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What is the law of interaction ?
. o1 o
miXt = X+ 2 KX XD,
j=1.#
Ko(x,y) = Vx[®(Ix = y])] = o(Ix = ¥]) 5=;-
@ Newton’s law of gravity ¢(r) = G™z2

@ Lennard-Jones potential: ®(r) = 25 — %.

——
[ L= —

Popkin. Nature(2016)

Voter model (wiki)
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What is the law of interaction ?
"y o1 N o
miXl = =X + Z KX X)),
J=1,0#
Ko(x,y) = Vx[®(Ix = y])] = o(Ix = ¥]) 5=;-
@ Newton’s law of gravity ¢(r) = G™z2

@ Lennard-Jones potential: ®(r) = 25 — %.

—
Bond length

@ flocking birds, bacteria/cells ?

@ opinion/voter/multi-agent models, ...7 @

Popkin. Nature(2016)
Infer the interaction kernel from data?

4(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-
sek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dy-
namics Enhances Consensus. 2014 ...

Voter model (wiki)
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Part 0: statistical learning & inverse problem

@ Part 1: statistical learning — Finitely many particles
@ Part 2: inverse problem — infinitely many particles
@ Part 3: Regularization for learning kernels in operators
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Learning the interaction kernel

N
axi = 1N > Ko(XL XDdt+ V2vdB] < Xi = Ry(X) + V2vB

j=1
Kolx.9) = olx = ¥,
Finite N: = 0
@ Data: M trajectories of particles {X&’f’,)L M, =
@ Statistical learning

6/37



Learning the interaction kernel

N
ax| = 1N > Ko(XL X{)at +V2vdB] < Xi = Ry(X:) + V2vB;
j=1

K¢(Xay) = ¢(’X_y|)‘i:§’

Finite N:

@ Data: M trajectories of particles {X,1 M

@ Statistical learning

Large N (>> 1)

@ Data: density of particles
{u(Xm, t)) = N~ 22 6(Xy — Xm) Y myi

Otu = vAu+V - [u(Ky = u)]

space x

@ Inverse problem for PDEs




Statistical learning & inverse problem
@ What's in common and what’s different?

@ What is new from
» classical learning {(x, yi)}¥, = y = ¢(x)?

» operator learning {ux, fi}M , = f = R[u]?
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Learning kernels in operators:

N
aXi = 1N ST KX, X))dt +V2vdB] < Ry(X() = X; — VauB,
j=1
U =vAu+V - [u(Ky,*u)] < Rylu(-, )] =f(-.1)



Learning kernels in operators:

N
aXi = 1N ST KX, X))dt +V2vdB] < Ry(X() = X; — VauB,
j=1
U =vAu+V - [u(Ky,*u)] < Rylu(-, )] =f(-.1)

Classical learning Learning kernel Operator learning
{(x, p(x) +€)} { (o Ryl ] + 1)} { G, R[] + 1)}
Local dependence Nonlocal nden Local dependence
LA ® Values are o.% .
(x) S e R JEY : Rlu] % | Sy
’ /o e ,/’ undetermined o e ,x“
s &--8 from data » -
I X I X I u
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Part 1: Finitely many particles

Statistical learning from sample trajectories
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Finitely many particles
Rs(X¢) = X; — V2vB, & Data {X\")}M_,

@ Loss function (or log-likelihood for SDEs):

anM—arggln Em(o) = MZ/ |X, Ry(XT)[2alt
@ Nonparametric Regression: H, = span{¢;}' {, ¢ = >_; Ci¢;

n
Em(@)=c'Ac—2b"c = ¢om=> G¢i, C=A""b

i=1
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Finitely many particles
Rs(X¢) = X; — V2vB, & Data {X\")}M_,

@ Loss function (or log-likelihood for SDEs):

G = argmin Eu(0) = MZ / X7 — Ry (X ot

@ Nonparametric Regression: H, = span{¢;}' {, ¢ = >_; Ci¢;

n
Eu(¢)=cTAc—2b"c = Gum=) G¢, C=A"'b
i=1
» Choice of H, & function space of learning?
» Well-posedness/ identifiability ?
» Convergence and rate?
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Classical learning in a nutshell

Data{(Xm, ym)}"_, ~ (X, Y) = find ¢ st. Y = ¢(X)

@ Loss function: @nu = argmin Em(d) = 1 M |V — &(Xm) 2.

