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What is the objective of ROM?
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POD-Galerkin ROM
Data >> POD basis >> Galerkin ROM.

@ adaptive/augmented basis
@ weighted/scaled function space
@ closure: quadratic/DMS

Pro: accurate as FOM data (single trajectory)
Con: Sensitive to data. Generalizability/Robustness/Stability

NN methods: AE, NeuralODE
Pro: flexible: high-D, high nonlinearity
Con: tuning, not using the physics insight

Low-D structure/manifold: interpolation, characteristic,
conditional Gaussian
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Motivation and objective
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Problem and motivation

Prediction with Uncertainty Quantification = = -
&ﬂ

x'=F(x)+ U(x,y), resolved scales i
y' = G(x,y), subgrid-scales
Data:{x(nh)} VeVl
(courtesy of Kevin Lin)
Motivation: Data assimilation: e

@ ensemble forecasting
@ can only afford to resolve x’ = F(x)
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Problem and motivation

Problem: ensemble prediction of x(t) o
x'=F(x)+ U(x.y), resolved scales s
y'=G(x,y), subgrid-scales

Data:{x(nh)} PP
Xn

t
courtesy of Kevin Lin

Objective: model the flow map: xi.,_1 — Xp
@ captures key statistical + dynamical properties
@ ensemble simulations (with a larger time-step)
Space-time reduction: spatial dimension |; time-step size 1




Motivation and objective
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Review

Closure modeling, model error UQ, subgrid parametrization

Direct constructions: Data-driven RM
@ nonlinear Galerkin [Fioas, Jolly, B PCA/POD, DMD, Kooperman [Holmes,
Kevrekidis, Titi...] Lumley, Marsden, Wilcox, Kutz, Rowley ...]
@ moment closure [Levermore, Morokoft...] B ROM closure [Farhat, Carlberg, lliescu, Wang...]
@ Mori-Zwanzig formalism B stochastic models: SDEs/GLEs,
memory — non-Markov process time series models [Chorin/Majda/Gil groups]

[Chorin, Hald, Kupferman, Stinis, Li, Darve, E, . .
, B machine learning (... )
Karniadarkis, Venturi, Duraisamy ...]

B Why and when a data-driven ROM work?
B What does a ROM approximate?

a statistical learning perspective of model reduction
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Inference-based Model reduction
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Flow map approximation

x'=F(x)+ U(x,y), y = G(x,y).
Data {x(nh)}N_,

Classical numerical schemes
Xn\ _ F Xn—1
Yn Yn—1
@ trajectory-wise Approx.
@ fine resolution

@ Closure flow map
(Mori-Zwanzig):
Xn = Fn(X1:nf1)



Inference-based Model reduction
[ ]
Flow map approximation

x'=F(x)+ U(x,y), y = G(x,y).
Data {x(nh)}N_,

Classical numerical schemes

X X Data-driven methods:

ny\ __ n—1 ~

Vn - Vi1 Fn(X1:n—1) ~ Fn(Xn—p:n—1)

@ trajectory-wise Approx. @ average the subgrid-scales

approximate in distribution

@ fine resolution
@ Learning: curse of dimensionality
@ Closure flow map

(Mori-Zwanzig): » machine learning: great success
Xn = Fn(X1:n—1) » parametric inference
- use the structure of the map




Inference-based Model reduction
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NARMA: a numerical time series model

(Xn — Xn—1)/h = Bp(Xn—1) + Y _ Cioi( Xo—pin—1.En—pin—1) + &

NARMA(p, g) [Chorin-Lu (15)]

(Xn - Xn71 )/h = Rh(Xn71) + Zna
Zn = ‘bn + §na
q
‘Dn—zaf —/‘*‘Zzbu i)+ D Gién-
j=1 i=1 j=1
Auto-Regression Moving Average

@ Rp(X,—1) from a numerical scheme for x’ ~ F(x)
@ ¢, depends on the past

@ NARMAX in system identification Z, = ®(Z, X) + &g,
Tasks:

Structure derivation: terms and orders (p, r, s, q) in ®,;
Parameter estimation: g, b;, ¢;, and o. Conditional MLE

10/25



Inference-based Model reduction
o
Examples

Chaotic or stochastic systems =3
o the two-layer Lorenz96 (chorinLuts) 45

. . 25

@ Kuramoto-Sivashisky u-Lin-chorini7) j;!‘

@ stochastic Burgers ruzo

The NARMA model can
@ tolerate large time-steps s W
@ reproduces statistics: ACF, PDF

@ improves Data Assimilation [Lu-Tu-Chorin17]

@ predict shock trace [chen-Liu-Lu2z]
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Stochastic ROM closure
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POD+ closure

POD + Quadratic closure

Randomly parametrized Eq: u = f(u), =
Multiple trajectory Data: {u(t)(™, t e [0, T}M_,
POD basis functions {¢y, ..., ¢,}

u(t,x) = (Z + > ) ai(t)¢;(x)
i=1 i=r+1
Galerkin projection with closure, a = (ay, ..., ar),

a = F(a) + Closure(a)
— F(a)+ Aa+a' Ba+ error

(A,B) =argmin —— 3" |a™—F(a(™)—Aa(™—(a™) " Bal™ |2, 1,
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Stochastic ROM closure
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Discrete stochastic ROM closure

Stochastic ROM closure (bad practice)

a=F(a)+ Aa+a' Ba+ernors W

Maximizing the likelihood:

(A, B) = g Z |a‘™ —F(al™)— Aa(m (a(m))TBa(m)”%z([o,T])
(A,

UJ!

