Ex(9) = E(8) + A8]1Z = ¢ Anc — 2B, ¢+ Alc|3,

QA%\-L” = Zaf\qb,, where ¢ = (A, + AB.)"'by,
i
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Regression and regularization
000

Regularization

Regularization is necessary:

@ A, ill-conditioned

@ b,: noise or numerical error
Tikhonov/ridge Regularization:

— —T
Ex(#) = E(¢) + N 92 = ¢ Anc — 2B, ¢ + \||c|[3.

QA%\-L” = Zaf\qf),, where ¢ = (A, + AB,) by,
i

L-curve and normal vector 10 signed curvature
@ )\ by the L-curve method Hansenoo] . )

curvature
[N

(x(A), ¥(\)) := (log(£(c)), log(lIex12)), QE’:;

A« = maximal curvature

=)

2 1 0

PR
@ Which norm || - ||. to use? B, = I,? log5(c'Ac - 20'c)




Regression and regularization
(o] e

Principle: istarteot0]
Avoid discretization until the last possible moment

!

Avoid basis selection until the last possible moment

Hypothesis space: ¢ = Y"1, Ci¢j € Hp = span{¢;}7_,:

Rylul(x / o(1x — y)alul(x, y)ay = f

Function space of ¢? Identifiability?
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Regression and regularization
ooe

Part 3: Identifiability & regularization

DARTR: Data adpative RKHS Tikhonov regularization
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Identifiability and DARTR
o

|dentifiability

@ An exploration measure: p(dr) =¢ell
Rolul(x) = [ &(Ix — yDglul(x, y)dy, p(dr) o< [ [d)x— y|(df)|g[U X, y)|dxdy
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Identifiability and DARTR
o

|dentifiability

@ An exploration measure: p(dr) =¢ell
Ry[ul(x) = [q &(Ix — yDglul(x, y)dy, p(dr) oc [ [ d)x— y|(dr)|g[u X, y)|dxdy
@ An integral operator < the Fréchet derivative of loss functional

1 N
£ 1[}) = N Z HRw[UI] - fl”%Z = <£é¢a¢>Li - 2<¢D7¢>L%
i=1

VEW) =2Lgp —2¢° =0 = ¢ = L5 "¢P
» Lg: nonnegative compact, {(\;, i)}, Ai 4 0
> ¢D — £5¢true + ¢error
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Identifiability and DARTR
o

|dentifiability

@ An exploration measure: p(dr) =¢ell
Ry[ul(x) = [q &(Ix — yDglul(x, y)dy, p(dr) oc [ [ d)x— y|(dr)|g[u X, y)|dxdy
@ An integral operator < the Fréchet derivative of loss functional

1 N
£ 1[}) = N Z HRw[UI] - fl”%Z = <£é¢a¢>Li - 2<¢D7¢>L%
i=1

VEW) =2Lgp —2¢° =0 = ¢ = L5 "¢P
» Lg: nonnegative compact, {(\;, i)}, Ai 4 0

> ¢D — £5¢true + ¢error
@ Function space of identifiability (FSOI):

6= Lg (Lgbrue+d™) = H=Null(Lg)" = span{ti}in>0
» ill-defined beyond H; ill-posed in H
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Identifiability and DARTR
@00

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

data-dependent H = span{t;}i.,>0
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Identifiability and DARTR
@00

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

- 2
data-dependent H = span{%;}.x,>0= HGL”

o G =RKHS: Hg = £5'/?(L2)
@ For ¢ = 3", ok, ||¢||fg =2k Ch

1915, =D Nc'ck = (Lg ')z
k
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Identifiability and DARTR
@00

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

- 2
data-dependent H = span{%;}.x,>0= HGL”

o G =RKHS: Hg = £5'/?(L2)
@ For ¢ = 3", ok, ||¢||fg =2k Ch

1915, =D Nc'ck = (Lg ')z
k

= Regularization norm: ||¢||%
E(9) = E(9) + Ml9l5, = (Lg+ ALg ) Pz — 2(¢P, O)i2

or = (Lg+ Mg )P = (Lg% + M)~ LgpP
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Identifiability and DARTR
(o] le}

What DARTR has done: remove error outside FSOI:
(Adaptive to data; regularize in FSOI )

@ No regularization:

(E: £§_1¢D — £ ( G¢true+¢/-/or+ urm)

® DARTR: |42, = oo
(Le+ AL )"0 = (Lg+ Mg ) (Lgdme + 65°)
@ /2 or L2 regularizer: with C =" ¢; ® ¢jor C = |

