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What is the law of interaction ?

mi Ẍ i
t = −γẊ i

t +
1
N

N∑
j=1,j 6=i

Kφ(X i
t ,X

j
t ),

Kφ(x , y) = ∇x [Φ(|x − y |)] = φ(|x − y |) x−y
|x−y| .

Newton’s law of gravity φ(r) = G m1m2
r2

Lennard-Jones potential: Φ(r) = c1
r12 − c2

r6 .

flocking birds, bacteria/cells ?

opinion/voter/multi-agent models, ...? a

Infer the interaction kernel from data?
a(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-

sek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dy-
namics Enhances Consensus. 2014 ...
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Part 0: statistical learning & inverse problem

Part 1: statistical learning — Finitely many particles
Part 2: inverse problem — infinitely many particles
Part 3: Regularization for learning kernels in operators
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Learning the interaction kernel

dX i
t =

1
N

N∑
j=1

Kφ(X j
t ,X

i
t )dt +

√
2νdBi

t ⇔ Ẋ t = Rφ(X t ) +
√

2νḂt

Kφ(x , y) = φ(|x − y |) x − y
|x − y |

Finite N:

Data: M trajectories of particles {X (m)
t1:tL}M

m=1

Statistical learning

Learning governing laws in interacting particle systems
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Figure 10: (PS) X(t) and X̂(t) obtained with � and �̂ learned from M = 16 trajectories
respectively: for an initial condition in the training data (Top) and an initial condition
randomly chosen (Middle). The black dot at t = 1 divides the “training” interval [0, 1] from
the “prediction” interval [1, 20]. Bottom: X(t) and X̂(t) obtained with � and �̂ learned
from M = 16 trajectories respectively, for dynamics with larger Nnew = 4N , over a set of
initial conditions. We achieve small errors in all cases, in particular we predict successfully
the flocking time and direction. The means of trajectory errors can be found in Figure 11.

Figure 9 indicates that the estimators match the true interaction kernels extremely well
except for a small bias at locations near 0. We impute this error near 0 to two reasons:
(i) the strong short-range repulsion between agents force the pairwise distances to stay
bounded away from r = 0, yielding a ⇢L

T that is nearly singular near 0, so that there are
only a few samples to learn the interaction kernels near 0. We see that as M increases, the
error near 0 is getting smaller, and we expect it to converge to 0. (ii) Information of �(0) is
lost due to the structure of the equations, as we mentioned earlier in the previous example,
which may cause the error in the finite di↵erence approximation of velocities to a↵ect the
reconstruction of values near 0.

Figure 10 shows that with a rather small M , the learned interaction kernels not only
produce an accurate approximation of the transient behaviour of the agents over the training
time interval [t1, tL], but also of the flocking behaviour over the large time interval [tL, tf ]
including the time of formation and the direction of a flocking, which is perhaps beyond
expectations.

Figure 11(a) shows that the mean trajectory errors over 10 learning trials decay with M
at a rate 0.32 on the training time interval [0, 1], matching the convergence rate of smoothed
kernels, even in the case of a new system with 4N agents. This agrees with Theorem 7 on

33

Large N (>> 1)

Data: density of particles
{u(xm, tl ) ≈ N−1∑

i δ(X i
tl − xm)}m,l

∂tu = ν∆u +∇ · [u(Kφ ∗ u)]

Inverse problem for PDEs
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Statistical learning & inverse problem

What’s in common and what’s different?

What is new from
I classical learning {(xi , yi )}M

i=1 ⇒ y = φ(x)?

I operator learning {uk , fk}M
k=1 ⇒ f = R[u]?
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Learning kernels in operators:

dX i
t =

1
N

N∑
j=1

Kφ(X j
t ,X

i
t )dt +

√
2νdBi

t ⇔ Rφ(X t ) = Ẋ t −
√

2νḂt

∂tu = ν∆u +∇ · [u(Kφ ∗ u)] ⇔ Rφ[u(·, t)] = f (·, t)

Nonlocal dependence of data on kernels

r

ϕ(r)

r

ϕ(r)

Classical regression Learning kernel

values are
undetermined 

from data

Local dependence

{(ri, ϕ(ri) + ϵi)} {(uk, Rϕ[uk] + ηk)}
Nonlocal dependence

To learn kernel  in operator 
from discrete noisy data 

ϕ Rϕ[u] + η = f
{(uk, fk)}

ϕ(x)

x

ϕ(x)

