DARTR: Data Adaptive RKHS Tikhonov Regularization for learning kernels in operators

Fei Lu

Department of Mathematics, Johns Hopkins University

Joint with Quanjun Lang, Qingci An@JHU, Yue Yu@Lehigh

MiC Seminars, ORNL; August, 2022

- 2 Regression and regularization
- Identifiability and DARTR
- Numerical examples

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

- Operator $R\phi$: linear or nonlinear in u, but linear in ϕ
 - nonlocal interaction (interacting particles, mean-field)

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = \partial_t u - \sigma \Delta u, \quad K_{\phi}(x) = \phi(|x|) \frac{x}{|x|} \in \mathbb{R}^d$$

$$R_{\phi}[\mathbf{X}_t] = \left(-\frac{1}{n} \sum_{j=1}^n K_{\phi}(X_t^i - X_t^j)\right)_j = \dot{\mathbf{X}}_t + \dot{\mathbf{W}}_t, \qquad \mathbb{R}^{nd}$$

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

- Operator $R\phi$: linear or nonlinear in u, but linear in ϕ
 - nonlocal interaction (interacting particles, mean-field)

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = \partial_t u - \sigma \Delta u, \quad K_{\phi}(x) = \phi(|x|) \frac{x}{|x|} \in \mathbb{R}^d
R_{\phi}[\mathbf{X}_t] = \left(-\frac{1}{n} \sum_{i=1}^n K_{\phi}(X_t^i - X_t^i)\right)_i = \dot{\mathbf{X}}_t + \dot{\mathbf{W}}_t, \qquad \mathbb{R}^{nd}$$

• nonlocal PDE/ fractional diffusion: $R_{\phi}[u] = \partial_{tt}u - g$

$$R_{\phi}[u](x) = \int_{\Omega} \phi(x,y)[u(y) - u(x)]dy = \partial_{tt}u - g, \forall x \in \Omega.$$

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

- Operator $R\phi$: linear or nonlinear in u, but linear in ϕ
 - nonlocal interaction (interacting particles, mean-field)

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = \partial_t u - \sigma \Delta u, \quad K_{\phi}(x) = \phi(|x|) \frac{x}{|x|} \in \mathbb{R}^d$$

$$R_{\phi}[\mathbf{X}_t] = \left(-\frac{1}{n} \sum_{j=1}^n K_{\phi}(X_t^j - X_t^j)\right)_i = \dot{\mathbf{X}}_t + \dot{\mathbf{W}}_t, \qquad \mathbb{R}^{nd}$$

▶ nonlocal PDE/ fractional diffusion: $R_{\phi}[u] = \partial_{tt}u - g$

$$R_{\phi}[u](x) = \int_{\Omega} \phi(x,y)[u(y) - u(x)]dy = \partial_{tt}u - g, \forall x \in \Omega.$$

▶ Integral operators, deconvolution, Toeplitz/Hankel matrix ... Toeplitz matrix: $R_{\phi}u = f$, $R_{\phi}(i,j) = \phi(i-j)$

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

Learning kernels

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

- Operator $R\phi$: linear or nonlinear in u, but linear in ϕ
 - nonlocal interaction (interacting particles, mean-field)
 - nonlocal PDE/ fractional diffusion
 - Integral operators, deconvolution, Toeplitz/Hankel matrix ...
- Data: discrete/noisy, Nonlocal dependence
 - ▶ random $(u_k, f_k) \sim \mu \otimes \nu$: statistical learning
 - deterministic (e.g., N=1): inverse problem

Comparison with classical learning

- nonlocal dependence under-determined (no longer "interpolation")
- v.s. operator learning: low-dimensional structure
- methods: regression/ML/DL?

This talk: deterministic inverse problems

$$\mathcal{D} = \{u_k, f_k\}_{k=1}^N = \{u_k(x_j, t_l), f_k(x_j, t_l) : j = 1, \dots, J\}_{j=1}^N,$$

- Learning kernels
- 2 Regression and regularization
- Identifiability and DARTR
- Numerical examples

Nonparametric regression

Loss functional: $\mathcal{E}(\phi) = \frac{1}{N} \sum_{i=1}^{N} \|R_{\phi}[u_i] - f_i\|_{L^2}^2$.

