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Can a reduced model predict random shocks?

ν = 0.05, K0 = 4 stochastic force→ random shocks
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Problem and motivation

Prediction with Uncertainty Quantification

x ′= F (x) + U(x , y), resolved scales
y ′ = G(x , y), subgrid-scales

Data:{x(nh)}

Model reduction by data-driven modeling

 2

Why? 
- Param. est. 
- Data assimilation 
- UQ 
- dynamical mechanisms 
- …

Goal: xn+1 = f(xn) + · · ·orẋ= f(x) + · · ·
- Statistics: time correlations, marginals, … 
- Forecast (if possible)
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xn = ⇡Xn�t + ⌫n
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Many approaches 
- Slow-fast; equation-free… 
- Linear models: AR(MA), …  
- Moment closures 
- Reduced order modeling: POD [Lumley, Holmes…]; 

DMD [Schmid…]; SINDy [Kutz, Brunton]; LSPG [Carlberg…]; … 
- Koopman / transfer operator [Mezic, Froyland…] 
- Mori-Zwanzig [Chorin; Stinis; Karniadakis, Venturi; Li; Levermore…] 

- Machine learning [Kevrekidis; Maggioni; Ott; Sauer…] 
- …

- High-dim 
- Chaotic / stochastic fit

(courtesy of Kevin Lin)

Motivation: Data assimilation:
ensemble forecasting
can only afford to resolve x ′ = F (x)
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Problem and motivation

Goal: ensemble prediction of extreme events

x ′= F (x) + U(x , y), resolved scales
y ′ = G(x , y), subgrid-scales

Data:{x(nh)}

Model reduction by data-driven modeling

 2

Why? 
- Param. est. 
- Data assimilation 
- UQ 
- dynamical mechanisms 
- …

Goal: xn+1 = f(xn) + · · ·orẋ= f(x) + · · ·
- Statistics: time correlations, marginals, … 
- Forecast (if possible)

=)

φ

t
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Observe
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Many approaches 
- Slow-fast; equation-free… 
- Linear models: AR(MA), …  
- Moment closures 
- Reduced order modeling: POD [Lumley, Holmes…]; 

DMD [Schmid…]; SINDy [Kutz, Brunton]; LSPG [Carlberg…]; … 
- Koopman / transfer operator [Mezic, Froyland…] 
- Mori-Zwanzig [Chorin; Stinis; Karniadakis, Venturi; Li; Levermore…] 

- Machine learning [Kevrekidis; Maggioni; Ott; Sauer…] 
- …

- High-dim 
- Chaotic / stochastic fit

courtesy of Kevin Lin

Objective 1: reduced model ≈ the flow map: x1:n−1 → xn

captures key statistical + dynamical properties
ensemble simulations (with a larger time-step)
Space-time reduction: spatial dimension ↓; time-step size ↑

Objective 2: Predict extreme events
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Review

Closure modeling, model error UQ, subgrid parametrization

Direct constructions:

nonlinear Galerkin [Fioas, Jolly,

Kevrekidis, Titi...]

moment closure [Levermore, Morokoff...]

Polynomial chaos
[Karniadarkis/Najm/Majda/Chorin... groups]

Mori-Zwanzig formalism
memory → non-Markov process
[Chorin, Hald, Kupferman, Stinis, Li, Darve, E,

Karniadarkis, Venturi, Duraisamy ...]

Data-driven RM

� PCA/POD, DMD, Kooperman [Holmes,

Lumley, Marsden, Wilcox, Kutz, Rowley ...]

� ROM closure [Farhat, Carlberg, Iliescu, Wang...]

� stochastic models: SDEs/GLEs,
time series models [Chorin/Majda/Gil groups]

� machine learning (... )

� What does a RM approximate?
� RM for random extreme events?

a statistical learning study of RM
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Flow map approximation

x ′ = F (x) + U(x , y), y ′ = G(x , y).

Data {x(nh)}Nn=1

Classical numerical schemes(
xn
yn

)
= F

(
xn−1
yn−1

)
trajectory-wise Approx.

Closure flow map
(Mori-Zwanzig):
xn = Fn(x1:n−1)

Data-driven methods:
Fn(x1:n−1) ≈ F̂n(xn−p:n−1)

average the subgrid-scales
approximate in distribution

Learning: curse of dimensionality
I machine learning: great success
I parametric inference

use the structure of the map

8 / 21



Motivation and objective Inference-based Model reduction Shock trace prediction by RM Summary and outlook

Flow map approximation

x ′ = F (x) + U(x , y), y ′ = G(x , y).

Data {x(nh)}Nn=1

Classical numerical schemes(
xn
yn

)
= F

(
xn−1
yn−1

)
trajectory-wise Approx.

