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Political election: difficult to predict

Fundamental elements in political election: Opinions

538 predictions of US president election

2016 2020



Problem statement
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Opinions evolve. How to predict them?


Dynamics + Data 


>> Prediction, Control / influence 

Describe the dynamics:  

   

  - learn the dynamics from data 

  - partial noisy data: uncertainty  >>> Bayesian prediction

Duggins17JASSS

novel behaviors. For these preliminary experiments I assume no heterogeneity of intolerance, susceptibility, or
conformity (�t,�s,�c = 0) and a social reach of µr = 22,�r = 4 (for a 316⇥ 316map).

Social influence and intolerance

�.� I first reproduce a classical experiment in opinion dynamics, in which the final distribution of opinions is exam-
ined as a function of intolerance. In this experiment, other psychological forces are absent, with the exception
of distancing, which is inherent in Equation �. The result from numerous bounded confidence models is that
low intolerance promotes societal opinion convergence, while high intolerance produces opinion polarization
and weak diversity.

�.� In this model, intolerance is an agent-level parameter ti which is initially drawn from a normal distribution of
mean µt and variance �t. In a population with low intolerance, µt = 0.7, most agents assign positive weight
to each others’ opinions during dialogues, and are consequently pulled towards the mean opinion in that dia-
logue. Figure � (le�) shows that an initial normal distribution of opinions, µO = 50,�O = 20, rapidly converges
to a single, centrist opinion: given enough time, diversity will completely disappear, and all agents will believe
Oi = 50. Conversely, in a population with high intolerance, µt = 1.0, many agents assign negative weight
to each others’ opinions and are pushed away from the dialogue mean. As agents adopt stronger opinions,
they assign stronger negative weights, resulting in polarizing feedback. Figure � (right) shows this population
rapidly diverges to two extremists opinions at either end of the opinion spectrum. As t ! 1 only weak diver-
sity remains: all agents either holdOi = 0 orOi = 100. These base-case results confirm the classical finding
that, in the absence of other psychological forces, the degree of individuals’ intolerance determines whether
the population homogenizes or polarizes. Additional runs show that societies with intolerance below µt = 0.7
always converge, societies with intolerance aboveµt = 1.0 always diverge, and societies in between can either
converge or diverge, depending on initial conditions. Notably, strong diversity is never obtained, as in bounded
confidence models.

Figure �: A population agents who initially hold normally distributed opinions converges to a single centrist
opinion if agents’ intolerance of dissimilar opinions is low, and diverges to two extreme opinions if agents’ in-
tolerance is high. This result reproduces findings in classical opinion dynamics and represents the base case
of the simulation, in which social influence is the only active psychological force and all agents are identically
intolerant.

Conformity and distinctiveness

�.� Next, I introduce social context into the simulation by allowing agents to misrepresent their true opinions in
dialogues. This mechanism extends previous studies by (a) investigating the interaction of distancing and con-
formity/distinctiveness,whichwerepreviously exploredas stand-alone forces toopposepositive, homophilous
social influence (Mäs et al.����), and (b) stipulating that social context doesnot directly a�ect agents’ trueopin-
ions, but instead causes them to verbally falsify their opinions, which a�ects the information available to other
agents. I hypothesize that if falsification is significant, agents will perceive an unrepresentative distribution of
opinions and change their beliefs accordingly: a conformist population will homogenize under conditions that
otherwise cause polarization, while a population driven by distinctiveness will polarize under conditions that
otherwise favor consensus.

JASSS, ��(�) ��, ���� http://jasss.soc.surrey.ac.uk/��/�/��.html Doi: ��.�����/jasss.����

consensus clusters

“opinion dynamics”, “agent-based models”,  “interacting particles” 
    - discrete- /continuous- models 

    - clusters / consensus  

[Krause 2000, Motsch+Tadmor 2014,Duggins17…]
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interactions, prove that the inverse problem of state estimation
from partial observation is ill-posed, and propose a Bayesian
formulation for cluster prediction. To represent the posterior, we
introduce in Section III an auxiliary implicit sampling algorithm
that designs importance densities based on two-step observa-
tions. Section IV examines the performance of the AIS algorithm
in numerical simulations. Finally, Section V concludes the paper
with discussions.

