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Learning kernels
e0

Learning kernels in operators

Learn the kernel ¢: Rylu] + ¢ = f

from data: N
D= {(Ulﬁ fk)}k:1, (Uk, fk) eXxY
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Learning kernels
e0

Learning kernels in operators

Learn the kernel ¢: Rylu] + ¢ = f

from data: N
D= {(Ulﬁ fk)}k:1, (Uk, fk) eXxY

@ Operator R¢: linear or nonlinear in u, but linear in ¢
» nonlocal interaction (interacting particles, mean-field)

Rolu] = V-[u(Kyxu)l = du—oAu,  Ky(x) = ¢(|XI)% eRY

1< . . . .
RolXi] = (= - D Ko(X{ = X)), = X+ Wy, R™
j=1
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Learning kernels
e0

Learning kernels in operators

Learn the kernel ¢: Rylu] + ¢ = f

from data: N
D= {(Ulﬁ fk)}k:1, (Uk, fk) eXxY

@ Operator R¢: linear or nonlinear in u, but linear in ¢
» nonlocal interaction (interacting particles, mean-field)

Rolu] = V-[u(Kyxu)l = du—oAu,  Ky(x) = ¢(|XI)% eRY

1< . . . .
RolXi] = (= - D Ko(X{ = X)), = X+ Wy, R™
j=1
» nonlocal PDE/ fractional diffusion: Ry[u] = 0xu — g

Ry[u](x) = /Q o(x.y)uly) — u(x)]dy =yt — g, Vx € .
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Learning kernels
e0

Learning kernels in operators

Learn the kernel ¢: Rylu] + ¢ = f

from data: N
D= {(Ulﬁ fk)}k:1, (Uk, fk) eXxY

@ Operator R¢: linear or nonlinear in u, but linear in ¢
» nonlocal interaction (interacting particles, mean-field)

Rolu] = V-[u(Kyxu)l = du—oAu,  Ky(x) = ¢(|XI)% eRY

1 . . . .
Ry[Xi] = (_EZKqﬁ(XtI_X{))i:Xt"FWh R™
j=1
» nonlocal PDE/ fractional diffusion: Ry[u] = 0xu — g
Rlulx) = [ olx.y)luly) — u(ldy = opu —g.vx € 0.

» Integral operators, deconvolution, Toeplitz/Hankel matrix ...
Toeplitz matrix: Ryu = f, Ry(i,j) = ¢(i — )
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Learning kernels
o] ]

Learning kernels in operators

Learn the kernel ¢: Rylu] +¢=f

from data:
D= {(Ulﬁ fk)}g:ﬁ (Uk, fk) ceXxY

@ Operator R¢: linear or nonlinear in u, but linear in ¢

» nonlocal interaction (interacting particles, mean-field)
» nonlocal PDE/ fractional diffusion
» Integral operators, deconvolution, Toeplitz/Hankel matrix ...

@ Data: discrete/noisy, Nonlocal dependence

» random (ug, fx) ~ p ® v: statistical learning
» deterministic (e.g., N=1): inverse problem
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Learning kernels
[ ]

Comparison with classical learning

Classical learning Learning kernel Operator learning
{(x d(x) + €} {( Ryl + 1)} { (o Ryl ] + 1)}
Local dependence Nonlocal dependence * Local dependence
PraRbt o Values are P .
D) ot e AP h Ryl % \ “
o e ,/" undetermined  * . Y o
K dacve from data ® ¢--e
T X T X T u

@ nonlocal dependence
under-determined (no longer “interpolation”)

@ v.s. operator learning: low-dimensional structure
@ methods: regression/ML/DL?

