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Motivation and objective

0 Motivation and objective
@ Inference-based Model reduction

e From nonlinear Galerkin to inference
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Motivation and objective
e0

Problem and motivation

Prediction with Uncertainty Quantification /
Mg

x'=F(x)+ U(x,y), resolved scales obne
y' = G(x,y), subgrid-scales
Data:{x(nh)} partial observation
Xn /\\/\/’A'"\/A"A
(courtesy of Kevin Lin)
Motivation: Data assimilation: e

Atmospheric Model

@ ensemble forecasting
@ can only afford to resolve x’ = F(x)



Motivation and objective

oe

Problem and motivation

Problem: ensemble prediction of x(t) ot ew
x'=F(x)+ U(x.y), resolved scales s
y'=G(x,y), subgrid-scales

Data:{x(nh)} PP
Xn

t
courtesy of Kevin Lin

Objective: model the flow map: xi.,_1 — Xp
@ captures key statistical + dynamical properties
@ ensemble simulations (with a large time-step)
Space-time reduction: spatial dimension |; time-step size 1




Motivation and objective
e0

Review

Closure modeling, model error UQ, subgrid parametrization

Direct constructions: Data-driven RM
@ nonlinear Galerkin [Fioas, Jolly, B PCA/POD, DMD, Kooperman [Holmes,
Kevrekidis, Titi...] Lumley, Marsden, Wilcox, Kutz, Rowley ...]
@ moment closure [Levermore, Morokoft...] B ROM closure [Farhat, Carlberg, lliescu, Wang...]
@ Mori-Zwanzig formalism B stochastic models: SDEs/GLEs,
memory — non-Markov process time series models [Chorin/Majda/Gil groups]

[Chorin, Hald, Kupferman, Stinis, Li, Darve, E, . .
, B machine learning (... )
Karniadarkis, Venturi, Duraisamy ...]

B Why and when a data-driven ROM work?
B What does a ROM approximate?

a statistical learning perspective of model reduction



Motivation and objective

oe

Review

Data-driven Model reduction
Computational reduction:

@ space: dimension reduction
@ time: large time stepping
@ space-time
Data (time series):
@ full observation: dominating coordinates/basis
@ partial observation
Goal: time series model for quantities of interest
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Inference-based Model reduction
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Flow map approximation

x'=F(x) + Ux,y), y = G(x,y).
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Two Examples of Flow map: Xxi.,_1 — Xn




Inference-based Model reduction
@00

Flow map approximation

x'=F(x) + Ux,y), y = G(x,y).
Data {x(nh)}N_,

Two Examples of Flow map: Xxi.,_1 — Xn

Example 1 (deterministic):

Numerical (Euler):
Xn = Xn—1 + hAxp_1, stability: |1+ hA\| < 1
Data {x(h), x(2h)}, infer x, = 0x,_1:

0=x(h)"'x2h)=eM = x,=ex,_y, Yh>0
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Inference-based Model reduction
(o] le}

Flow map approximation

x'=F(x)+ U(x,y), vy = G(x,y).
Data {x(nh)}N_,

Flow map: xi.,_1 — Xp
Example 2 (stochastic, Ornstein-Uhlenbeck):

h
dx; = Axdt + dWy; = x(h) = x(0)e*" +/ e dW;
0

Numerical solution (Euler-Maruyama)
Xn = Xn_1 + hAXp_1 + N(O, h), stability: |1 + h)\| < 1

Data {x(nh)}n, infer x, = 6x,_1 + N(0,0):

0 = E[x(h)?]~"E[x(2h)x(h)] = e Xp = eMx,_1 + N(0,0),
o =E[[xn — 0xp_1]%] = (1 — €2*)/(2)) vh>0
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Inference-based Model reduction
ooe

Flow map approximation

x'=F(x)+ U(x,y), y = G(x,y).
Data {x(nh)}N_,

Classical numerical schemes
Xn _ F Xn—1

Yn Yn—1
@ trajectory-wise Approx.
@ fine resolution

@ Closure flow map
(Mori-Zwanzig):
Xn = Fn(X1:nf1)
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Inference-based Model reduction
ooe

Flow map approximation

x'=F(x)+ U(x,y), y = G(x,y).
Data {x(nh)}N_,

Classical numerical schemes

X X Data-driven methods:

ny\ __ n—1 ~

Vn - Vi1 Fn(X1:n—1) ~ Fn(Xn—p:n—1)

@ trajectory-wise Approx. @ average the subgrid-scales

approximate in distribution

@ fine resolution
@ Learning: curse of dimensionality
@ Closure flow map

(Mori-Zwanzig): » machine learning: great success
Xn = Fn(X1:n—1) » parametric inference
- use the structure of the map
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Inference-based Model reduction
L]

