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learning/inverse problems
[ ]

What is the law of interaction ?

N
1 . ,
X=5 2 mKOd =X,
j=1#
Ko(x = y) = Vx[o(x = y)] = o(Ix = ¥1) =%.
@ Newton’s law of gravity ¢(r) = 4

2 = 6

@ Lennard-Jones potential: ®(r) = & — %
FopKin. Nalure(ETe) @ flocking birds, migrating cells?

@ opinion dynamics ...? @

Voter model (wiki)

Infer the interaction kernel from data?

4(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-

sek+Zafeiris: Collective motion. 2012. (3) Motsch+Tadmor: Heterophilious Dy-
namics Enhances Consensus. 2014 ...
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Learning the interaction kernel ¢

N
dX| = %Z Ky(X] — X})dt + V2vdB] < X = Ry(X¢) + V2vB,

j=1
Finite N: (“... 4 years ago ...")

@ Data: M trajectories of particles {X§1":7t)L}%:1

@ Statistical learning
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[ Je]

Learning the interaction kernel ¢

N
dX| = %Z Ky(X] — X})dt + V2vdB] < X = Ry(X¢) + V2vB,

j=1
Finite N: (“... 4 years ago ...")

@ Data: M trajectories of particles {X§1":7t)L}%:1

@ Statistical learning

Large N (>> 1) 4
@ Data: density of particles » o8
{U(Xm, t[) ~ Nf1 Z’ 5(thl - Xm)}mJ Eo 04
Ou=vAu+V - [u(Ky = u)] %_2 02

@ Inverse problem for a PDE “ 05 10

Goal: algorithm, identifiability, convergence
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Inverse problem for Mean-field PDE

Goal: Identify from data ¢ in
Ou = vAu+V - [u(K,+u)], xe€R t>0,

where Ky (x) = V(®(|x])) = ¢(Ix)5q-

@ Two types of data:

> low-D: discrete data {u(Xm, i)} p_; With mesh {xn}

> high-D: particle samples {un(x, ) ~ M~' 1, 6(X] — x)}
@ Two types of equations: v > 0 or v = 0.

How? General & computationally efficient?
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Inverse problem for Mean-field PDE

Goal: Identify from data ¢ in
Ou = vAu+V - [u(K,+u)], xe€R t>0,

where Ky (x) = V(®(|x])) = ¢(Ix]) -
@ Two types of data:
> low-D: discrete data {u(xm, t)}*'-, with mesh {x,}
» high-D: particle samples {un(x, 11,) ~MTY M §(X{ —x)}
@ Two types of equations: v > 0 or v = 0.
How? General & computationally efficient?
@ Variational /regression: loss functional
@ Identifiability, lll-posed: regularization
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Loss functional
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Loss functional

ou=vAu+V - [u(K; * u)]
Candidates:

@ Discrepancy: £(¢) = ||0u — vAu — V.(u(Ky * 1))
» derivatives approx. from discrete data
» Weak SINDY (gortz etc21,22], denoising+smoothing (kang+Liao etc22]

o Free energy: £(¢) = C+ | [go U[(® — Pyrye) * u]dx|?

limitted information from the 1st moment
@ Wasserstein-2: £(¢) = Wh(u®, u)

costly: requires many PDE simulations in optimization
@ A probabilistic loss function |
@ A self-test loss function: simple, general



Loss functional
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A probabilistic loss functional

;
E(9) ::1T/0 /Rd [\K¢ * u\zu —2vU(V - Ky * U) + 201u(® * u)] dx dt

@ = —E[ log-likelihood |: McKean—Vlasov process

{ dyt = — qutme * U(Yt, t)dt + \/270'81,
£(Yt) = U(', t)a

@ Derivative free
@ Suitable for high dimension: Z; = X; — 7’,

1T -2
£(0) =+ /O (E\E[K¢(Z,)\Xt]\ —2yE[V-K¢(Zt)]+8tEd>(Zt)) at



Loss functional
ooe

A self-test loss function

Weak form of the equation

(Oru, v) = v(Au, v) + (V- [u(Ks * U)], v)
=v(Uu,Av) — (U(Ky x u),Vv), VYveCT..