PEHR

@ Regression: with ¢ = >, ¢j; € Hn = span{¢;}] ;:

n
Em(w)=c"Ac—2b'c = ¢om=> C¢i, C=A""b
i=1

@ > Choice of #, C CSin L2(px): n. = (M/log M)z

Underfitting Balanced Overfitting

» Well-posedness/ identifiability: ¢oprimar = E[Y|X = X]

. -~ 2s+d
» minimax rate E[||¢n, p — ¢op,,-ma,||f2(px)] ~ (lo%/,/w) o
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Classical learning theory Learning kernel

; . (m) \m
Given: Data{(Xm, ym)}™_, ~ (X, Y) Given: Data{X o )} m—1
Goal:find ¢ s.t. Y = ¢(X) Goal:find ¢ s.t. X; = Ry(X;)

E(@) =EIY — ¢(X) = 6 — drolZarny E(6) = EIX — Ry(X)[2A]6 — duwel2,
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Classical learning theory

Given: Data{(Xm, ym)}M_, ~ (X, Y)

Goal:find ¢ s.t. Y = ¢(X)

Learning kernel

Given: Data{ngy’)T]}%:1
Goal:find ¢ s.t. X; = Ry(X;)

E(@) =EIY — ¢(X) = 6 — drolZarny E(6) = EIX — Ry(X)[2A]6 — duwel2,

@ Function space: L2(px).

@ Identifiability:

E[Y|X = x] = arg min E(¢).

pEL?(px)

@ A= E[¢i(X)¢(X)] = In by

setting {¢;} ONB in L2(px).

@ Function space: L?(p).
measure p ~ | X' — X/|

@ Identifiability: arg min £(¢)??
GeL2(p)

® A~ E[Ry,(X)Ry,(X)]? 270y,
Coercivity condition
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Classical learning theory Learning kernel

; . (m) \M
Given: Data{(xm, ym)}M_; ~ (X, Y) Given: Data{Xjy'r)} m—1
Goal:find ¢ s.t. Y = ¢(X) Goal:find ¢ s.t. X; = Ry(X;)

E(@) =EIY — ¢(X) = 6 — drolZarny E(6) = EIX — Ry(X)[2A]6 — duwel2,

@ Function space: L?(px). @ Function space: L?(p).
~ | X = X
@ Identifiability: measure p ~ [X' — X/|

E[Y|X = x] = argmin £(&). @ Identifiability: arg min £(¢)??
»EL?(px) »EL?(p)
@ A= E[¢i(X)¢j(X)] = I by @ A= E[Ry (X)Ry (X)]? >7culn
setting {¢;} ONB in L2(px). Coercivity condition

Error bounds for $nM: asymptotic/non-asymptotic (CLT/concentration)

E(bny) — E(2) > Crlldn, — dull?
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Theorem (Convergence with minimax rate [LZTM19,LMT21,LMT22])
Let {Hn} compact convex in L> with dist(¢ue, Hn) ~ N~ 5. Assume
the coercivity condition on Uy H,,. Set n, = (M/log M)zgﬁ. Then

~ log M\ =7
Euo[|‘¢n*,M—¢true\|/_2(p)] < C( %/, ) )
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Lennard-Jones

of s -

25 3 35
 (bairwise distances)

Opinion dynamics kernel

4 5
r (pairwise distances)

015

005

kernel estimator

\ogw(Abs Ermr)

S:

~~<{=Sloy

® 5=0.05
|—Slope=-0.39
|- Optimal decay
* 0=0.

estimators:

36

38
log, (M)

4

4.2 4.4

® =05
[—Slope=-0.35
|- Optimal decay
* 0=0.1
|—Slope=-0.33

32 34

3.6

3.8
log, (M)

4

4.2 4.4
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Coercivity condition on H

(0.6) = 1 [ BIROXORX0Io = oulolf, Vo€

@ Partial results: ¢y = 55 for 1 = L3(p)

» Gaussian or ®(r) = r2? stationary [Lmrzz1spa,LL20]
» Harmonic analysis: strictly positive definite integral kernel

X-Y,X-2)

2

E[p(|1X = YN)o(IX - Z])

@ Open: non-stationary? A compact H C C(supp(p))?

