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What is the law of interaction ?

N
1 . ,
X=5 2 mKOd =X,
j=1#
Ko(x = y) = Vx[o(x = y)] = o(Ix = 1) =%
@ Newton’s law of gravity ¢(r) = 4

2 = 6

@ Lennard-Jones potential: ®(r) = & — %
FopKin. Nalure(ETe) @ flocking birds, migrating cells?

@ opinion dynamics ...? @

Voter model (wiki)

Infer the interaction kernel from data?

4(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-

sek+Zafeiris: Collective motion. 2012. (3) Motsch+Tadmor: Heterophilious Dy-
namics Enhances Consensus. 2014 ...
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Learning the interaction kernel ¢

N
dX| = %Z Ks(X! — X))dt +V2vdBl < X, = Ry(X:) + V2vB,

j=1

Finite N: .

@ Data: M trajectories of particles {XET,)L M,
@ Statistical learning

Large N (>> 1)
@ Data: density of particles
{U(Xm, t/) ~ N1 Z/é(Xt’/ — Xm)}m,/

Ot =vAu+V - [u(Ky * u)]

@ Inverse problem for a PDE

Goal: algorithm, identifiability, convergence
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Finitely many particles

Part 1: Finitely many particles

Statistical learning from M sample trajectories

N
dX; = 1N S Ky(X = X{)dt+VavdB] < X; = Ry(X;) + VavB;
j=1

M

@ Data: M trajectories of particles {X%’Z)L e

@ Goal: estimate ¢
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Finitely many particles

Ry(X{) = X; — V2vB; & Data {X\")}M_,
@ Loss function (or Iog—IikeIihood for SDEs):
Pnm = arg mm 5M(¢ W Z/ X[ — Ry(XT")2dt
@ Nonparametric Regression: H, = span{¢;} {, ¢ = >_; Ci¢;

Em(¢)=c'Ac—2b"c = ¢om= > G¢i, C=A""b

1<i<n
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Finitely many particles

Ry(X{) = X; — V2vB; & Data {X\")}M_,
@ Loss function (or Iog—IikeIihood for SDEs):
Pnm = arg mm 5M(¢ W Z/ X[ — Ry(XT")2dt
@ Nonparametric Regression: H, = span{¢;} {, ¢ = >_; Ci¢;

Em(¢)=c'Ac—2b"c = ¢om= > G¢i, C=A""b

1<i<n

» Choice of #, ? function space?
» Identifiability/Well-posedness?
» Convergence and rate?
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Classical learning in a nutshell
Data{(Xm, Ym)}M_, ~ (X, Y) = find ¢ s.t. Y = $(X)
@ Loss function: @,y =argmin Eu(s) = & M | Yo — (Xm) 2.

$EHn
@ Regression: with ¢ = >, ¢j¢; € Hpn = span{¢;}/_;:

@ » Choice of H, C CSin L2(px): n. = (M/log M)z

Underfitting Balanced Overfitting
» Well-posed: ¢optimas = E[Y|X = x] = argmin £(¢)
pEL?(px)

_S
. - 2s+d
» Minimax rate E[||¢n, m — qsop,,-ma,”fz(px)] ~ ('oﬁ,,M> St
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Learning kernel

Given: Data{X{¢"); }_,

N
Goal: Estimate ¢ s.t. X; ~ Ry(X;) = Z (X!, X))

E(¢) = E|X — Ry(X)P#]|¢ — ¢true”L2(p)

@ Choice of H,: similar
Function space: L?(p), exploration measure p ~ | X' — X/|

@ Identifiability: unique minimizer arg min £(¢)??
el
R (IE[F?¢,.(X)R¢1(X)])I,/. ? >7c¢y I <= Coercivity condition |

@ Convergence rate: v/



Finitely many particles
[e]e]e] lele)

Theorem (Convergence with minimax rate zrmig,vra1,uur22))

Let {H,} compact convex in L> with dist(¢rue, Hn) ~ n~5. Assume
the coercivity condition on U,H,. Set n, = (M/log M)zs%. Then

- log M =5
EM[|¢,,*,M—¢M||L%]§C( 2 ) ,

@ dim(*H,) adaptive t0 s (¢yue € C°) and M
@ Concentration inequalities for r.v. or martingale

@ Ongoing: lower bound



Lennard-Jones

n
[e]e]ele] Jo]

kernel estimators
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Coercivity condition on #
177
7 [ EIRXOR(XDIdt > cullolfy. o< H

@ Partial results: ¢y = ' for 1 = L2

» Gaussian or ®(r) = r2# stationary process [Lurzz1spaLL20]
» Harmonic analysis: strictly positive definite integral kernel

X-Y.X-2)

E[¢(|X — Y])o(|X — Z\)m

2
]>0,V¢ € L2

@ Open: non-stationary? A compact # C C(supp(p))?

