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POD-Galerkin ROM
Data >> POD basis >> Galerkin ROM.

adaptive/augmented basis
weighted/scaled function space
closure: quadratic/DMS

Pro: accurate as FOM data (single trajectory)
Con: Sensitive to data. Generalizability/Robustness/Stability

NN methods: AE, NeuralODE
Pro: flexible: high-D, high nonlinearity
Con: tuning, not using the physics insight

Low-D structure/manifold: interpolation, characteristic,
conditional Gaussian
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Problem and motivation

Prediction with Uncertainty Quantification

x ′= F (x) + U(x , y), resolved scales
y ′ = G(x , y), subgrid-scales

Data:{x(nh)}

Model reduction by data-driven modeling

 2

Why? 
- Param. est. 
- Data assimilation 
- UQ 
- dynamical mechanisms 
- …

Goal: xn+1 = f(xn) + · · ·orẋ= f(x) + · · ·
- Statistics: time correlations, marginals, … 
- Forecast (if possible)
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Many approaches 
- Slow-fast; equation-free… 
- Linear models: AR(MA), …  
- Moment closures 
- Reduced order modeling: POD [Lumley, Holmes…]; 

DMD [Schmid…]; SINDy [Kutz, Brunton]; LSPG [Carlberg…]; … 
- Koopman / transfer operator [Mezic, Froyland…] 
- Mori-Zwanzig [Chorin; Stinis; Karniadakis, Venturi; Li; Levermore…] 

- Machine learning [Kevrekidis; Maggioni; Ott; Sauer…] 
- …

- High-dim 
- Chaotic / stochastic fit

(courtesy of Kevin Lin)

Motivation: Data assimilation:
ensemble forecasting
can only afford to resolve x ′ = F (x)
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Problem and motivation

Problem: ensemble prediction of x(t)

x ′= F (x) + U(x , y), resolved scales
y ′ = G(x , y), subgrid-scales

Data:{x(nh)}

Model reduction by data-driven modeling

 2

Why? 
- Param. est. 
- Data assimilation 
- UQ 
- dynamical mechanisms 
- …

Goal: xn+1 = f(xn) + · · ·orẋ= f(x) + · · ·
- Statistics: time correlations, marginals, … 
- Forecast (if possible)

=)

φ

t

Ẋt = F(Xt) , Xt 2 RD

Observe
xn = ⇡Xn�t + ⌫n

⇡ : RD! Rd , d⌧ D

xn

φ

t

Many approaches 
- Slow-fast; equation-free… 
- Linear models: AR(MA), …  
- Moment closures 
- Reduced order modeling: POD [Lumley, Holmes…]; 

DMD [Schmid…]; SINDy [Kutz, Brunton]; LSPG [Carlberg…]; … 
- Koopman / transfer operator [Mezic, Froyland…] 
- Mori-Zwanzig [Chorin; Stinis; Karniadakis, Venturi; Li; Levermore…] 

- Machine learning [Kevrekidis; Maggioni; Ott; Sauer…] 
- …

- High-dim 
- Chaotic / stochastic fit

courtesy of Kevin Lin

Objective: model the flow map: x1:n−1 → xn

captures key statistical + dynamical properties
ensemble simulations (with a larger time-step)

Space-time reduction: spatial dimension ↓; time-step size ↑
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Review

Closure modeling, model error UQ, subgrid parametrization

Direct constructions:

nonlinear Galerkin [Fioas, Jolly,

Kevrekidis, Titi...]

moment closure [Levermore, Morokoff...]

Mori-Zwanzig formalism
memory → non-Markov process
[Chorin, Hald, Kupferman, Stinis, Li, Darve, E,

Karniadarkis, Venturi, Duraisamy ...]

Data-driven RM

� PCA/POD, DMD, Kooperman [Holmes,

Lumley, Marsden, Wilcox, Kutz, Rowley ...]

� ROM closure [Farhat, Carlberg, Iliescu, Wang...]

� stochastic models: SDEs/GLEs,
time series models [Chorin/Majda/Gil groups]

� machine learning (... )

� Why and when a data-driven ROM work?
� What does a ROM approximate?

a statistical learning perspective of model reduction
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Flow map approximation

x ′ = F (x) + U(x , y), y ′ = G(x , y).

Data {x(nh)}Nn=1

Classical numerical schemes(
xn
yn

)
= F

(
xn−1
yn−1

)
trajectory-wise Approx.

fine resolution

Closure flow map
(Mori-Zwanzig):
xn = Fn(x1:n−1)

Data-driven methods:
Fn(x1:n−1) ≈ F̂n(xn−p:n−1)

average the subgrid-scales
approximate in distribution

Learning: curse of dimensionality
I machine learning: great success
I parametric inference

use the structure of the map
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NARMA: a numerical time series model

(Xn − Xn−1)/h = Rh(Xn−1) +
∑

i

ciφi (Xn−p:n−1, ξn−p:n−1) + ξi

NARMA(p,q) [Chorin-Lu (15)]

(Xn − Xn−1)/h = Rh(Xn−1) + Zn,

Zn = Φn + ξn,

Φn =

p∑
j=1

ajXn−j +
r∑

j=1

s∑
i=1

bi,jPi (Xn−j )︸ ︷︷ ︸
Auto-Regression

+

q∑
j=1

cjξn−j︸ ︷︷ ︸
Moving Average

Rh(Xn−1) from a numerical scheme for x ′ ≈ F (x)