II. BAYESIAN APPROACH TO CLUSTER PREDICTION

Consider a group of N agents, each with an opinion at time t
quantified by xi

t ∈ Rd, interacting with each other according to
a first-order difference system:

xi
t+1 = xi

t +
α

N

N∑

j=1

φ(‖xj
t − xi

t‖)(x
j
t − xi

t). (1)

Here, the positive constant α is a scaling parameter and the
interaction kernel φ is a non-negative function supported on
[0, R]. The agents interact locally, only with those opinions that
are “close” in the sense that the pairwise distance ‖xi

t − xj
t‖ is

less than R.
Our goal is to predict the clustering of the opinion dynamics,

particularly the sizes and the centers of the leading clusters, from
partial data. The data consists of trajectories of partial agents for
a relatively short time, far before the system forms clusters. To
quantify the uncertainty due to the random initial condition and
the measurement error in data (which we assume to be Gaussian),
we present a Bayesian approach. More specifically, we would
like to numerically approximate the posteriors of the sizes and
the centers of the largest clusters in the steady-state of the system
(see Eq.(4) for a precise description).

In this section, we provide a quantitative definition for cluster-
ing and discuss clustering prediction from partial observations.
We show that it is an ill-posed inverse problem to predict the
clustering by estimating all agents’ trajectories. We introduce a
Bayesian approach to make the problem well-posed, providing a
probabilistic quantification of the uncertainty in the prediction.

A. Definition of Clusters

Due to the local interaction between agents, clusters of opin-
ions will emerge, in which each agent only interacts with agents
within the same cluster. More precisely, we define the system is
in a clustered status as follows:

Definition 1. (Clustered status): Let xt ∈ RdN be the state
of the system (1) with a local interaction kernel φ supported
on [0, R]. We say the system is clustered if the index set
{1, 2, . . . , N} of agents can be partitioned into disjoint clusters
C1(t), . . ., Cm(t) such that for any i ∈ Ck1(t) and j ∈ Ck2(t):

i) if k1 = k2, then ‖xi
t − xj

t‖ < R,
ii) if k1 $= k2, then ‖xi

t − xj
t‖ > R.

An essential feature of the clustered status is that it is invariant
in time: a clustered system will remain clustered with the same
clusters. In particular, each cluster is isolated from other clusters;
in each cluster, the agents formulate self-contained dynamics
and concentrate towards a local consensus, the center of the

TABLE I
NOTATION OF VARIABLES IN THE STATE-SPACE MODEL

cluster, since the interaction is symmetric (we refer to [3] for
detailed discussions on clustering for local interactions). We
summary this invariant feature as a property of the system.

Property 1. (Invariants of a clustered system): Suppose that
at time tc, the system (1) is clustered into {C1, . . ., CK}. Then,
the system will remain clustered with the same clusters for all
t ≥ tc. In particular, the sizes and the centers of the clusters are
invariant in time: for all t ≥ tc,

|Ck| : = |Ck(t)| = |Ck(tc)|,

xCk : =
1

|Ck(t)|
∑

i∈Ck(t)

xi
t =

1

|Ck(t)|
∑

i∈Ck(t)

xi
tc . (2)

for each k = 1, . . . ,K, where |Ck| and xCk denote the size
(number of agents) and center (mean opinion of agents) of cluster
Ck, respectively.

These invariants characterize the clustering (the large time be-
havior) of the opinion system. Therefore, our goal of clustering
prediction is to estimate these invariants: the sizes and centers
of the clusters, particularly those of the largest clusters.

B. Cluster Identification From Partial Observations

In practice, it is often the case that we can only observe or
track partial of the agents. We consider the case that N1 out
of the N agents are observed, with z1:T ∈ RTdN1 denoting
their trajectories. We will consider either noiseless or noisy
observations. The original model (1) with initial distribution µ,
together with an observation equation, can be written as the
following state space model:

{
xt+1 = g(xt), x1 ∼ µ(·),

zt = Hxt + ξt,
(3)

where g(xt) is the right-hand-side of (1), andH : RdN → RdN1

is a projection operator mapping the vector of opinions of all
agents to its observed part, and ξt are independent identical dis-
tributed (i.i.d.) Gaussian with distribution N (0,σ2

ξIdN1) (with
σξ = 0 if the observations are noiseless).