 \blacktriangleright Neural network when ϕ is high-D

Hypothesis space: $\phi = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n = \text{span}\{\phi_i\}_{i=1}^n$:

$$\mathcal{E}(\phi) = c^{\top} \overline{A}_n c - 2c^{\top} \overline{b}_n + C_N^f, \Rightarrow \widehat{\phi}_{\mathcal{H}_n} = \sum_i \widehat{c}_i \phi_i, \text{ where } \widehat{c} = \overline{A}_n^{-1} \overline{b}_n,$$

Three issues

- \bullet \overline{A}^{-1} : well-posedness, Identifiability, function space
- Choice of \mathcal{H}_n : $\{\phi_i\}_{i=1}^n$ and n
- Convergence when data mesh refines $\Delta x \rightarrow 0$

Regularization is necessary:

- \overline{A}_n ill-conditioned/singular
- \overline{b}_n : noise or numerical error

Tikhonov/ridge Regularization:

$$egin{aligned} \mathcal{E}_{\lambda}(\phi) &= \mathcal{E}(\phi) + \lambda \|\phi\|_{*}^{2} \Rightarrow c^{ op} \overline{A}_{n} c - 2 \overline{b}_{n}^{ op} c + \lambda \|c\|_{B_{*}}^{2} \ \widehat{\phi}_{\mathcal{H}_{n}}^{\lambda} &= \sum_{i} \widehat{c}_{i}^{\lambda} \phi_{i}, \quad ext{where } \widehat{c} = (\overline{A}_{n} + \lambda B_{*})^{-1} \overline{b}_{n}, \end{aligned}$$

Regularization

Regularization is necessary:

- \bullet \overline{A}_n ill-conditioned/singular
- \overline{b}_n : noise or numerical error

Tikhonov/ridge Regularization:

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{*}^{2} \Rightarrow c^{\top} \overline{A}_{n} c - 2 \overline{b}_{n}^{\top} c + \lambda \|c\|_{B_{*}}^{2}$$
 $\widehat{\phi}_{\mathcal{H}_{n}}^{\lambda} = \sum_{i} \widehat{c}_{i}^{\lambda} \phi_{i}, \quad \text{where } \widehat{c} = (\overline{A}_{n} + \lambda B_{*})^{-1} \overline{b}_{n},$

λ by the L-curve method [Hansen00]

$$\begin{split} \mathit{I}(\lambda) &= (\mathit{X}(\lambda), \mathit{y}(\lambda)) := (\log(\mathcal{E}(\widehat{c_{\lambda}}), \log(\|\widehat{c_{\lambda}}\|_*^2), \\ \lambda_0 &= \underset{\lambda_{\min} \leq \lambda \leq \lambda_{\max}}{\text{arg max}} \ \frac{\mathit{X}'\mathit{y}'' - \mathit{X}'\mathit{y}''}{(\mathit{X}'^2 + \mathit{y}'^2)^{3/2}}, \end{split}$$

Regularization

Regularization is necessary:

- \bullet \overline{A}_n ill-conditioned/singular
- \overline{b}_n : noise or numerical error

Tikhonov/ridge Regularization:

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{*}^{2} \Rightarrow c^{\top} \overline{A}_{n} c - 2 \overline{b}_{n}^{\top} c + \lambda \|c\|_{B_{*}}^{2}$$
 $\widehat{\phi}_{\mathcal{H}_{n}}^{\lambda} = \sum_{i} \widehat{c}_{i}^{\lambda} \phi_{i}, \quad \text{where } \widehat{c} = (\overline{A}_{n} + \lambda B_{*})^{-1} \overline{b}_{n},$

λ by the L-curve method [Hansen00]

$$\begin{split} \textit{I}(\lambda) &= (\textit{x}(\lambda), \textit{y}(\lambda)) := (\text{log}(\mathcal{E}(\widehat{c_{\lambda}}), \text{log}(\|\widehat{c_{\lambda}}\|_{*}^{2}), \\ \lambda_{0} &= \underset{\lambda_{\min} \leq \lambda \leq \lambda_{\max}}{\text{arg max}} \ \frac{\textit{x'}\textit{y''} - \textit{x'}\textit{y''}}{(\textit{x'}^{2} + \textit{y'}^{2})^{3/2}}, \end{split}$$

• Which norm $\|\cdot\|_*$ to use?

- Learning kernels
- Regression and regularization
- Identifiability and DARTR
- Numerical examples

Identifiability

• An exploration measure: $\rho(dr)$ $\Rightarrow \phi \in L^2(\rho)$ $R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)g[u](x,y)dy$, $\rho(dr) \propto \int \int \delta_{|x-y|}(dr)|g[u](x,y)|dxdy$

Identifiability

- An exploration measure: $\rho(dr)$ $\Rightarrow \phi \in L^2(\rho)$ $R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)g[u](x,y)dy$, $\rho(dr) \propto \int \int \delta_{|x-y|}(dr)|g[u](x,y)|dxdy$
- An integral operator ← the Fréchet derivative of loss functional

$$\mathcal{E}(\psi) = \frac{1}{N} \sum_{i=1}^{N} \|R_{\psi}[u_i] - f_i\|_{L^2}^2 = \langle \mathcal{L}_{\overline{G}} \psi, \psi \rangle_{L^2(\rho)} - 2 \langle \phi^D, \psi \rangle_{L^2(\rho)}$$
$$\nabla \mathcal{E}(\psi) = 2 \mathcal{L}_{\overline{G}} \psi - 2 \phi^D = 0 \quad \Rightarrow \widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^D$$