(Lg+AC)'¢P = (L5 + AC) ™ (Lgbime + 57 + 051")
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Identifiability and DARTR
[e]e] ]

DARTR: computation

Ex(¢) = £(9) + Al|9||fy, = ¢ Anc —2b; ¢ + Alc||f

rkhs

Input: Ay, by and By, = ((¢;, ¢,y L2) ).
Output: reguarized estimator

EA = (An + )\*Brkhs)_1bn
@ Generalized eigenvalue problem (Ap, By) < L&
Anv = BnV/\ and VTBnV = ln

Brns = (VA VT)T
@ L-curve to select A,
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Identifiability and DARTR
[ le]

Interaction kernel in a nonlinear operator

X

Rolu] = V- [u(Ky x u)] = f, Ky = ¢(!X\)m

@ Recover kernel from discrete noisy data
@ Robust in accuracy, consistent rates as mesh refines

12 L2 RKHS 1

P —— - <
%
= E] AN
g 2 2os RN
3. N
=H107 4 -k ~2
£ - L2 ~3
@ ~& RKHS 1
= <
N -
Ts10” E] bo— — o v p-—"
€9 T 205
85 > @ \
I g | il
2 8

= = 0
g 10*
s
8

Ax=0.0125%{1,2,4,8,16} A x=0.0125x{1,2,4,8,16} A x=0.0125x{1,2,4,8,16} 05 7 p

~©-nsr =0.1, error ~&-nsr = 1.0, error —o-nsr=0.1, loss ~¢ nsr=1.0, loss nsr
Typical estimattr)rs, Ax =0.05 Convergence of Estimators, nsr=0.1 & 1 Convergence Rates
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Identifiability and DARTR
°

More robust L-curve

12 L2 RKHS

L-curve with norm: 2 5 Signed curvature L-curve with norm: L2 4 5 Signed curvature L-curve with norm: RKHS 5o -Signed curvature
® ), =000031084 3 2
1 15
2 2 2 15
05 1
1 1
o1 b O © 10
=0 H = § [ 1,=00013042
) ] 05 g o =0
g 3 s

4 0 i} - )
2 4 3 15 15 0

- 2
-3 @ ) =0.0074011

3 2 A
log,  (I1AX-bll)

-1

3 -2
10° 10° log,(IIAX-bll)

o -4 2
log (I1AX-bl)

5 0
10° 10 10 10
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Identifiability and DARTR
[ ]

Homogenization of wave propagation in meta-material

@ heterogeneous bar with microstructure + DNS =- Data
@ Homogenization: Laves)

Rolu] = [ &(lyD)lu(x +y) — u(x)ldy = Opu — 9.

(@) Wave propagation in (c) 1I?)eagulanzer 12 Regularizer L2 Regularizer SIDA-RKHS
a heterogeneous bar X
@ 200
3 200 f\
s 100 \
~ Z 0 Ao 10
e ke T A N
—_— 3 100 o A
-1
,L—. 0 1 2 0 1 2 0 1 2
r r
'ﬁ ((211 — 0.6 [~ 06— ——
Az S0.4 \ 0.4 A\ 0.4 \
20.2 \ 0.2 \ 0.2
Y | \ I
®) b e o 2 4 0
Displacement error on a © Angular frequency Angular frequency Angular frequency
cross-validation dataset (e) 100
[ 50 |
= «, 50 ol
Resolution 12 L2 SIDA-RKHS 3 50|
Coarse (Az = 0.05)[23.5% 28.4%  21.8% o 100 ‘
Fine (Az = 0.025) | INF 234%  192% 0 50 100 50 100 50 100
Wave number Wave number Wave number
—DNS coarse dataset 1 coarse dataset 2 fine dataset

@ (c): resolution-invariant
@ (e): 2 and L2 leading to non-physical kernel
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Iterative method

Part 4: lterative method

Large scale Ax = b, A e R™"ill-conditioned, n >> 1
b: noisy
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Iterative method

DARTR for Ax =b

An=ATA b,=ATband B, = diag(p).
E)\ = (An + )\*Brkhs)_1 bn

@ p = normalized column sum of (|Aj|): pre-conditioning

@ Generalized eigenvalue problem (Ap, By)
AV =B,VAand VT B,V = I, = Byps = (VAVT)T
Bins = Al, when B, = I,

@ L-curve to select ),
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Iterative method

DARTR for Ax =b

An=ATA b,=ATband B, = diag(p).
E)\ = (An + )\*Brkhs)_1 bn

@ p = normalized column sum of (|Aj|): pre-conditioning

@ Generalized eigenvalue problem (Ap, By)
AV =B,VAand VT B,V = I, = Byps = (VAVT)T
Bins = Al, when B, = I,

@ L-curve to select ),

Direct method: based on costly matrix decomposition.