Without lost of generality, we assume that the first N1

agents are observed. For simplicity of notation, we denote
Hx = (x1, . . ., xN1) ∈ RdN1 with H = [IdN1 | 0× IdN2 ] and
with Hix = xi as the i-th observed agent. Similarly, for the
unobserved agents, we define projection operator G : RdN →
RdN2 from the state x to its unobserved part, denoting Gx =
(xN1+1, . . ., xN ) ∈ RdN2 with G = [0× IdN1 | IdN2 ] and with
Gix = xN1+i as the i-th unobserved agent. We summarize the
notation in Table I.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 24,2021 at 02:51:38 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. S1. (OD) Trajectories X(t) and ‚X(t) obtained with „ and „̂ respectively, for dynamics with larger Nnew = 4N , over two different sets of initial conditions. We are able to
accurately predict the clusters (number and location). Errors are reported in Table S3.

Table S3

[0, T ] [T, Tf ]
meanIC: Training ICs 3.5 · 10≠2 ± 8.1 · 10≠3 4.8 · 10≠2 ± 1.4 · 10≠2

stdIC: Training ICs 5.2 · 10≠2 ± 1.3 · 10≠2 7.6 · 10≠2 ± 2.7 · 10≠2

meanIC: Random ICs 3.2 · 10≠2 ± 7.4 · 10≠3 4.6 · 10≠2 ± 1.2 · 10≠2

stdIC: Random ICs 5.0 · 10≠2 ± 1.7 · 10≠2 7.2 · 10≠2 ± 2.7 · 10≠2

meanIC: Larger N 3.1 · 10≠2 ± 2.0 · 10≠3 7.3 · 10≠2 ± 4.1 · 10≠3

stdIC: Larger N 2.1 · 10≠2 ± 2.1 · 10≠3 6.1 · 10≠2 ± 4.2 · 10≠3

(OD) Trajectory Errors: ICs used in the training set (first two rows), new IC"s randomly drawn from µ0 (second set of two rows), for ICs randomly drawn for
a system with 4N agents (last two rows). Means and std’s are over 10 learning runs.

Fig.S1 shows the comparison between the estimated interaction kernel „̂ (as the mean over learning trials) and the true one,
„. We obtain a faithful approximation of the true interaction kernel, including near the discontinuity and the compact support.
Our estimator also performs well near 0, notwithstanding that information of „(0) is lost due to the structure of the equations,
that have terms of the form „(0)̨0 = 0̨. The same figure also compares the trajectories generated by the system governed by „

and that governed by „̂. Table S3 reports the max-in-time error for those trajectories. We also test the robustness to noise, by
adding noise to the observations of both positions and velocities, as described above: the estimated kernel is shown in Figure
S2. Figure S3 shows the behavior of the error of the estimator as both L and M are increased.

Fei Lu, Ming Zhong, Sui Tang, Mauro Maggioni
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Dynamics + Data >>> state-space model
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interactions, prove that the inverse problem of state estimation
from partial observation is ill-posed, and propose a Bayesian
formulation for cluster prediction. To represent the posterior, we
introduce in Section III an auxiliary implicit sampling algorithm
that designs importance densities based on two-step observa-
tions. Section IV examines the performance of the AIS algorithm
in numerical simulations. Finally, Section V concludes the paper
with discussions.

II. BAYESIAN APPROACH TO CLUSTER PREDICTION

Consider a group of N agents, each with an opinion at time t
quantified by xi

t ∈ Rd, interacting with each other according to
a first-order difference system:

xi
t+1 = xi

t +
α

N

N∑

j=1

φ(‖xj
t − xi

t‖)(x
j
t − xi

t). (1)

Here, the positive constant α is a scaling parameter and the
interaction kernel φ is a non-negative function supported on
[0, R]. The agents interact locally, only with those opinions that
are “close” in the sense that the pairwise distance ‖xi

t − xj
t‖ is

less than R.
Our goal is to predict the clustering of the opinion dynamics,

particularly the sizes and the centers of the leading clusters, from
partial data. The data consists of trajectories of partial agents for
a relatively short time, far before the system forms clusters. To
quantify the uncertainty due to the random initial condition and
the measurement error in data (which we assume to be Gaussian),
we present a Bayesian approach. More specifically, we would
like to numerically approximate the posteriors of the sizes and
the centers of the largest clusters in the steady-state of the system
(see Eq.(4) for a precise description).