@ No coercivity on L3 when N — oo since ¢ — 0
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Mean-field equations

Part 2: Infinitely many particles

Inverse problem for mean-field PDEs

Goal: Identify ¢ from discrete data {u(xm, t,)}%:f:1 of
ou=vAu+V-[u(K,*u)], xecR9t>0,

where Ky, (x) = V(®(|x])) = o(|x]) -
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Loss functional

otu=vAu+V - [u(K; * u)]

Candidates:

e Discrepancy: £(¢) = ||0iu — vAu — V.(u(K, * u))||?
» discrete data — error in derivative approx.
> denoising+smoothing [Kang-+Liao etc22]

@ Wasserstein-2: £(¢) = Wh(u?, )

costly: requires many PDE simulations in optimization

@ Weak SINDY (gorz etc21,22): parametric
@ A probabilistic loss functional |
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A probabilistic loss functional

;
E(9) ::1T/0 /Rd [\K¢ * u\zu —2vU(V - Ky * U) + 201u(® * u)] dx dt

@ = —E[ log-likelihood |: McKean-Vlasov SDE

{ dyt = — K¢tme * U(Yt, t)dt + \/270'51,
E(Yt) = U(', t)a

@ Derivative free
@ Suitable for high dimension Z; = X; — 7,

1T -2
£(0) =+ /O (E\E[qu(zt)\x,]\ —2yE[V-K¢(Zt)]+8tEd>(Zt)) at
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Nonparametric regression ¢ = Y7, ci¢; € H:

n
Em(¢)=c'Ac—-2b"c = dpu= Z Cigi, C=A"b
i=1
@ Choice of H, & function space of learning?
» Exploration measure p + |X; — X;|
@ Inverse problem: identifiability/well-posedness?

» uniqueness of minimizer argmin £(¢)
pEH

@ Convergence and rate? Ax = M~1/9 - 0
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Identifiability
£(¢) = (Lg: )12 — 2(¢P, ¢) + const.

VE(p)=Lgp— P =0 =b=1Lg"¢°

o Identifiability: A~'b «» L¢P
Lg: positive compact operator

@ Coercivity condition on # (not L)

On = inf < a¢a ¢> >0

oet6],5=1
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Convergence rate

Theorem (Numerical error bound [Lang-Luzo})

Let H, = span{¢;}]_ S.t. || dn, — ngL% < n°. Assume the

coercivity condition on UH,,. Then, with n ~ (Ax)~/(5t1), we
have: R
onum — iz S (Ax)*/(HD

@ Ax“ comes from numerical integrator (e.g.,Riemann sum)
» In statistical learning: « = 1/2 (Monte Carlo, CLT)

@ Trade-off: numerical error v.s. approximation error
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o
3
S
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o0
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o
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- Spline 0.4
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Example: granular media ¢(r) = 3r?
RKHS'
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o
2
» 03
time t space radius r Time t Ax

o ~True ‘ “Now it
0 ’ | : . 02 . 1 “ i
2 0.2 5 o © Test point
- N - ° ! 7s‘ope T
Optimal = 1.50
Data u(x, t) Estimator Wasserstein-2 Rate

0

@ Optimal rate (¢ € W)

@ Other examples:
suboptimal rate when ¢ discontinuous,
low rate when ¢ singular
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Summary and future directions

Nonparametric/Variational learning of interaction kernels
@ Finite N (ODEs/SDEs): statistical learning
@ N = oo (Mean-field PDEs): inverse problem

Learning kernels in operators:
@ |dentifiability: a coercivity condition
@ Algorithms with performance guarantees
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Learning kernel in operators:

N
o o . . .
ax} = N > " Ky(XL, X{)at + V2vdB; <Ry (Xt) = Xt — V2vB;
j=1
otu=vAu+V - [u(K, = u)] SRylu(-, )] = f(-, 1)
Classical learning Learning kernel
{(x, p(x) + €)} (G R[] + 1))
Local dependence ‘Nonlocal dependence
b TR e
.II bl \" s ”’
1 o E3 o~ X
Inversion 3 =I"'¢? ¢ =Lg'¢"

Regularization ¢ =(+10)'¢”  § =Ls+Lg) 4"

@ Coercivity condition (with it v~ without it |})
@ Space-aware Regularization
@ Convergence (minimax rate)
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