NARMA: a numerical time series model

(Xn - Xn71 )/h = Rh(an1) + Z Ci@i’i(xnfp:nf1 5 gnfp:nq) + fi

NARMA(p, g) [Chorin-Lu (15)]

(Xn - Xn71 )/h = Rh(Xn71) + Zna
Zn = ‘bn + §na
q
‘Dn—zaf —/‘*‘Zzbu i)+ D Gién-
j=1 i=1 j=1
Auto-Regression Moving Average

@ Rp(X,—1) from a numerical scheme for x’ ~ F(x)
@ ¢, depends on the past

@ NARMAX in system identification Z, = ®(Z, X) + &g,
Tasks:

Structure derivation: terms and orders (p, r, s, q) in ®,;
Parameter estimation: g, b;, ¢;, and o. Conditional MLE
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Inference-based Model reduction
[ ]

Example: a chaotic system

Example: the two-layer Lorenz 96 model

A NARMA model for the X variables
@ no scale-separation

@ Ansatz: polynomials with time lag 2
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Inference-based Model reduction
[ ]

Example: a chaotic system

Example: the two-layer Lorenz 96 model

A NARMA model for the X variables
@ no scale-separation

@ Ansatz: polynomials with time lag 2

The NARMA model can
@ tolerate large time-step

@ reproduces statistics: ACF, PDF

[Chorin-Lu15]

@ improves Data Assimilation [Lu-Tu-chorin17]
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From nonlinear Galerkin to inference

0 Motivation and objective
@ Inference-based Model reduction

e From nonlinear Galerkin to inference
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From nonlinear Galerkin to inference
@00

Kuramoto-Sivashinsky Equation

@ Kuramoto-Sivashinsky: vi = —Vyx — UVxxxx — Wy
@ Burgers: Vi = vVxx — Wy + f(X, 1),
Goal: a closed model for (vy.x), K << N.
d. ik =
EW—'QH%+§ S Uk + (1),
1<K, [k—I|<K

ik ~—
+‘§ E ViVk—|
|l|>K or |k—I|>K

VIeW (/‘;1K) ~ X, (VK>K) ~ y X’ — F(X) + U(X’y), y/ — G(Xy)

TODO: represent the effects of high modes to the low modes
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From nonlinear Galerkin to inference
(o] le}

Kuramoto-Sivashinsky Equation

Derivation of a parametric form (KSE): v; = —vyx — vVyoxx — VWi

Let v = u+ w. In operator form: v; = Av + B(v),

% = PAu + PB(u) + [PB(u+ w) — PB(u)]
Z—Vtv = QAw + QB(u + w)

Nonlinear Galerkin: approximate inertial manifold (IM)’

@ Mr~0=wrATQB(U+W) = wa(u)

@ Need: spectral gap condition v;
[+ d/m(u) >> K (U d /171:;():

'Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)
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From nonlinear Galerkin to inference
(o] le}

Kuramoto-Sivashinsky Equation

Derivation of a parametric form (KSE): v; = —vyx — vVyoxx — VWi

Let v = u+ w. In operator form: v; = Av + B(v),

% = PAu + PB(u) + [PB(u+ w) — PB(u)]
CZTV: = QAw + QB(u + w)

Nonlinear Galerkin: approximate inertial manifold (IM)’
@ Mr~0=wrATQB(U+W) = wa(u)
@ Need: spectral gap condition v;
@ dim(u) >> K (u < Vj.g): parametrization with time delay (Lu-Lin17)
A time series (NARMA) model of the form
up = R‘S(u,'zq) + ®F + g4,

KEY: high-modes = functions of low modes

'Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)
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From nonlinear Galerkin to inference
[efe] ]

Kuramoto-Sivashinsky Equation

Test setting: v = 3.43
N =128, dt = 0.001
Reduced model: K = 5,§ = 100dt

@ 3 unstable modes

@ 2 stable modes
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From nonlinear Galerkin to inference

Kuramoto-Sivashinsky Equation

Test setting: v = 3.43
N =128, dt = 0.001
Reduced model: K = 5,§ = 100dt

@ 3 unstable modes

R N
» l‘«\%v ’_“

@ 2 stable modes

08 NARMAX

B

Long-term statistics: L //%\
@ reproduce PDF /ACF

truncated system

Prediction: Forecast time: e e e e e e e e
@ truncated sys.: T ~ 5 U B A
@ NARMA: T =~ 50 - 1 et

(~ 2 Lyapunov time) g N TS

3 0 20 30
lead time
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From nonlinear Galerkin to inference
[ JeJele]

Stochastic Burgers equation

Derivation of parametric form: stochastic Burgers

Vi = vVxx — Wy + (X, 1)
Let v = u+ w. In operator form:

% = PAu + PB(u) + Pf + [PB(u + w) — PB(u)]
%": = QAW + QB(u+ w) + QF
@ no spectral gap

w(t) is not function of u(t), but a functional of its path
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From nonlinear Galerkin to inference
[ JeJele]

Stochastic Burgers equation

Derivation of parametric form: stochastic Burgers

Vi = vVxx — Wy + (X, 1)
Let v = u+ w. In operator form:

% = PAu + PB(u) + Pf + [PB(u + w) — PB(u)]
%": = QAW + QB(u+ w) + QF
@ no spectral gap

w(t) is not function of u(t), but a functional of its path
Integration instead:

w(t) = e~ PAlw(0) + /

0
w" ~ coQB(U") + c1QB(U" ) + - + ¢ QB(U"P)

t e~ QA=) [QB(u(s) + w(s))]ds

Linear in parameter: PB(u + w) — PB(u) ~ Z/P:o i P[(u"QB(u"))x] + noise
ul = RO(u ") + 1+ gf + of,
KEY: high-modes = functionals of paths of low modes
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From nonlinear Galerkin to inference
0@00

Stochastic Burgers equation

Numerical tests:
v = 0.05, Ky = 4 — random shocks

Spectrum

Spectrum

Wavenumber

Energy spectrum
A Temporal correlation v

@ Reduced model: K = 8, § = 20dt A Trajectory prediction v*
A Shock trace prediction v~

@ Full model: N = 128, dt = 0.005
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From nonlinear Galerkin to inference
[e]e] o]

Stochastic Burgers equation

Shock trace prediction:

FM K modes

Truncated

NN N ] | i ! b N
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Time Time Time

Binary shock trace based on a threshold for uy
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Stochastic Burgers equation

. w103 cov(luPlu, 1P k=1
-
N
Q 10 N - e
0 7|

0 0.5 1 15

2 2) =
103 cov(u,%|u, [9) k=3

0 0.5 1 15
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Kl

ACF
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From nonlinear Galerkin to inference
[e]e]e] ]

cov(lu,f? Ju, [?) k=2

0.06

ananenes True
— — Truncated
NAR

T

x10

-3 cov(|u2|2,|u

0.5 1 15 2 25

|2 k=4

0 0.5 1 15 2 25
2 2
-4 cov(|ul5,|u, |9) k=6
20 x10 2! k
10 Nse
2 -
0 e
=
0 0.5 1 15 2 25
2 2\ o=
©10°3 cov(|u2| ,|uk| ) k=8
_~
4 N
-~
2 N\
0 =
0 0.5 1 15 2 25

Time Lag

Cross-ACF of energy (4th moments!)
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From nonlinear Galerkin to inference
L]

Space-time reduction

Open questions in space-time reduction

(Xn - Xn71 )/h = F”h(an1) + Z C,'@,‘(Xn,p;n,1 5 fnfp:n71) + fi

0.035

S p=1
003f p=5
Lok
Observed from numerical tests: 0o O~
@ Memory length: best at medium Eoors|
. . 0.01 s S
@ Space reduction: arbitrary K = 2 0

@ Time reduction: stability
h limited by Rj: medium
CFL (truncated-G) = CFL(FM).

Optimal space-time reduction?
28/32



Summary and outlook

Summary

X' =1(x) + Uly), y'= 0(xy)- | Numerical + inferential model reduction
Data {x(nh)}N_,

@ non-intrusive time series (NARMA)
@ flow map approximation

Inference
Xn = Fn(Xo,4, 1)

F X1n 1 chcbn p:n—1

Y

“Xn+1 = Xn + Hh(Xn) + Zn i

for prediction — space-time reduction
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Summary and outlook

Data-driven modeling of dynamics

@ Large time stepping for stiff ODEs/SDEs:

» Approx. the discrete-time flow map
» Parametric inference: improves but limited (Li-Lu-Ye21)

@ Dependent on the parametric form
@ Nystrom: (0.50,0.40), not the Stérmer-Verlet (0.5, 0.5)

» Machine learning: promising
@ Space-time reduction for PDEs/SPDEs

» Data-based coordinates
» Optimal space-time reduction
» Optimal memory length
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Summary and outlook

Data-driven modeling of dynamics

@ Large time stepping for stiff ODEs/SDEs:

» Approx. the discrete-time flow map
» Parametric inference: improves but limited (Li-Lu-Ye21)

@ Dependent on the parametric form
@ Nystrom: (0.50,0.40), not the Stérmer-Verlet (0.5, 0.5)

» Machine learning: promising
@ Space-time reduction for PDEs/SPDEs
» Data-based coordinates

» Optimal space-time reduction
» Optimal memory length
Probabilistic/statistical numerical integrators adaptive to
@ time-step
@ space-basis
@ parameter distribution
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