@ No coercivity on L?(p) when N — oo since ¢, — 0
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Part 2: Infinitely many particles

Inverse problem for mean-field PDEs
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Inverse problem for Mean-field PDE

Goal: Identify ¢ from discrete data {u(xpm, t/)},"g:,L:1 of
U =vAu+V - [u(K,+u)], xeR t>0,

where K (x) = V(®(|x)) = ¢(Ix])5q-
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Loss functional

oty =vAu+V - [u(Ky * u)]
Candidates:

@ Discrepancy: £(¢) = ||0iu — vAu — V.(u(K, * u))|?
» derivatives approx. from discrete data
» Weak SINDY (gortz etc21,22], denoising+smoothing (kang+Liao etc22]

@ Wasserstein-2: £(¢) = Wh(u?, )

costly: requires many PDE simulations in optimization

@ A probabilistic loss functional
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A probabilistic loss functional

;
E(9) ::;_/O /Rd [‘K¢ * u]2u —2vu(V - Ky * U) + 201u( P * u)] dx dt

@ = —E[ log-likelihood |: McKean—Vlasov process

{ dXi = — Ky, * u(Xy, )dt + vV2vdB;,
L(X1) =u(- 1),

@ Derivative free
@ Suitable for high dimension: Z; = X; — 7;

1 /7 -
£0) =7 | (EEKU(2)XIP - 20EV - K(Z)] + E(2) o
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Nonparametric regression ¢ = "7 . ¢i¢; € Hp:

n
Em(¢)=c'Ac—2b"c = ¢om= Z Ci¢i, C=A"b
i=1
@ Choice of H, & function space of learning?
» Exploration measure pr < [X; — X|
@ Inverse problem well-posedness/ identifiability ?

» argmin £(¢)
PEL2(p)

@ Convergence and rate? Ax = M~1/4 - 0
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Identifiability

E(¢) = (Lgp, ¢) — 2(¢°, ¢) + const.
V(¢):L¢> P=0 =o=1g5"¢"

® Identifiability: A~"'b «» L¢P
» Lg: positive compact operator

» Function space of identifiability (FSOI): span{;} x>0
@ Coercivity condition on H (not L2(p))

= inf
¢€H’|l¢||L2(pT):1
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Convergence rate

Theorem (Numerical error bound itang-uz0)
LetHp = span{;i}Ly S.t. |3, — bll12(p;) < N ° . Assume the

coercivity condition on UH,,. Then, with n ~ (Ax)~*/(s+1) we
have:

16 — Blliz(pm) < (Ax)2S/ (54D

@ Ax“ comes from numerical integrator (e.g.,Riemann sum)
» In statistical learning: « = 1/2 (Monte Carlo, CLT)

@ Trade-off: numerical error v.s. approximation error
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Example: granular media ¢(r) = 3r?

4 20 05 0025 —Original initial
=T [—Ne itial
) 0.6 s i S‘:I:’m 04 § 0.02 lew initial
RKHS g
’ 03 Boots
0 o4 S10 € 3§
02 £ 001
02 8
2 5 01 0005
4 0 ) 0
0 0.5 1 0.5 1 1.5 2 0 0.5 1
time t space radius r Time t
Data u(x, t) Estimator Wasserstein-2

@ Near optimal rate (¢ € W)

@ Other examples:
suboptimal when ¢ discontinuous,
low rate for singular ¢

L3(pr) error

 Test point
Sl 1.67
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Part 3: Learning kernels in operators

Regularization

29/37



Learning kernels in operators

Learn the kernel ¢:
Rylu] = f

from data:
D= {(Ulﬁ fk)}g:‘], (Uk, fk) eXxY

@ Ry linear/nonlinear in u, but linear in ¢
@ Examples:
» interaction kernel: Ry[u] = V - [u(Ky * u)] = Oiu — vAu