In this section, we provide a quantitative definition for cluster-
ing and discuss clustering prediction from partial observations.
We show that it is an ill-posed inverse problem to predict the
clustering by estimating all agents’ trajectories. We introduce a
Bayesian approach to make the problem well-posed, providing a
probabilistic quantification of the uncertainty in the prediction.

A. Definition of Clusters

Due to the local interaction between agents, clusters of opin-
ions will emerge, in which each agent only interacts with agents
within the same cluster. More precisely, we define the system is
in a clustered status as follows:

Definition 1. (Clustered status): Let xt ∈ RdN be the state
of the system (1) with a local interaction kernel φ supported
on [0, R]. We say the system is clustered if the index set
{1, 2, . . . , N} of agents can be partitioned into disjoint clusters
C1(t), . . ., Cm(t) such that for any i ∈ Ck1(t) and j ∈ Ck2(t):

i) if k1 = k2, then ‖xi
t − xj

t‖ < R,
ii) if k1 $= k2, then ‖xi

t − xj
t‖ > R.

An essential feature of the clustered status is that it is invariant
in time: a clustered system will remain clustered with the same
clusters. In particular, each cluster is isolated from other clusters;
in each cluster, the agents formulate self-contained dynamics
and concentrate towards a local consensus, the center of the

TABLE I
NOTATION OF VARIABLES IN THE STATE-SPACE MODEL

cluster, since the interaction is symmetric (we refer to [3] for
detailed discussions on clustering for local interactions). We
summary this invariant feature as a property of the system.

Property 1. (Invariants of a clustered system): Suppose that
at time tc, the system (1) is clustered into {C1, . . ., CK}. Then,
the system will remain clustered with the same clusters for all
t ≥ tc. In particular, the sizes and the centers of the clusters are
invariant in time: for all t ≥ tc,

|Ck| : = |Ck(t)| = |Ck(tc)|,

xCk : =
1

|Ck(t)|
∑

i∈Ck(t)

xi
t =

1

|Ck(t)|
∑

i∈Ck(t)

xi
tc . (2)

for each k = 1, . . . ,K, where |Ck| and xCk denote the size
(number of agents) and center (mean opinion of agents) of cluster
Ck, respectively.

These invariants characterize the clustering (the large time be-
havior) of the opinion system. Therefore, our goal of clustering
prediction is to estimate these invariants: the sizes and centers
of the clusters, particularly those of the largest clusters.

B. Cluster Identification From Partial Observations

In practice, it is often the case that we can only observe or
track partial of the agents. We consider the case that N1 out
of the N agents are observed, with z1:T ∈ RTdN1 denoting
their trajectories. We will consider either noiseless or noisy
observations. The original model (1) with initial distribution µ,
together with an observation equation, can be written as the
following state space model:

{
xt+1 = g(xt), x1 ∼ µ(·),

zt = Hxt + ξt,
(3)

where g(xt) is the right-hand-side of (1), andH : RdN → RdN1

is a projection operator mapping the vector of opinions of all
agents to its observed part, and ξt are independent identical dis-
tributed (i.i.d.) Gaussian with distribution N (0,σ2

ξIdN1) (with
σξ = 0 if the observations are noiseless).

Without lost of generality, we assume that the first N1

agents are observed. For simplicity of notation, we denote
Hx = (x1, . . ., xN1) ∈ RdN1 with H = [IdN1 | 0× IdN2 ] and
with Hix = xi as the i-th observed agent. Similarly, for the
unobserved agents, we define projection operator G : RdN →
RdN2 from the state x to its unobserved part, denoting Gx =
(xN1+1, . . ., xN ) ∈ RdN2 with G = [0× IdN1 | IdN2 ] and with
Gix = xN1+i as the i-th unobserved agent. We summarize the
notation in Table I.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 24,2021 at 02:51:38 UTC from IEEE Xplore.  Restrictions apply. 
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‣ observe  agents: H is a projection; 
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Theorem [ZhangLu20] a linear system is observable iff 
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Fig. 1. Illustration of symmetric trajectories: same observed trajectories (blue
points) are generated from different configurations (with different unobserved
trajectories in green). The color changes from light to dark to indicate time
increasing from initial to end-time of observation.