Closure flow map
(Mori-Zwanzig):
xn = Fn(x1:n−1)

Data-driven methods:
Fn(x1:n−1) ≈ F̂n(xn−p:n−1)

average the subgrid-scales
approximate in distribution

Learning: curse of dimensionality
I machine learning: great success
I parametric inference

use the structure of the map

9 / 21



Motivation and objective Inference-based Model reduction Shock trace prediction by RM Summary and outlook

NARMA: a numerical time series model

(Xn − Xn−1)/h = Rh(Xn−1) +
∑

i

ciφi (Xn−p:n−1, ξn−p:n−1) + ξi

NARMA(p,q) [Chorin-Lu (15)]

(Xn − Xn−1)/h = Rh(Xn−1) + Φn + ξn,

Φn =

p∑
j=1

ajXn−j +
r∑

j=1

s∑
i=1

bi,jPi (Xn−j )︸ ︷︷ ︸
Auto-Regression

+

q∑
j=1

cjξn−j︸ ︷︷ ︸
Moving Average

Rh(Xn−1) from a numerical scheme for x ′ ≈ F (x)

Φn depends on the past
Tasks:
Structure derivation: terms and orders (p, r , s,q) in Φn;
Parameter estimation: aj ,bi,j , cj , and σ. Conditional MLE
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Examples

Chaotic or stochastic systems
the two-layer Lorenz96 [Chorin-Lu15]

Kuramoto-Sivashisky [Lu-Lin-Chorin17]

stochastic Burgers [Lu20]

I ν = 0.05, K0 = 4 stochastic force
I Full model: N = 128,dt = 0.005
I Reduced model: K = 8, δ = 20dt

The NARMA model can (for resolved var.)

tolerate large time-steps

reproduces statistics: ACF, PDF

improves Data Assimilation [Lu-Tu-Chorin17]

Prediction of the random shocks?
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Shock trace

Representing shocks

Representation of shocks
Full: viscous shocks
2K- and K-modes: smooth
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⇒ Shock representation requires high-modes.
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Shock trace

Shock trace by thresholding - FM

Trace of random shocks
space–time locations
resolution-adaptive thresholds
empirical from FM data

u(x,t): FM
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Shock trace prediction by NAR

Shock trace prediction with IC + force

Trace in a single trajectory
u(x,t): FM K-modes
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Shock trace prediction by NAR

Data assimilation

Ensemble
prediction

Assimilation [0,5],
Prediction (5,10]

Rates from 200 simuls
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Summary

x ′ = f(x) + U(x,y), y ′= g(x,y).
Data {x(nh)}Nn=1

“Xn+1 = Xn + Rh(Xn) + Zn ”
for prediction

Inference

Numerical + inferential model reduction

non-intrusive time series (NARMA)

≈ the flow map: x1:n−1 → xn

space-time reduction

→ Predicts shock trace: space-time locations
(shock representation requires high modes)
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Space-time reduction

Open question: Optimal space-time reduction?

Space-time reduction
dimension reduction r
large time-stepping δ = Gap ∗∆t

Accuracy of RMs

90 RM (r , δ)

RMSE on of 100 trajs on [0,4]

Observations:

As r ↑: accuracy ↑, tolerate δ ↓
Each r : “sweet spot” medium δ

Trade-off (r , δ) for an “optimal” RM? 2 4 6 8 10 12 14
Time Gap

6

8

10

12

14

16

r

0.02

0.03

0.04

0.05

0.06

0.07

0.08

NAN

20 / 21



References

Data-driven stochastic model reduction
I Chorin-Lu: Discrete approach to stochastic parametrization and dimension

reduction in nonlinear dynamics. PNAS 112 (2015).
I Lu-Lin-Chorin: Comparison of continuous and discrete-time data-based

modeling for hypoelliptic systems. CAMCoS, 11 (2016).
I Lu-Lin-Chorin: Data-based stochastic model reduction for the Kuramoto –

Sivashinsky equation. Physica D, 340 (2017).
I Lin-Lu: Data-driven model reduction, Wiener projections, and the

Mori-Zwanzig formalism. JCP (2021).
I Lu: Data-driven model reduction for stochastic Burgers equations. Entropy

2020.
I Li-Lu-Ye: ISALT: Inference-based schemes adaptive to large time-stepping

for locally Lipschitz ergodic systems, DCDS-S (2021).

Data assimilation
I Lu-Tu-Chorin: Accounting for model error from unresolved scales in

EnKFs: improving the forecast model. MWR, 340 (2017).
I Nan Chen, Honghu Liu and F. Lu. Shock trace prediction by reduced

models for a viscous stochastic Burgers equation. Chaos (2022).

Thank you!