» Toeplitz/Hankel matrix
» integral/nonlocal operators,...
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lll-posed inverse problem

E(¢) = | Rslul — IE
VE@) =Lap—o¢" =0 =¢=Lg'¢"
Regularization
E\(9) = E(8) + A¢lIf = 6 = (La+ Q) '¢”

@ ) by the L-curve method [Hansenoo)
@ Regularization norm || - |[@? Q = Id, Q = RKHS?
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lll-posed inverse problem
E(¢) = |Rs[u] — 1%
VE@) =Lap— P =0 =¢=1Lg'¢"
Regularization
EN(®) = E(8) + AIYlIR = & = (La +AQ)"¢°
@ ) by the L-curve method [Hansenoo)

@ Regularization norm || - |[@? Q = Id, Q = RKHS?

Data Adaptive RKHS Tikhonov Regularization iLu+tang+an22)
@ norm of RKHS Hg = LY?L2(p) ¢ Q = L'
@ L is data dependent
e Computation: ¢ = (Lg + ALGY 9P = (L2 + AN TLgoP
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DARTR: Data Adaptive RKHS Tikhonov Regularization

Rylul =V - [u(Ky xu)] = f
@ Recover kernel from discrete noisy data
@ Consistent convergence as mesh refines

RKHS
[ A SR SR S %
%,
g 29 N
55 y 1028 R
£5 U4 > §os I
Lo > 2 -Fi2 ~2
2 104~ L2 S~3
@ ~+ RKHS 1
o2 1 .
5 B I -
gs " TR e
g5 - 10 5 N .
£2 2 & ¥=
=% o= 2
s e RN
H 10
]
8
Ax=0.0125x{1,2,4,8,16} Ax=0.0125x{1,2,4,8,16} A x=0.0125x{1,2,4,8,16} 05; 7 B
~©-nsr =0.1, error & nsr = 1.0, error <9—nsr = 0.1, loss ~¢-nsr = 1.0, loss nsr
Typical estimatc’)rs, Ax =0.05 Convergence of Estimators, nsr= 0.1 & 1 Convergence Rates
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Small noise limit:
@ Q = I: divergent estimator
e Q= Lg'": stable/convergent

: 4 Discretization 4 Model error ,  Partial observation 4 Wrong noise
2 10 10 10 o
3 102 10? 10° 102
g 10° 10° 10° 10°
S 102 10?2 10? 10°
S 10 SS———— 10" 10* 10
% 10° 10° 10° 10°
108 -8 8 -8
<10 10" 10?2 10° 10% 10° 10 10t 10?2 10° 10* 10° 10 10t 10?2 10° 10* 10° 10 10t 10?2 10° 10* 10°
Z() 104 Discretization 104 Model error 10t Partial observation 104 Wrong noise
S 102 102 102 102
g 10° 10° 10° 10°
SRSy 07 102 102
510" 10 10 10
310° 10® 10°® 10°®
o, 10 10 10°® 10°
10t 102 10° 10* 10° 10% 102 10° 10* 10° 10? 102 10° 10* 10° 101 102 10% 10 10°
o [_JFixed prior, QR —— Fixed prior, median [__]DA prior, QR —— DA prior, median
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Summary and future directions

Nonparametric regression for interaction kernels
@ Finite N (ODEs/SDEs): statistical learning
@ N = oo (Mean-field PDEs): inverse problem

Learning kernels in operators:
@ Probabilistic loss functionals
o Identifiability: ¢ = L¢P
@ Coercivity condition

» yes: convergence
» no: regularization — DARTR (ill-posed inverse problem)
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Learning with nonlocal dependence: a new direction?
@ Coercivity condition, spectrum decay
@ Regularization for NN in function space?
@ Convergence (minimax rate)

Classical learning
{(x: P(x) + €}

Local dependence

Learning kernel
{(u R[] + 1)}

tNoniocal dependence

Y .
e BN P e
o . ew’

o'

.

.2

. ¢--‘e
.

I X

Inversion ¢ =I-1¢?
Regularization ¢ = +20)"'¢?

7]5\ — L51¢D
@ = Lg+AL5Y g
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