Take v =® x us.t. VO(|x|) = Ky(x) = ¢(|x|)‘§|,
(O, @ * u) = v(u, Ad « uy — (U(Ky * u), Ky * u)
We regain the loss function
T
E(g) — / (O, &+ U) — (U, AD 5 1) + (U(K, = 1), K, = u)]lt
0

@ regardlessof v =00r >0
@ Applicable to other PDEs: self-test (a better name?)
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Regression and identifiability
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Nonparametric regression ¢ = Y7, ci¢; € Hp:

n
Em(@)=c'Ac—2b"c = ¢om=)> G¢i, C=A""b
i=1
@ Choice of H, & function space of learning?
» Exploration measure pr < [X; — X|
@ Inverse problem well-posedness/ identifiability ?

» argmin £(¢)
»EL2(p)

@ Convergence and rate? Ax = M~1/9 5 0
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Regression and identifiability
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Identifiability

E(9) = (Lgp, b) — 2(¢P, ¢) + const.
V5(¢)=L<Z> ¢P =0 :>¢—L5¢

@ Identifiability: A="b « Lg @P
» Lg: positive compact operator

» Function space of identifiability (FSOI): span{;} >0
@ Coercivity condition on H (not L2(p))

inf <L§¢, ¢) >0

ot l9l2,, )=
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Regression and identifiability
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Convergence rate

Theorem (Error bound [ang-Luzzsisc)
LetHp = span{o;}[_y S.t. || o, — Blli2(ppy) < N°° - Assume the

coercivity condition on UH,. Then, with n
have:

(Ax)~/(sH1) ) we

1B — Bllizpp) S (Ax)2S/ (54N

@ Ax“ comes from numerical integrator (e.g.,Riemann sum)
» In statistical learning: o = 1/2 (Monte Carlo, CLT)

@ Trade-off: numerical error v.s. approximation error
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Regression and identifiability
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Example: granular media ¢(r) = 3r?

4 20 05 0.025

, 06 . j;;:lie 04 300 |—New initial 0
£ RKHS s E
x .. » 0s_ Boots s
50 ’ g0 €3 S ¢
& 02 £ 001 XD A
2 4 © Test point
>2- ) 5 N gooos 107‘ I optna -1
Optimal = 1.50
“o 05 10 s 1 15 2 ° % 05 1 107 10°
time t space radius r Time t Ax
Data u(x, t) Estimator Wasserstein-2 Rate

@ Near optimal rate (¢ € W)
@ Other examples:

» suboptimal when ¢ discontinuous,
» low rate for singular ¢
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Regularization
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Learning kernels in operators

Learn the kernel ¢:
Rylu] = f

from data:
D= {(Uk7 fk)}ﬁzh (Uk, fk) ceXxY

@ R linear/nonlinear in u, but linear in ¢

@ Examples:

» interaction kernel: Ry[u] = V - [u(Ky * u)] = 0iu — vAu
» Toeplitz/Hankel matrix
» integral/nonlocal operators,...
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lll-posed inverse problem

£(¢) = |Rolu] — I = (Lad, d)12(,) — 267, &) 12y + C
VE(G) =Lap— " =0 =o=1Lg¢"
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Regularization
[ le]e}

lll-posed inverse problem
£(¢) = |Rolu] — I = (Lad, d)12(,) — 267, &) 12y + C
VE(G) =Lap— " =0 =o=1Lg¢"

Regularization R
Ex(9) = E(9) + A[9lIF = & = (La +AQ) " ¢°

@ ) by the L-curve method [Hansenoo)
@ Regularization norm || - ||@? Q = Id, Q = RKHS? many. znouts..]
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Regularization
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lll-posed inverse problem

E(¢) = IIRs[u] — 1§ = (Lad, #)12(p) — 2(0°, @) 12(p) + C
VE@) =Lap— " =0 =¢=Lg'¢"
Regularization R
Ex(9) = E(0) + A0]5 = & = (La +AQ)"6"

@ ) by the L-curve method [Hansenoo)
@ Regularization norm || - ||@? Q = Id, Q = RKHS? many, zhouts..J

Data Adaptive RKHS Tikhonov Regularization iiu+tang+anz2)
@ norm of RKHS Hg = LY?L2(p) &+ Q = L]
@ L is data dependent
o Computation: ¢ = (Lg + ALg")""¢P = (L& + M)~ Lgo®
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Regularization
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Regularization norms in computational practice:

Table: Three regularizers using the norms of /2, L2 and RKHS.