Classical learning Learning kernel

Values are
undetermined 

from data

Local dependence

{(xi, ϕ(xi) + ϵi)} {(uk, Rϕ[uk] + ηk)}
Nonlocal dependence

u

R[u]

Operator learning

Local dependence

{(uk, R[uk] + ηk)}

x

̂ϕ = I−1ϕD ̂R = I−1RD̂ϕ = L−1
G ϕD

̂ϕ = (I + λQ)−1ϕD ̂ϕ = (LG + λL−1
G )−1ϕD ̂R = (I + Q)−1RD

Inversion

Regularization
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Part 1: Finitely many particles

Statistical learning from sample trajectories
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Finitely many particles

Rφ(X t ) = Ẋ t −
√

2νḂt & Data {X (m)
t1:tL}

M
m=1

Loss function (or log-likelihood for SDEs):

φ̂n,M = arg min
φ∈Hn

EM(φ) =
1
M

M∑
m=1

∫ T

0
|Ẋ m

t − Rφ(X m
t )|2dt

Nonparametric Regression: Hn = span{φi}ni=1, φ =
∑

i ciφi

EM(φ) = c>Ac − 2b>c ⇒ φ̂n,M =
n∑

i=1

ĉiφi , ĉ = A−1b

I Choice of Hn & function space of learning?
I Well-posedness/ identifiability?
I Convergence and rate?
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Classical learning in a nutshell

Data{(xm, ym)}Mm=1 ∼ (X ,Y )⇒ find φ s.t. Y = φ(X )

Loss function: φ̂n,M = arg min
φ∈Hn

EM(φ) = 1
M

∑M
m=1 |Ym − φ(Xm)|2.

Regression: with ψ =
∑

i ciφi ∈ Hn = span{φi}ni=1:

EM(ψ) = c>Ac − 2b>c ⇒ φ̂n,M =
n∑

i=1

ĉiφi , ĉ = A−1b

I Choice of Hn ⊂ Cs in L2(ρX ): n∗ = (M/log M)
1

2s+d

Colloquium, Virginia Tech

Approximation Theory
Suppose � is s- Hölder.

{Hn}n ⇢ L1[0, R]

dim(Hn)  c0n

inf
'2Hn

k'� �k1  c1n
�s

Question
Given Xtraj,M , how to pick up Hn⇤ ?

Sui Tang — Learning dynamics in high dimensional dynamical systems 22/34

I Well-posedness/ identifiability: φoptimal = E[Y |X = x ]

I minimax rate E[‖φ̂n∗,M − φoptimal‖2
L2(ρX )

] ≈
(

log M
M

) s
2s+d
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Classical learning theory

Given: Data{(xm, ym)}M
m=1 ∼ (X ,Y )

Goal: find φ s.t. Y = φ(X )

E(φ) = E|Y − φ(X )|2 = ‖φ− φtrue‖2
L2(ρX )

Learning kernel

Given: Data{X (m)
[0,T ]}M

m=1

Goal: find φ s.t. Ẋ t = Rφ(X t )

E(φ) = E|Ẋ − Rφ(X )|2 6=‖φ− φtrue‖2
L2(ρ)

Function space: L2(ρX ).

Identifiability:
E[Y |X = x ] = arg min

φ∈L2(ρX )

E(φ).

A ≈ E[φi (X )φj (X )] = In by
setting {φi} ONB in L2(ρX ).

Function space: L2(ρ).
measure ρ ∼ |X i − X j |
Identifiability: arg min

φ∈L2(ρ)

E(φ)??