To predict the clustering, which is the large time behavior
of the dynamics, based on observations up to time T , a natural
idea is to (i) estimate the state of the system at time T , and
(ii) use the estimated state as an initial condition for a long
time simulation until the system is clustered. For Step (i), one
may wish to find a trajectory of the state variable that fits
the observation data. However, the following section shows
that even with noiseless partial observations, it is an ill-posed
inverse problem to identify the trajectory x1:T from observation
z1:T . Also, whereas a regularization can make the problem
well-posed in a variational approach, it leads to a challenging
high-dimensional optimization problem on the path space and
there may be many local minima caused by the symmetry of
the system. Instead, we adopt a Bayesian approach that avoids
high-dimensional optimization and quantifies the uncertainty in
prediction.

C. State Estimation and Observability

In general, it is an ill-posed inverse problem to estimate the
trajectory of all agents from partial noiseless observations. We
demonstrate this by an example of symmetric trajectories and
by proving that the unobserved trajectories can not be uniquely
determined in linear systems, referred to as unobservability in
control (see e.g., [11]), when more than one agents are unob-
served.

The next example shows that as long as more than two agents
are unobserved, there could be symmetric trajectories, making
it an ill-posed problem to identify the trajectories.

Example 1. (Symmetric trajectories): Consider a system with
N = 4 agents in R2 and suppose that we observe N1 = 2 of
them. Fig. 1 illustrates that two different configurations can lead
to the same observations. The symmetric positions of the two
unobserved agents canceled out their different influence on the
observed agents.

The following theorem show that it is an ill-posed problem to
estimate the states of the system when more than one agents is
unobserved in the case of linear systems.

Theorem 1. (Observability for linear opinion dynamics):
Consider the linear dynamics withφ ≡ 1 in (1), and suppose that
we observed the trajectory of N1 agents. Then, the trajectories
of the unobserved agents can be uniquely determined if and only
if N1 ≥ N − 1.

TABLE II
NOTATION OF VARIABLES IN THE BAYESIAN APPROACH

Proof 1: We only need to considerN1 ≤ N − 1. We can write
the system as

{
xt+1 = αAxt,

zt = Hxt,

where A ∈ RdN × RdN is a constant matrix,

A =





c1Id c2Id · · · c2Id
c2Id c1Id · · · c2Id

...
...

. . .
...

c2Id c2Id · · · c1Id





with c1 = 1− (N−1)
N α and c2 = α

N . By the observability the-
ory [11], the trajectory x1:T can be uniquely determined from
the observations z1:T if and only if rank (W ) = dN , where

W :=
[
Hᵀ | AᵀHᵀ | . . . | (Aᵀ)n−1Hᵀ] .

To compute rank(W ), note that Aᵀ = A and A = QΛQᵀ,
where Λ = diag(1− α)Id(N−1), 1× Id) and Q is a uni-
tary matrix. Recalling that H = [IdN1 | 0× IdN2 ], we have
(Aᵀ)kHᵀ = QΛKQᵀHᵀ for k = 1, . . . , n− 1. Thus,

rank(W ) = rank([Hᵀ | AHᵀ]) = (N1 + 1)× d.

D. Bayesian Estimation of States and Clusters

In a Bayesian approach, we view the states and the invariants
of the clusters as random variables and we aim to represent their
posteriors conditional on the observations.

Recall the state space mdoel in (3). When observation is
noise free, the randomness of the states comes from the initial
distribution µ. Conditional on observations z1:T , we denote by
p(|Ci| | z1:T ), and p(xCi | z1:T ) the posteriors of the size and
center of cluster Ci, and similarly the posterior of the state
variables, as in Table II.

These posteriors of the invariants depend on the initial dis-
tribution as well as the system, and can not be expressed
analytically in general. They depend on the posterior of the
state p(x1:T | z1:T ), particularly p(xT | z1:T ). They are high-
dimensional and non-Gaussian.