Regularizer name C Regularized estimator
12 | oF = (A+ A" 'b
L2 B ot = (A+2B)"'b

RKHS Cikns &5¢ = (A+ ACpns)'b
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DARTR: Data Adaptive RKHS Tikhonov Regularization

Rylu] = V- [u(Ky x u)] = f
@ Recover kernel from discrete noisy data

@ Consistent convergence as mesh refines
@ Recover nonlocal kernel in homogenization Lu+an+yuezz)

| RKHS 1
M | AT I S -3
osff b Ft { X
PRk i N
R o _ o
o+ TR0 35 3
osl b4 4/ RNt £o £ o5 IS8
) \Eooug L S0 H i -
PRI ¥ 2 4 L2 S~
! @ —+ RKHS 1
) 2 4 6 [
Frue _ ° 2
08 11 e
L2 it o ° AN -
0.4 RKHS AR gg,wo 3205’&*%\’0/
L g8 H: S o
i i P 2 I
02 HE 8 s s
11 | § 10° 0
O R T e 3
[1ALE | BRI R 8 Ax=0.0125x{1,2,4,8,16} A x=0.0125x{1,2,4,8,16} A x =0.0125x{1,2,4,8,16} '050 7 5
o 2 4 6 ~©-nsr = 0.1, error ~&-nsr = 1.0, error <9—nsr = 0.1, loss - nsr = 1.0, loss nsr
] o
Typical estimators, Ax = (.05 Convergence of Estimators, nsr = 0.1 & 1 Convergence Rates
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Why DARTR is better?
When / v.s. other norms?
Convergence rate?
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Regularization
00000

Why DARTR is better?
When / v.s. other norms?
Convergence rate?

@ Empirical: more robust L-curve

@ Bayesian perspective: an adaptive prior [chadasLangs+Lusxiong22]
@ Fredholm equation: explicit RKHS u-ouz3

@ Small noise analysis: fractional RKHSS (Lang+Lu23)

@ Convergence rate: open, possible
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Regularization

0@000

More robust L-curve:

Signed curvature Signed curvature L-curve with norm: RKHS ;5 _Signed curvature

L-curve with norm: 12 60 L-curve with norm: L2 2

3{[~—L-curve
—— normal vector

—o—L-curve
® )\ =177370-08 |-~ normal vector 1

2 40 10
£, a0 g0 g
2 E 2 g s
] g g g
g 3 2 31 3
= 0
10 2 o
-1
0 A 00060769 -1
-3
3 2 1 -10 2 -1 5 p 05 5
T o 5 45 1 -0l 0 0
log, (IAx-bl) 10 R 10 log,(IIAX-bll) R 10 log, 1A-bl) 10 ) 10'
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Regularization
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Bayesian: small noise limit of maximum of posterior
@ Q = [ divergent estimator
e Q= Lg'": stable/convergent

i 4 Discretization 4 Model error ,  Partial observation 4 Wrong noise
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U
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DARTR for Fredholm equation

/ K(t,s)p(s)ds + o W(t), t e {t}", c [0,1].

G(s,§) = /O Kt KL S um(dt), ¥(s. ).

@ RKHS with G as reproducing kernel: Hg = L;/Z(Lf,)
@ G adaptive to data and the equation
@ Nashed-Wahba74,..., Wahba77:

» RKHS regularization, not G
» Convergence of CV estimator
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Regularization
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Small noise analysis for RKHS regularization
93 = (Lg +ALg") "¢

@ s =0: L2 regularization
@ s> 0: fractional RKHS (s = 1: RKHS)

165 — ¢*||f% - Z(/\,- + )\)\i—s)—2(g)\;/2§i — X))+ Z d?,

! i

16 2 r=07
© 1 —— Theoertical
S1s Approximated
' ° + Threshold
2 2
&14 S "."‘ r=12
5 g S
3 g S
213 g o -1
8 P o
512 reo] »»_‘4/
5

11 05

0 05 1 15 0 05 1
s s

Surprise: over-smoothing OK in theory, but harder to select A
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Summary and future directions

Inverse problems for mean-field PDE of interacting particles
@ Construction of loss functions
@ Nonparametric regression: identifiability

@ Regularization: adaptive RKHSs
Learning kernels in operators
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Learning with nonlocal dependence:

statistical learning + inverse problem

Classical learning Learning kernel
{(x p(x) + €)'} {( Ryl + )}
Local dependence Nonlocal dependence
g wblx
Jo *e .-’t’
I P x o K3
Inversion ¢ =I-1¢P ¢ =L5'p"

Regularization ¢ =(+20)7'¢? ¢ = Lg+AL5)'¢P

@ Coercivity condition/ spectrum decay
@ Convergence (minimax rate)
@ High-D ¢:
» lterative methods?
» Regularization for NN in function space?
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