A ≈ E[Rφi (X )Rφj (X )]? ≥?cHIn
Coercivity condition

Error bounds for φ̂nM : asymptotic/non-asymptotic (CLT/concentration)

E(φ̂nM )− E(φH) ≥ cH‖φ̂nM − φH‖2
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Theorem (Convergence with minimax rate [LZTM19,LMT21,LMT22])
Let {Hn} compact convex in L∞ with dist(φtrue,Hn) ∼ n−s. Assume
the coercivity condition on ∪nHn. Set n∗ = (M/log M)

1
2s+1 . Then

Eµ0 [‖φ̂n∗,M − φtrue‖L2(ρ)] ≤ C
(

log M
M

) s
2s+1

.
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Lennard-Jones kernel estimators:

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
r (pairwise distances)
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Opinion dynamics kernel estimators:
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Coercivity condition on H

〈〈φ, φ〉〉 =
1
T

∫ T

0
E[Rφ(X t )Rφ(X t )]dt ≥ cH‖φ‖2

L2(ρ), ∀φ ∈ H

Partial results: cH = 1
N−2 for H = L2(ρ)

I Gaussian or Φ(r) = r2β stationary [LLMTZ21spa,LL20]

I Harmonic analysis: strictly positive definite integral kernel

E[φ(|X − Y |)φ(|X − Z |) 〈X − Y ,X − Z 〉
|X − Y ||X − Z | ] ≥ 0,∀φ ∈ L2(ρ)

Open: non-stationary? A compact H ⊂ C(supp(ρ))?

No coercivity on L2(ρ) when N →∞ since cH → 0

20 / 37



Part 2: Infinitely many particles

Inverse problem for mean-field PDEs
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Inverse problem for Mean-field PDE

Goal: Identify φ from discrete data {u(xm, tl)}M,Lm,l=1 of

∂tu = ν∆u +∇ · [u(Kφ ∗ u)], x ∈ Rd , t > 0,

where Kφ(x) = ∇(Φ(|x |)) = φ(|x |) x
|x | .

22 / 37



Loss functional

∂tu = ν∆u +∇ · [u(Kφ ∗ u)]

Candidates:

Discrepancy: E(φ) = ‖∂tu − ν∆u −∇.(u(Kφ ∗ u))‖2
I derivatives approx. from discrete data
I Weak SINDY [Bortz etc21,22], denoising+smoothing [Kang+Liao etc22]

Wasserstein-2: E(φ) = W2(uφ,u)
costly: requires many PDE simulations in optimization

A probabilistic loss functional

23 / 37



A probabilistic loss functional

E(φ) :=
1
T

∫ T

0

∫
Rd

[∣∣Kφ ∗ u
∣∣2u − 2νu(∇ · Kφ ∗ u) + 2∂tu(Φ ∗ u)

]
dx dt

= −E[ log-likelihood ]: McKean–Vlasov process{
dX t =− Kφtrue ∗ u(X t , t)dt +

√
2νdBt ,

L(X t ) = u(·, t),

Derivative free
Suitable for high dimension: Zt = X t − X

′
t

E(φ) =
1
T

∫ T

0

(
E|E[Kφ(Zt )|X t ]|2 − 2νE[∇ · Kφ(Zt )] + ∂tEΦ(Zt )

)
dt
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Nonparametric regression φ =
∑n

i=1 ciφi ∈ Hn:

EM(φ) = c>Ac − 2b>c ⇒ φ̂n,M =
n∑

i=1

ĉiφi , ĉ = A−1b

Choice of Hn & function space of learning?
I Exploration measure ρT ← |X t − X

′
t |

Inverse problem well-posedness/ identifiability?
I arg min

φ∈L2(ρ)

E(φ)

Convergence and rate? ∆x = M−1/d → 0
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Identifiability

E(φ) = 〈LGφ, φ〉 − 2〈φD, φ〉+ const .

∇E(φ) = LGφ− φD = 0 ⇒ φ̂ = L−1
G φD

Identifiability: A−1b ↔ L−1
G
φD

I LG: positive compact operator

I Function space of identifiability (FSOI): span{ψi}λi>0

Coercivity condition on H (not L2(ρ))

cH = inf
φ∈H,‖φ‖L2(ρT )

=1
〈LGφ, φ〉 > 0

26 / 37



Convergence rate

Theorem (Numerical error bound [Lang-Lu20])
Let Hn = span{φi}ni=1 s.t. ‖φHn − φ‖L2(ρT )

/ n−s . Assume the
coercivity condition on ∪Hn. Then, with n ≈ (∆x)−α/(s+1), we
have:

‖φ̂n,M − φ‖L2(ρT )
/ (∆x)αs/(s+1)

∆xα comes from numerical integrator (e.g.,Riemann sum)
I In statistical learning: α = 1/2 (Monte Carlo, CLT)