Φn depends on the past

NARMAX in system identification Zn = Φ(Z ,X ) + ξn,
Tasks:
Structure derivation: terms and orders (p, r , s,q) in Φn;
Parameter estimation: aj ,bi,j , cj , and σ. Conditional MLE
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Examples

Chaotic or stochastic systems
the two-layer Lorenz96 [Chorin-Lu15]

Kuramoto-Sivashisky [Lu-Lin-Chorin17]

stochastic Burgers [Lu20]

The NARMA model can

tolerate large time-steps

reproduces statistics: ACF, PDF

improves Data Assimilation [Lu-Tu-Chorin17]

predict shock trace [Chen-Liu-Lu22]
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POD+ closure

POD + Quadratic closure

Randomly parametrized Eq: u̇ = f(u), ⇒
Multiple trajectory Data: {u(t)(m), t ∈ [0,T ]}Mm=1

POD basis functions {φ1, . . . ,φr}

u(t , x) =

(
r∑

i=1

+
∞∑

i=r+1

)
ai (t)φi (x)

Galerkin projection with closure, a = (a1, . . . ,ar ),

ȧ = F (a) + Closure(a)

= F (a) + Ãa + a>B̃a + error

(Â, B̂) = arg min
(Ã,B̃)

1
MT

M∑
m=1

‖ȧ(m)−F (a(m))−Ãa(m)−(a(m))>B̃a(m)‖2
L2([0,T ])
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Discrete stochastic ROM closure

Stochastic ROM closure (bad practice)

ȧ = F (a) + Ãa + a>B̃a + errorΣẆ

Maximizing the likelihood:

(Â, B̂) = arg min
(Ã,B̃)

1
MT

M∑
m=1

‖ȧ(m)−F (a(m))−Ãa(m)−(a(m))>B̃a(m)‖2
L2([0,T ])

Quiz: what wrong with the following procedue?
1. Estimate using FD for ȧ (Euler-Maruyama),

a(tl+1)− a(tl ) ≈
[
F (a) + Ãa + a>B̃a

]
(tl )δ +

√
δΣξl , tl = lδ

2. Another scheme (e.g. stochastic RK4) for integration
Long-term blow up!
1.0011e5 = 2e + 43
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Discrete stochastic ROM closure

Stochastic ROM closure

Discrete-time stochastic model:

a(tl+1)− a(tl ) ≈
[
F (a) + Ãa + a>B̃a

]
(tl )δ +

√
δΣξl , tl = lδ

(Â, B̂) = arg min
(Ã,B̃)

1
ML

M∑
m=1

L∑
l=1

‖∆a
δ

(tl )−F (a(m))−Ãa(m)−(a(m))>B̃a(m)‖2

Faithful modeling: no additional discretization error.
Estimation error 0.0001⇒ 1.00011e5 = 2e4

Large time-stepping: δ = 100∆t ⇒ 1.00011e3 = 1.1
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Convergence of estimators

Convergence of POD basis and estimators

Under minor conditions on boundedness of u:
Theorem 1: The POD basis converges in L2(D) at rate M−1/2.

Theorem 2: The estimators converges at rate M−1/2.

Not requiring stationary distribution/equilibrium.
Invertibility of the normal matrix in LS: symmetry
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Numerical example

Viscous Burgers with random IC

1D Burgers ν = 0.002.

ut = νuxx − uux , 0 < x < 1, t > 0,
u(0, t) = u(1, t) = 0, t ≥ 0,
u(·,0) = u0(·, ω) ∼ µ.

u0(x , ω) =
K∑

k=1

wk (ω)

k
sin(πkx),

K = 50, wk ∼ N(0.5,0.2).
∆ = 5e − 3, T = 2.
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Numerical example

Convergence of POD basis
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Numerical example

Convergence of Estimators

ROM with r = 10
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Tikhonov regularization with L-curve.
single trajectory (400 snapshots): overfitting
multiple trajectory: convergent
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Numerical example

Prediction by ROM

Trajectory-wise prediction (100 new ICs, turn noise-off):
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Numerical example

Prediction by ROM

Ensemble prediction (100 realizations):
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Space-time reduction

Open question: Optimal space-time reduction?

Space-time reduction
dimension reduction r
large time-stepping δ = Gap ∗∆t

The POD+Quadratic closure:

90 ROMs (r , δ)

RMSE on of 100 trajs on [0,4]

Observations:

As r ↑: accuracy ↑, tolerate δ ↓
Each r : “sweet spot” medium δ

Trade-off (r , δ) for an “optimal” ROM? 2 4 6 8 10 12 14
Time Gap
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Summary

x ′ = f(x) + U(x,y), y ′= g(x,y).
Data {x(nh)}Nn=1

“X ′ = f (X ) + Z (t , ω)”

Inference

“Xn+1 = Xn + Rh(Xn) + Zn ”
for prediction

Discretization

Inference

Numerical + inferential model reduction

non-intrusive time series (NARMA)

→ ROM closure with space-time reduction
→ Efficient prediction with UQ
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What is the objective of ROM?

This talk: Efficient prediction with uncertainty quantification

Focus on QoI (dimension reduction)

Large time-stepping (time reduction)

Prediction (new random ICs)

� Accurate as FOM

� DiffEq for ROM

� Single-trajectory

Discrete-time stochastic ROM closure

flow map approximation
xn = Fn(x[0,tn−1]) ≈ F̂n(x1:n−1) =

∑
k ck Φk

n−p:n−1

physical insight + statistical/machine learning
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