- $\mathcal{L}_{\overline{G}}$ is a nonnegative compact operator: $\{(\lambda_i, \psi_i)\}, \lambda_i \downarrow 0$

Identifiability

- An exploration measure: $\rho(dr)$ $\Rightarrow \phi \in L^2(\rho)$ $R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)g[u](x,y)dy$, $\rho(dr) \propto \int \int \delta_{|x-y|}(dr)|g[u](x,y)|dxdy$
- An integral operator ← the Fréchet derivative of loss functional

$$\mathcal{E}(\psi) = \frac{1}{N} \sum_{i=1}^{N} \|R_{\psi}[u_i] - f_i\|_{L^2}^2 = \langle \mathcal{L}_{\overline{G}} \psi, \psi \rangle_{L^2(\rho)} - 2 \langle \phi^D, \psi \rangle_{L^2(\rho)}$$
$$\nabla \mathcal{E}(\psi) = 2 \mathcal{L}_{\overline{G}} \psi - 2 \phi^D = 0 \quad \Rightarrow \widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^D$$

- $\mathcal{L}_{\overline{G}}$ is a nonnegative compact operator: $\{(\lambda_i, \psi_i)\}, \lambda_i \downarrow 0$
- $\phi^D = \mathcal{L}_{\overline{G}}\phi_{true} + \phi^{error}$
- Function space of identifiability (FSOI):

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi^{error}) \Rightarrow H = \operatorname{span} \{ \psi_i \}_{i:\lambda_i > 0}$$

▶ ill-defined beyond *H*; ill-posed in *H*

DARTR: Data Adaptive RKHS Tikhonov Regularization

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^f = \mathcal{L}_{\overline{G}}^{-1} (\mathcal{L}_{\overline{G}} \phi_{\textit{true}} + \phi^{\textit{error}})$$

A new task for Regularization: ensure that the learning takes place in the FSOI

data-dependent
$$H = \operatorname{span}\{\psi_i\}_{i:\lambda_i>0}$$

DARTR: Data Adaptive RKHS Tikhonov Regularization

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^f = \mathcal{L}_{\overline{G}}^{-1} (\mathcal{L}_{\overline{G}} \phi_{\textit{true}} + \phi^{\textit{error}})$$

A new task for Regularization:

ensure that the learning takes place in the FSOI

data-dependent
$$H = \operatorname{span}\{\psi_i\}_{i:\lambda_i>0} = \overline{H_G}^{L^2(\rho)}$$

- ullet \overline{G} \Rightarrow RKHS: $H_G=\mathcal{L}_{\overline{G}}^{-1/2}(L^2(
 ho))$ System Intrinsic Data Adaptive
- For $\phi = \sum_k c_k \psi_k$, $\|\phi\|_{L^2(\rho)}^2 = \sum_k c_k^2$, $\|\phi\|_{H_G}^2 = \sum_k \lambda_k^{-1} c_k^2$
- $\Rightarrow \text{ Regularization norm: } \|\phi\|_{H_G}^2$ $\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{H_G}^2 \Rightarrow c^{\top} \overline{A}_n c 2 \overline{b}_n^{\top} c + \lambda \|c\|_{B_{H_G}}^2$

Why DARTR is good: FSOI is fundamental:

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^D = \mathcal{L}_{\overline{G}}^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi_H^{error} + \phi_{H^{\perp}}^{error})$$

• DARTR: $\|\phi_{H^{\perp}}^{\text{error}}\|_{H_G}^2 = \infty$

$$(\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} \phi^D = (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} (\mathcal{L}_{\overline{G}} \phi_{\textit{true}} + \phi_H^{\textit{error}})$$

• I^2 or L^2 regularizer: with $C = \sum \phi_i \otimes \phi_j$ or C = I

$$(\mathcal{L}_{\overline{G}} + \lambda C)^{-1} \phi^{D} = (\mathcal{L}_{\overline{G}} + \lambda C)^{-1} (\mathcal{L}_{\overline{G}} \phi_{\textit{true}} + \phi_{\textit{H}}^{\textit{error}} + \phi_{\textit{H}^{\perp}}^{\textit{error}})$$

Why DARTR is good: FSOI is fundamental:

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^{\text{D}} = \mathcal{L}_{\overline{G}}^{-1} \big(\mathcal{L}_{\overline{G}} \phi_{\text{true}} + \phi_{H}^{\text{error}} + \phi_{H^{\perp}}^{\text{error}} \big)$$