Trade-off: numerical error v.s. approximation error

27 / 37



Example: granular media φ(r) = 3r2

0 0.5 1

Time t
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New initial
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0

 x
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-1
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0

Test point

Slope = 1.67

Optimal = 1.50

Data u(x , t) Estimator Wasserstein-2 Rate

Near optimal rate (φ ∈W 1,∞)
Other examples:
suboptimal when φ discontinuous,
low rate for singular φ
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Part 3: Learning kernels in operators

Regularization
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Learning kernels in operators

Learn the kernel φ:
Rφ[u] = f

from data: D = {(uk , fk )}Nk=1, (uk , fk ) ∈ X× Y

Rφ linear/nonlinear in u, but linear in φ

Examples:

I interaction kernel: Rφ[u] = ∇ · [u(Kφ ∗ u)] = ∂tu − ν∆u
I Toeplitz/Hankel matrix
I integral/nonlocal operators,...

30 / 37



Ill-posed inverse problem

E(φ) = ‖Rφ[u]− f‖2Y
∇E(φ) = LGφ− φD = 0 ⇒ φ̂ = L−1

G φD

Regularization

Eλ(φ) = E(φ) + λ‖ψ‖2Q → φ̂ = (LG + λQ)−1φD

λ by the L-curve method [Hansen00]

Regularization norm ‖ · ‖Q? Q = Id , Q = RKHS?

Data Adaptive RKHS Tikhonov Regularization [Lu+Lang+An22]

norm of RKHS HG = L1/2
G L2(ρ)↔ Q = L−1

G

LG is data dependent
Computation: φ̂ = (LG + λL−1

G )−1φD = (L2
G + λI)−1LGφ

D
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DARTR: Data Adaptive RKHS Tikhonov Regularization

Rφ[u] = ∇ · [u(Kφ ∗ u)] = f

Recover kernel from discrete noisy data
Consistent convergence as mesh refines

Convergence of Estimators, nsr = 0.1 & 1  Convergence Rates

MF Operator

Typical estimators,   Δx = 0.05
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Small noise limit:
Q = I: divergent estimator
Q = L−1

G : stable/convergent
Discretization
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Summary and future directions

Nonparametric regression for interaction kernels
Finite N (ODEs/SDEs): statistical learning
N =∞ (Mean-field PDEs): inverse problem

Learning kernels in operators:
Probabilistic loss functionals
Identifiability: φ̂ = L−1

G φD

Coercivity condition
I yes: convergence
I no: regularization — DARTR (ill-posed inverse problem)
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Learning with nonlocal dependence: a new direction?
Coercivity condition, spectrum decay
Regularization for NN in function space?
Convergence (minimax rate)

36 / 37



References (@ http://www.math.jhu.edu/~feilu)
- Q. Lang and F. Lu. Learning interaction kernels in mean-field equations of 1st-order systems of interacting
particles. SISC22
- Q. Lang and F. Lu. Identifiability of interaction kernels in mean-field equations of interacting particles. arXiv2106.
- F.Lu, Q .An and Y. Yu. Nonparametric learning of kernels in nonlocal operators. arXiv2205
- Chada, Lang, Lu, Wang: A data-adaptive prior for Bayesian learning of kernels in operators. arXiv2212
- F.Lu, Q .Lang and Q. An. Data adaptive RKHS Tikhonov regularization for learning kernels in operators. MSML22
- F. Lu, M. Maggioni and S. Tang. Learning interaction kernels in stochastic systems of interacting particles from
multiple trajectories. FoCM21.
- F. Lu, M. Maggioni and S. Tang: Learning interaction kernels in heterogeneous systems of agents from multiple
trajectories. JMLR21
- Z. Li, F. Lu, M. Maggioni, S. Tang and C. Zhang: On the identifiability of interaction functions in systems of
interacting particles. SPA21
- F. Lu, M Zhong, S Tang and M Maggioni. Nonparametric inference of interaction laws in systems of agents from
trajectory data. PNAS19

37 / 37

http://www.math.jhu.edu/~feilu

	learning/inverse problems
	Motivation
	Learning interaction kernel
	nonlocal

	Finitely many particles
	Regression

	Mean-field equations
	A probabilistic loss functional
	Identifiability
	Convergence rate
	Smooth kernel

	Regularization
	Linear inverse problems
	RKHS-regularization
	Summary