Iterative method: use but without computing Bjyns?
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Iterative method

Iterative Data Adaptive RKHS regularization

Solve: xx = argmin || x||g,,,
XEXy

Sk = span{(B/,, AT A)' B!, ATb}k

Xk = {x : Minyes, [|Ax — bl|}

e Use B/, not Byps: Bl,,. = B~ 1ATAB"!
@ generalized Golub-Kahan bidiagonalization (gGKB)
= construct Sy only using matrix-vector product

@ Si = RKHS-restricted Krylov subspace
@ Early stopping: select k
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Iterative method

Computational complexity

DARTR: O(n®)
iDARR: O(3mnk)

4 ; : .
-%-DARTR

3 -9-iDARR |
70([’!3)

2 —O0(n)

3 - ="

Iog10 Computational Time (seconds)
o

200 400 800 1600 3200 6400 12800
n

30/36



Iterative method

Fredholm integral equation: 1st kind

Polynomial decaying spectrum:

eigenvalues of A and (A.8)
—egvaa
- [-=—eigval a8)

True function outside FSOI

True function in FSOI
Estimated solution Estimated y Estimated solution 08 Estimatedy
07
4 —True 1 Observed [—True Observed!
IR-2 —True 06| IR2 —True
IRL2 IR2 IR-L2 IR2
2 iDARR 05 ’r/\- IR-L2 05 iDARR IR-L2
rho / iDARR tho 025/ | iDARR
2o g / ™ g |
/ 03 02f VA A A A i
A P N AAANAA
2| . / 02 sl §
-4 ' 0.5
0.1
1 2 4 5 0 1 2 3 4 5 1 2 3 4 5 0 1 2 3 4 5
u t u t
2 15 15 ¥
| URE Mterative Methods | "2 Direct Methods | A%  Iterative Methods 2 Direct Methods
5 -0 IDARR 1| -0 RKHS . -0 IDARR ~6 RKHS
£ os 05 05
5
N;\ 0 e §
L 0 TR $ 0
g 05 = F 05| e B 05
g i pE
4 . . & 4 4
: &--F 1
- 1.5
0.06250.125 025 05 1 0.06250.125 025 05 1 0.06250.125 025 05 1 0.06250.125 025 05 1
nsr

nsr
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Image deblurring

I, relative error

15 relative error

True image

Image
deblurring

Gazzola+Hansen+Nagy2019
256x256; 320x320

LSQR recons., k = 133 iDARR recons., k = 111

25

20

151

100

LSQR recons., k = 102 hybrid-12 recons., k = 21

40 B0 B0 100 120 140 160 180 B
Iteration - o

Iterative method
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Iterative method

Regularization:

Is DA-RKHS better than other norms?

@ No regularizer is universally "best"

» no universal criteria: similar to Prior in Bayesian learning
» Multiple factors: Smoothness of true function, Operator
spectral decay, Noise distribution, hyper-parameter
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Iterative method

Regularization:

Is DA-RKHS better than other norms?

@ No regularizer is universally "best"

» no universal criteria: similar to Prior in Bayesian learning

» Multiple factors: Smoothness of true function, Operator
spectral decay, Noise distribution, hyper-parameter

@ Small noise analysis [CLLW22,LuOu23,LangLu23]

» Data-Adaptive is important
fractional RKHS Hg = L¥?12

» Convergence rate: same as L2, a smaller factor

» Robust for selection of hyper-parameter
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Iterative method

Summary

Learning kernels in operators:
Rolul =« D ={(uk, f)}_s

Nonlocal dependence
@ Identifiability: FSOI

@ DARTR: data adaptive RKHR Tikhonov-Reg

» Synthetic data: convergent, robust to noise
» Homogenization: resolution-independent

@ lterative method: iDARR
Regularization: Ax = b= x, = (A+ A A" ")b
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Iterative method

Future directions
Learning with nonlocal dependence

Classical learning Learning kernel
@ Convergence: Ax, N {0, 05) + €} (Gt Ryl1] + 1))
Local dependence Nonlocal dependence
@ Data-adaptive basis s 2 TE e
@ Regularization for ML: —— =
I g||2 not ||6 Inversion ¢ =I"¢” ¢ =L5'¢P
Poll7kns: | Regularization ¢ = (+10)7'¢"  § =U+aL5")"'¢"
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