We approximate these distributions by Monte-Carlo methods:
we draw a set of weighted samples (with normalized weights),
{x(s)

1:t , w
(s)
t }s∈{1,...,S}, by a sequential Monte Carlo method (to

be introduced in the next section) from the target distribution
p(x1:T | z1:T ), and obtain empirical approximations of these
distributions. For instance, the posterior p(xT | z1:T ) is approx-
imated by

p̂(xT | z1:T ) =
S∑

s=1

w(s)
T δ

x(s)
T
(x).

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 24,2021 at 02:51:38 UTC from IEEE Xplore.  Restrictions apply. 

Sampling the posterior 


‣ high dimension: MCMC no good 

‣ Sequential Monte Carlo: sequential importance sampling 


            [Doucet+Johansen2009, Liu2008,…]

‣ Particle MCMC: SMC+MCMC [Andrieu etc2010, Lindsten etc2014]
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T } state model
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By running the original system from each of the samples
{x(s)

T } until the status of clustered, we obtain weighted sam-
ples for the invariance of clusters {x(s)

Ci , w
(s)
T }s∈{1,...,S} and

{|C(s)
i |, w(s)

T }s∈{1,...,S}. With these weighted samples, we have
the empirical posterior to quantify the uncertainty in cluster
prediction:






p̂(xCi | z1:T ) =
∑S

s=1
w(s)

T δ
x(s)
Ci
(xCi),

p̂(|Ci| | z1:T ) =
∑S

s=1
w(s)

T δ|C(s)
i |(|Ci|).

(4)

With the weighted samples, we can efficiently approximate
the statistics by the samples. For example, the expectations of
the size and center of cluster Ci are

E(xCi) ≈ x̂Ci :=
S∑

s=1

x(s)
Ci · w(s)

T ,

E(|Ci|) ≈ |̂Ci| :=
S∑

s=1

|C(s)
i | · w(s)

T . (5)

III. SAMPLING THE POSTERIOR

To initiate the ensemble simulation for prediction, we draw
samples from the conditional distribution of the current state,
p(xT | z1:T ), which is the marginal distribution of the posterior
distribution p(x1:T | z1:T ). This posterior is high-dimensional,
nonlinear and non-Gaussian, therefore it is difficult to sample
directly, even when its analytical form is explicitly available.

We will adopt a Sequential Monte Carlo (SMC) strategy (we
refer to [12] for a review), with a combination of implicit sam-
pling [15] and Auxiliary particle filtering, and some specialized
MCMC-move and information-move.

To avoid degenerate distributions, we introduce artificial
noises to the state-space model (3) from Section II-D

{
xt+1 = g(xt) + εt, x1 ∼ µ(·),

zt = Hxt + ξt.

where εt ∼ N (0,σ2
ε IdN ) and ξt ∼ N (0,σ2

ξIdN1) with σε > 0
and σξ > 0. In particular, we set the variances so that (i) the
artificial noises are relatively small with respect to the signal; (ii)
the important densities (to be introduced below in our sequen-
tial Monte Carlo algorithm) have centers relying on the state
model more than the observations and they have relatively large
variances to explore large ranges. In view of the importance
densities in (11)–(13) and (18)–(20), we will set σξ/σε < 1.
Here we assume the variances to be constants for simplicity, but
they can vary in time to improve the algorithm.

A. Sequential Monte Carlo Sampling

The SMC methods, or particle filters, are a set of sequential
importance sampling algorithms that approximates the high di-
mensional distribution p(x1:t | z1:t) by its empirical distribution

from weighted samples {x(s)
1:t , w

(s)
t }s∈{1,...,S}:

p̂(x1:t | z1:t) :=
1

∑S
s=1 w

(s)
t

S∑

s=1

w(s)
t δ

x(s)
1:t
(x),

where δ is Dirac delta mass. The samples {x(s)
1:t} are drawn

from an importance distribution q(x1:t | z1:t) and the weights
are computed from

w(x1:t | z1:t) =
p(x1:t | z1:t)
q(x1:t | z1:t)

. (6)

The key idea of SMC is to generate the weighted samples
sequentially from a recursive importance density,

q(x1:t | z1:t) = q(x1)
t∏

k=2

q(xk | x1:k−1, z1:k), (7)

which is constructed based on the recursive representation of the
posterior distribution:

p(x1:t | z1:t) = p(x1:t−1 | z1:t−1)
p(xt | xt−1)p(zt | xt)

p(zt | z1:t−1)
, (8)