• DARTR: $\|\phi_{H^{\perp}}^{\text{error}}\|_{H_G}^2 = \infty$

$$(\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} \phi^D = (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} (\mathcal{L}_{\overline{G}} \phi_{\textit{true}} + \phi_{\textit{H}}^{\textit{error}})$$

• I^2 or L^2 regularizer: with $C = \sum \phi_i \otimes \phi_j$ or C = I

$$(\mathcal{L}_{\overline{G}} + \lambda C)^{-1} \phi^{D} = (\mathcal{L}_{\overline{G}} + \lambda C)^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi_{H}^{error} + \phi_{H^{\perp}}^{error})$$

A Bayesian perspective:

- Prior $\mathcal{N}(0, \mathcal{L}_{\overline{G}})$; v.s. $\mathcal{N}(0, C)$: singular or equivalent
- Posterior $\mathcal{N}(\widehat{\phi}_*, (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1})$ v.s. $\mathcal{N}(\widehat{\phi}_\dagger, (\mathcal{L}_{\overline{G}} + \lambda C)^{-1})$
- Zellner's g-prior $\mathcal{N}(0, \overline{A}_n^{-1})$ if $\mathcal{H}_n = \operatorname{span}\{\phi_i\}_{i=1}^n$ o.n.b.

DARTR: compute the SIDA-RKHS norm

Let
$$B_n = (\langle \phi_i, \phi_j \rangle_{L^2(\rho)})_{i,j}$$
.

Theorem (Generalized eigenvalue problem)

If $\mathcal{L}_{\overline{G}}(L^2(\rho)) \subset \mathcal{H}$, then $\mathcal{L}_{\overline{G}}$ eigenvalues are solved by the generalized eigenvalue problem (\overline{A}_n, B_n) and $B_{rkhs} = (V \wedge V^{\top})^{-1}$.

- If $B_n = I_n$: $B_{rkhs} = \overline{A}_n^{-1}$, the Zellner's g-prior;
- If $\phi_i = \psi_i$: $\overline{A}_n = \operatorname{diag}(\lambda_i)$, $B_{rkhs} = \overline{A}_n^{-1}$: $\widehat{c} = \sum_{i: \lambda_i > 0} (\lambda_i + \lambda)^{-1} (v_i^{\top} \overline{b}) v_i$
- l^2 or L^2 regularizer: $\hat{c} = \left[\sum_{i:\lambda_i>0} + \sum_{i:\lambda_i=0}\right] (\lambda_i + \lambda)^{-1} (v_i^\top \overline{b}) v_i$

- Learning kernels
- Regression and regularization
- Identifiability and DARTR
- Numerical examples

Interaction kernel in a nonlinear operator

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = f, \quad K_{\phi} = \phi(|x|) \frac{x}{|x|}$$

- Recover kernel from discrete noisy data
- Robust in accuracy, consistent rates as mesh refines

More robust L-curve

Linear integral operator:

$$R_{\phi}[u](x) = \int_{\Omega} \phi(|y-x|)u(y)dy = f(x).$$

Robust in accuracy, consistent rates

Homogenization of wave propagation in meta-material

Identifiability and DARTR

- heterogeneous bar with microstructure + DNS ⇒ Data
- Homogenization: $R_{\phi}[u] = \partial_{tt}u g$.

$$R_{\phi}[u](x) = \int_{\Omega} \phi(|y|)[u(x+y)-u(x)]dy.$$

- (c): resolution-invariant
- (e): I² and L2 leading to non-physical kernel

Learning kernels

Summary

Learning kernels in operators:

$$R_{\phi}[u] = f \quad \Leftarrow \quad \mathcal{D} = \{(u_k, f_k)\}_{k=1}^N$$

Identifiability and DARTR

Nonlocal dependence

- Identifiability theory: FSOI
- DARTR: data adaptive RKHR Tikhonov-Reg
- Numerical tests: robust accuracy, consistent rates

Future directions

- Convergence of regularized estimator $(\Delta x, N)$
- Inverse problems with nonlocal dependence
- Regularization for neural network: $\|\phi_{\theta}\|_{rkhs}^2$, not $\|\theta\|$

-	Data	Goal: ϕ	Inversion*	FSOI	Regularization
Classical learning	$\{(x_i,y_i)\}$	$Y = \phi(X)$			no need of FSOI
Learning kernels	$\{(u_i,f_i)\}$	$R_{\phi}[u] = f$	$\widehat{\phi} = \mathcal{L}_{G}^{-1} \phi^{D}$	SIDA	FSOI necessary

References

- (@ http://www.math.jhu.edu/~feilu) QR-code \rightarrow
- F.Lu, Q .Lang and Q. An. Data adaptive RKHS Tikhonov regularization for learning kernels in operators. MSML22. (Matlab code available)
- F.Lu, Q .An and Y. Yu. Nonparametric learning of kernels in nonlocal operators. arXiv2205