This talk: deterministic inverse problems
D = {uk, fi bk = {uk(X, ), fe(x, t) - j =1, JY,
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Regression and regularization
[ ]

Nonparametric regression

Loss functional: &(¢) = %Z,’L | Rplui] — f,-Hfz.
» Neural network when ¢ is high-D

Hypothesis space: ¢ = Y7, Ci¢j € Hp = span{¢;}7_,:

£(9) = T Anc—2¢ B+ Cl. = by, = > Cidsj, where ¢ = A, by,
i
Three issues
o A~': well-posedness, Identifiability, function space

@ Choice of Hp: {¢;i}y and n
@ Convergence when data mesh refines Ax — 0
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Regression and regularization
L]

Regularization

Regularization is necessary:
@ A, ill-conditioned/singular
@ b,: noise or numerical error

Tikhonov/ridge Regularization:
— =T
Ex(9) = E(9) + A9]1Z = ¢ Anc — 2B, ¢+ Alc|3,

o ZE,*Q’),-, where ¢ = (A, + \B.,) by,
i
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Regression and regularization
L]

Regularization

Regularization is necessary:
@ A, ill-conditioned/singular
@ b,: noise or numerical error
Tikhonov/ridge Regularization:

— —T
Ex(9) = E(6) + M| ¢]2 = cTAnc — 2b, ¢ + M|[c|3.

o Zﬁﬁqb,-, where ¢ = (A, + \B,) by,
i

L-curve and normal vector 10 signed curvature
@ ) by the L-curve method (Hansenoo] ‘ = ot vec s
& 2
g g b

1) = (x(A), y(N)) = (log(£(Cx), log(l[ex[?), & g4

g, ,
X'y — x'y"

Ao = argmax %7 a2 4 0 ‘
AminSASAmac (X2 +y'2)%/

\ogm(c‘Ac -2b'c)
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Regression and regularization
L]

Regularization

Regularization is necessary:
@ A, ill-conditioned/singular
@ b,: noise or numerical error

Tikhonov/ridge Regularization:

— —T
Ex(9) = E(6) + M| ¢]2 = cTAnc — 2b, ¢ + M|[c|3.

o Zﬁﬁqb,-, where ¢ = (A, + \B,) by,
i

L-curve and normal vector

signed curvature

@ ) by the L-curve method [Hansenoo] 4 ot vestr

1) = (x(X), y(N)) := (log(£(Cx), log(l|ex12), _;

X'y — x'y"
Ao = argmax y y

curvature
o M & o

10

Tur2 L 12\3/2° 3 2 0
Amin<A<Amax (X' 2+ y2)3/2 log 4(c/Ac - 20°0)

@ Which norm || - || to use?
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Identifiability and DARTR
o

|dentifiability

@ An exploration measure: p(dr) = ¢ € L%(p)
Rylul(x) = Jq &(1x — y[)glul(x, y)dy, p(dr) oc [ [ d)x—y(dr)lglul(x, y)|dxdy
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Identifiability and DARTR
o

|dentifiability

@ An exploration measure: p(dr) = ¢ € L%(p)
Ry[ul(x) = [q &(Ix — yDglul(x, y)dy, p(dr) o [ [ d)x—y(dr)lg[u](x, y)|dxdy
@ An integral operator < the Fréchet derivative of loss functional

1 N
EW) = Y IRulul = fillfe = (L, ¥)iz() — 20, ¥) 12(p)
N i=1

VEW) =2Lgp —2¢P =0 = ¢ =rL5 "¢
» Lgis anonnegative compact operator: {(\;, )}, Ai 1 0
> ¢D = £5¢true + ¢ermr
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Identifiability and DARTR
o

|dentifiability

@ An exploration measure: p(dr) = ¢ € L%(p)
Ry[ul(x) = [q &(Ix — yDglul(x, y)dy, p(dr) o [ [ d)x—y(dr)lg[u](x, y)|dxdy
@ An integral operator < the Fréchet derivative of loss functional

1 N
EW) = Y IRulul = fillfe = (L, ¥)iz() — 20, ¥) 12(p)
N i=1

VEW) =2Lgp —2¢P =0 = ¢ =rL5 "¢
» Lgis anonnegative compact operator: {(\;, )}, Ai 1 0

> ¢D — Ead)tme + ¢error
@ Function space of identifiability (FSOI):