That is, at time t, conditional on previous samples
{x(s)

1:t−1, w
(s)
t−1}s∈{1,...,S}, one generates weighted samples

{x(s)
t } from importance densities {q(xt | x(s)

1:t−1, z1:t)} and
compute their weights by

w(s)
t = w(s)

t−1 ·
p(zt | x(s)

t ) · p(x(s)
t | x(s)

t−1)

q(x(s)
t | x(s)

1:t−1, z1:t)
. (9)

Clearly, the above weightw(s)
t is proportional to the analytical

weight w(x(s)
1:t | z1:t) since p(x(s)

1:t | z1:t) ∝ p(x(s)
1:t−1 | z1:t−1) ·

p(x(s)
t | x(s)

t−1)p(zt | x
(s)
t ) and q(x(s)

1:t | z1:t−1) = q(x(s)
1:t−1 |

z1:t−1) · q(x(s)
t | x(s)

1:t−1, z1:t).
Due to the recursive computation in (9), all but a few of the

weights will be almost zero as t increases, and this is called sam-
ple degeneracy [12]. As a result, the variance of our estimation
{x(s)

t }may increase exponentially with t (see e.g. [30]). Resam-
pling techniques are widely used to reduce the sample degen-
eracy by replacing low-weighted samples with high-weighted
samples through resampling. A common strategy is to measure
the sample degeneracy by effective sample size (ESS) [31]–[33]
and set a threshold for resampling: if the ESS falls below a thresh-
old (typically S

2 or 2S
3 ), then one resamples. In our study, we

use the ESS defined by ESSt = (
∑S

i=1 w
(i)
t )2/(

∑S
i=1(w

(i)
t )2)

in [32]. We use the resampling algorithm in [34], i.e., sample
u from the uniform distribution U([0, 1

S ]) and define a set of
real number {Uj := u+ j−1

S }j=1,...,S . Then count the number

of the set {Uj |
∑i′−1

i=1 w(i)
t∑s

i=1 w(i)
t

≤ Uj ≤
∑i′

i=1 w(i)
t∑s

i=1 w(i)
t

} as the number of

“children” of sample x(i′).
The essential of SMC methods is the design of importance

densities, so that all samples have (almost) equal weights in
each recursive step while staying on the trajectories with high
likelihood. The algorithm based on a simple choice of q(xt |
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Weighted samples from importance density 

x(s)
t ∼ q(xt |x(s)

1:t=1, z1:t)

t-1

t

importance

weighting

Sequential importance sampling:  

p(x1:t |z1:t) = p(x1:t−1 ∣ z1:t−1)
p(xt |xt−1)p(zt ∣ xt)

p(zt |z1:t−1)
,



3. Sequential Monte Carlo

9

     

108 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 7, 2021

A. Numerical Settings

We consider the opinion dynamics (1) with N = 60 agents,

xi
t+1 − xi

t =
1

N

N∑

j=1

φ(‖xj
t − xi

t‖)(x
j
t − xi

t)∆t

where xi
t ∈ Rd with d = 2 represents the opinion of the agent i

at discrete times indexed by t. This system is an Euler approx-
imation of the corresponding differential equations with time
step size ∆t = 0.05.

Since we are interested in the cases when the system for-
mulates multiple clusters instead of a consensus, we consider a
communication function φ that is piecewise-constant:

φ(r) =






1, r ∈ [0,
√
2/2),

0.1, r ∈ [
√
2/2, 1),

0, r ∈ [1,∞).

This local communication function represents a stronger inter-
action between alike-opinions than different-opinions, and it
is more likely to lead to multiple clusters than heterophilious
interactions [3]. We obtain multiple clusters by selecting the
initial conditions as follows: we randomly draw initial condition
for each agent fromµ ∼ Unif([−4, 4]d), and reject those leading
to consensus. We will call the empirical distribution of these
selected initial conditions as initial distribution of the opinion
dynamics. This initial distribution injects randomness into the
dynamics.