Quiz: what wrong with the following procedue?
1. Estimate using FD for a (Euler-Maruyama),

a(tq) —a(t) ~ [F(a) + Aa+ aTEa} (t)s +V5oxE, t=1I5

2. Another scheme (e.g. stochastic RK4) for integration
Long-term blow up!
1.001'¢5 = 2¢ + 43
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Stochastic ROM closure
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Discrete stochastic ROM closure

Stochastic ROM closure

Discrete-time stochastic model:
a(t) —a(t) ~ [F(a) + Aa+ aTEa} ()5 +VoxE, t=15

M L
~ 1 Aa ~ ~
A B) = min — E § Z2(t)—F(ai™)—Aal™ _(a(MT Ba(m||2
( ,B) ar(gz E)In WL 2 || 5 (t/) (a ) a (a ) Ba ||

@ Faithful modeling: no additional discretization error.
Estimation error 0.0001 = 1.0001'%5 = 2¢4

@ Large time-stepping: 6 = 100At = 1.0001'¢3 = 1.1
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Stochastic ROM closure
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Convergence of estimators

Convergence of POD basis and estimators

Under minor conditions on boundedness of u:
Theorem 1: The POD basis converges in L?(D) at rate M~1/2,

Theorem 2: The estimators converges at rate M~1/2.

@ Not requiring stationary distribution/equilibrium.
@ Invertibility of the normal matrix in LS: symmetry
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Stochastic ROM closure

Numerical example

Viscous Burgers with random IC

@0000

1D Burgers v = 0.002.
Up=vlUy —Uly, 0<x<1,t>0,
u,t)y=u(1,t)=0, t>0,
u(-,0) = to(-,w) ~ .

) Random initial condition samples

0.8
0.6
= 04

04

’( =
A=

k
k=1
50, wx ~ N(0.5,0.2).
5e—-3, T =2.

A typical solution
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Stochastic ROM closure
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Numerical example

Convergence of POD basis

(A): Mode ¢ (B): Mode 5 (C): Mode @19
2 2
12
1 1 1
08
0 0
-1 -1
-2 -2
0 02 04 06 08 1 0 02 04 06 08 1
xT x
(E): POD mode convergence (F): Eigenvalue convergence

1 5 10 15 20 25 30
mode index
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Stochastic ROM closure
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Numerical example

Convergence of Estimators

ROM with r =10

(A) trajectory-wise estimator (B) M-trajectory estil r (C) Convergence of
—— A(1,1,m)
— B(1,1,1,m)

——Error Ay
—&--Error By
slope -0.5

-50

-100
0 200 400 600 800 1000

10710 (D) trajectory-wise residual x10™  (E) M-trajectory residual
=0
1012
104
1046 10%
° 10t 102 108

Tikhonov regularization with L-curve.
@ single trajectory (400 snapshots): overfitting

@ multiple trajectory: convergent
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Stochastic ROM closure
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Numerical example

Prediction by ROM

Trajectory-wise prediction (100 new ICs, turn noise-off):

015 Mean of RMSEs S-ROM G-ROM
) ——S-ROM - 06 -
G-ROM +
i 0.1 +
2 01 w -+ wo4 F +
: 2 e 2 T
c ®0.05 i £ 1+ T oa [ :
g0.05 4
= TTTEEEs,
/K s
)/ 0 ot—
0 005115225 3 35 4 005115 2 25 3 35 4
0 1 2 3 4 Time Time
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Stochastic ROM closure
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Numerical example

Prediction by ROM

Ensemble prediction (100 realizations):

0.04
3\ .
0.02 %\
R - 01
. e " +
im : L
-0.02 0.05 i Q £ %
S-ROM L % % %
-0.04 —-—-Ensemble mean % *
........ FOM Ott
-0.06 005115 2 25 3 35 4
0 1 2 3 4 Time
Time

21/25



Stochastic ROM closure
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Space-time reduction

Open question: Optimal space-time reduction?

Space-time reduction
@ dimension reduction r
@ large time-stepping 6 = Gap = At
The POD+Quadratic closure: 6
@ 90 ROMs (r,9) s
@ RMSE on of 100 trajs on [0, 4] 0

Observations:

12

@ As r 1: accuracy T, tolerate 0 | .

@ Each r: “sweet spot” medium §

16

Trade-off (r, §) for an “optimal” ROM? 2 4 6 8 10 12

Time Gap
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Summary and outlook

Summary

x'=1(x) + U(xy), ¥'= g(x.y).
Data {x(nh)}N_,

Numerical + inferential model reduction

@ non-intrusive time series (NARMA)
Inference

— ROM closure with space-time reduction
— Efficient prediction with UQ

Y

“Xns1 = Xn+ Ra(Xn)+ 2,7
for prediction
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Summary and outlook

What is the objective of ROM?
This talk: Efficient prediction with uncertainty quantification

@ Focus on Qol (dimension reduction) B Accurate as FOM
@ Large time-stepping (time reduction) B DiffEq for ROM

@ Prediction (new random ICs) B Single-trajectory

Discrete-time stochastic ROM closure

@ flow map approximation
Xn = Fn(X[O,t,,,1]) ~ Fo(X1:n-1) = Zk qu)’r(yfp:nA
@ physical insight + statistical/machine learning
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