Qg = £§_1 (£§¢true + ) = H= Span{¢i}i:A,>O
» ill-defined beyond H; ill-posed in H
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Identifiability and DARTR
@00

DARTR: Data Adaptive RKHS Tikhonov Regularization

é;: Ea—1¢f _ £5—1 (£a¢true + ¢error)

A new task for Regularization:
ensure that the learning takes place in the FSOI

data-dependent H = span{t);}i.;>0
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Identifiability and DARTR
@00

DARTR: Data Adaptive RKHS Tikhonov Regularization

¢ =Lg "¢ = Lg (Lgbuue + ™)

A new task for Regularization:
ensure that the learning takes place in the FSOI

2
data-dependent H = span{%;};.\~0 = HGL )

o G =RKHS: HG = £51 /2(L2(p)) System Intrinsic Data Adaptive
0 For 6 = Y cutiis [6l3,) = S B 1913, = Sy A2

= Regularization norm: ||¢|]§,G
_ T
Ex(9) =E(¢) + )‘H¢H%—IG = ¢'AnC — 2bp ¢ + /\HCHZBrkhs
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Identifiability and DARTR
(o] le}

Why DARTR is good: FSHOI is fundamental:

¢ £7_1¢D Lg (@¢true+¢/.7mr+ pi")

® DARTR: [|¢5r |2, = o

(Le+ALg ) '6P = (Lg+ Mg ) (Lgdime + O5°)
@ /2 or L2 regularizer: with C =" ¢; ® ¢jor C = |

( G+)‘C) 1¢D (£f+/\C) ( G¢true+ error+(7_?fl)
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Identifiability and DARTR
(o] le}

Why DARTR is good: FSOI is fundamental:

0 =1Lg 00 = L5 (Lgdme + ST + O

® DARTR: [[¢7"|[2, = oc

(Le+ALg ) '6P = (Lg+ Mg ) (Lgdime + O5°)
@ /2 or L2 regularizer: with C =" ¢; ® ¢jor C = |
( G+ )\C) 1¢D (£7+ /\C) ( d)true + ¢error + (7_5101)

A Bayesian perspective:
@ Prior N(0, Lg); v.s. N(0, C): singular or equivalent
@ Posterior N'(¢., (L5 + Mg 1)7") v.s. N (o1, (L5 +AC) )
e Zellner's g-prior N'(0, 4, ) if H, = span{¢;}"_, o.n.b.
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Identifiability and DARTR
[o]e] ]

DARTR: compute the SIDA-RKHS norm

Let By = ((&i, #)) 2(p) )i j-

Theorem (Generalized eigenvalue problem)

If L5(L3(p)) C H, then L eigenvalues are solved by the generalized
eigenvalue problem (A,, B,) and Bups = (VAVT)~1.

@ If By = Ip: Bups = ﬁ,ﬂ, the Zellner’s g-prior;

J— . 771
@ If i = i Ap = diag(\i), Buns = A,
C=> x>0+ )7V b)v;

@ P or L2 regularizer: € = [}, oo +> 0 —ol(Ai +A) 7' (vTb)V;
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Numerical examples
[ Jele]

Interaction kernel in a nonlinear operator

X

Rolu] = V- [u(Ky xu)] = f, Ky = ¢(!X\)m

@ Recover kernel from discrete noisy data
@ Robust in accuracy, consistent rates as mesh refines

12 L2 RKHS 1

P —— - <
%
= E] AN
g 2 2os RN
3. N
=H107 g -k ~2
£ - L2 ~3
@ ~& RKHS 1
= <
N -
Ts10” E] bo— — o v p-—"
€9 T 205
85 > @ \
I g | il
2 8

= = 0
g 10*
s
8

Ax=0.0125%{1,2,4,8,16} A x=0.0125x{1,2,4,8,16} A x=0.0125x{1,2,4,8,16} 057 7 p

~©-nsr =0.1, error ~&-nsr = 1.0, error —o-nsr=0.1, loss ~¢ nsr=1.0, loss nsr
Typical estimattr)rs, Ax =0.05 Convergence of Estimators, nsr=0.1 &1 Convergence Rates

24/29



Numerical examples
e0

More robust L-curve

12 L2 RKHS

L-curve with norm: 2 5, Signed curvature L-curve with norm: L2 4 5 Signed curvature L-curve with norm: RKHS 5o -Signed curvature
® ), =000031084 3 2
1 15
2 2 2 15
05 1
1 1
o1 b O © 10
=0 H = § [ 2,=00013042
) ] 05 g o =0
g 3 s

4 0 i} - )
2 4 3 15 15 0

- 2
-3 @ ) =0.0074011

3 2 A
log,  (I1AX-bll)

-1

3 -2
10° 10° log,(I1AX-bll)

o -4 2
log (1AX-bl)

5 0
10° 10 10 10
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Numerical examples

ooe

Linear integral operator:

Rylu](x) = Q¢(|y — xJu(y)dy = f(x).

Sine kernel
L2 error

g5107) ="
85 3
]
Rl . .
K]
Ax=0.0125x{1,2,4,8,16) Ax=0.0125x{12,4,8,16} Ax=0.0125x{1,2,4,8,16} “0 1 2
0 2 4 6 8 —©-nsr = 0.1, error -G nsr = 1.0, error —9—nsr =0.1, loss ~¢--nsr = 1.0, loss nsr
Typical estimatérs, Ax = 0.05 Convergence of Estimators, nsr = 0.1 & 1 Convergence Rates

Robust in accuracy, consistent rates
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Numerical examples
@00

Homogenization of wave propagation in meta-material

@ heterogeneous bar with microstructure + DNS =- Data
@ Homogenization: Ry[u] = 0yu — g.

Rylu](x) = /Qqﬁ(\}/\)[U(XJrY) — u(x)]dy.

(a) Wave propagation in (c) ReAguIan'zer 12 Regularizer L2 Regularizer SIDA-RKHS
a heterogeneous bar 1 <10 200
°
3 200 f\
] B S ol 100 A F\A,\ 10 \
| L~ E 0’ VJV\fvx» \ N
[ES— g, -100 o NN
L [ 1 2 0 1 2 0 1 2
r r r
.Ij ((i)o.s f— 0.6 [~ 06— ——
Aw So4 | A\ 04 A 0.4 \
202 \ 0.2 \ 0.2
. | | I
®) 5 o 2 4 0 2 4 0 2 4
Displacement error on a o Angular frequency Angular frequency Angular frequency
cross-validation dataset (e) 100 20
50
- . 50 o A= 10
Resolution 12 L2 SIDA-RKHS 3 \\ .50 —n
Coarse (Az = 0.05)23.5% 28.4%  21.8% o 100 o
Fine (Az = 0.025) | INF 23.4% 19.2% 0 50 100 0 50 100 [ 50 100
Wave number Wave number Wave number
—DNS coarse dataset 1 coarse dataset 2 fine dataset

(c): resolution-invariant

°
@ (e): I? and L2 leading to non-physical kernel
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Numerical examples
(o] I}

Summary

Learning kernels in operators:
Ryul=f < D= {(uk )}k

Nonlocal dependence
@ |dentifiability theory: FSOI

@ DARTR: data adaptive RKHR Tikhonov-Reg

@ Numerical tests: robust accuracy, consistent rates
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Numerical examples
[o]e] ]

Future directions

@ Convergence of regularized estimator (Ax, N)
@ Inverse problems with nonlocal dependence

@ Regularization for neural network: ||¢g||%,s, not [|6]|

Data Goal: ¢ Inversion* FSOI Regularization
Classical learning  {(x;,y1)} Y =¢(X) ¢= I=1¢P  [2(p) no need of FSOI
Learning kernels {(ui, )} Rgplul=f o= LE1¢D SIDA  FSOlI necessary
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