Our goal is to predict the clustering of the system, particularly
the sizes and the locations of the largest clusters, supposing
that we only observe the trajectories of N1 of the N agents
for a relatively short time, far before the clusters are formulated.
In particular, we assume that we observe the system for only
n = 300 time steps, when the observations can not tell if the
clusters have formulated. The clustering usually takes more than
30 time units, or equivalently 600 time steps. (For instance, the
system described by Fig. 5 clustered at about 1500 time steps.)
As discussed in Section II, a Bayesian approach provides a prob-
abilistic framework for state estimation and cluster prediction,
with uncertainties quantified by the posterior. We sample the
posterior by the auxiliary implicit sampling (AIS) algorithm in
Algorithm 5 with ensemble size S = 100. For the sake of the
AIS, we rewrite the system in the form of a state-space model:

{
xt+1 = g(xt) + εt, xi

1 ∼ µ,∀i,

zt = Hxt + ξt,

where εt ∼ N (0,σ2
ε IdN ) and ξt ∼ N (0,σ2

ξIdN1).
We consider systems with both noiseless and noisy obser-

vations. To avoid degenerate distributions, we set an artificial
noise for the deterministic state model. For the case of noiseless
observations, we set σε = 0.01 and σξ = 0.005, so that the
artificial noise is relatively small with respect to the signal.
For noisy observations with σξ = 0.01 (which represents a
signal-to-noise ratio about 2%), we set σε = 0.05. In both cases,
we have σξ/σε < 1 so that the important densities trust the state

Fig. 2. State estimation (noiseless observations): Estimation of the trajectory
of agents for system without noise, observing N1 = 30 of the N = 60 agents.
(2a) shows the paths of the first coordinate of two unobserved agents for all
the S = 100 samples (blue dots). At each time, the blue curve is the smoothed
empirical marginal posterior density from the samples (Sample density), and the
blue shaded area is the 95% credible interval. For each agent, samples become
concentrated around the truth (the red dash line) as time increases, with the
marginal posterior peaks near the truth. The sample density may have multiple
modes and the true value is in the 95% credible interval for most of the times.
(2b) shows the trajectories of all agents, where the blue and green dots are the
observed and unobserved truth, and the red diamonds are the unobserved agents
in a sample; all with color changing from light to dark as time increases. The
estimated trajectories of unobserved agents by the sample can be far away from
the truth, particularly at the initial time, but the clustering of the sample is close
to the truth.

model more than the observations while keeping relatively large
variances, see (11)–(13) and (18)–(20).

B. State Estimation

As a Bayesian approach, our goal of state estimation is to
represent the posterior of the states, which is approximated by
the empirical measure of the samples in our sequential Monte
Carlo algorithm. We demonstrate the state estimation by the
marginal posteriors of the trajectories of the first coordinate
of two unobserved agents. We also show the trajectories of all
agents, comparing the estimated path of unobserved agents in a
sample with the truth.

a) Noiseless observations: Consider first the case when the
system is deterministic and half of the N = 60 agents are
observed without noise. Fig. 2(a) shows the trajectories of all
the S = 100 samples for the first coordinate of two unobserved
agents, along with the smoothed sample density at each time,
representing the marginal posterior. For each agent, samples
become concentrated around the truth (the red dash line) as time
increases, with the marginal posterior peaks near the truth. Such
a concentration of the sample agrees with the intuition that the
uncertainty in the posterior of the states decreases when more ob-
servations are available, since the system is deterministic and the
randomness comes only from the initial condition. The marginal
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Implicit sampling: [Chorin, Tu, Morzfel] optimal 1-step importance sampling

p(x1:t |z1:t) = p(x1:t−1 ∣ z1:t−1)
p(xt |xt−1)p(zt ∣ xt)

p(zt |z1:t−1)
,

qopt(xt ∣ x1:t−1, z1:t)

‣ Gaussian bc linear Gaussian observation model  

‣not updated using information from new observations

Auxiliary implicit sampling:
‣ using two-step observations (look ahead strategy) [Pit+Shephard1999,Lin+Chen+Liu2013,…]


‣ linear approximation of the state model  
>>> informative importance density 
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A. Numerical Settings

We consider the opinion dynamics (1) with N = 60 agents,

xi
t+1 − xi

t =
1

N

N∑

j=1

φ(‖xj
t − xi

t‖)(x
j
t − xi

t)∆t

where xi
t ∈ Rd with d = 2 represents the opinion of the agent i

at discrete times indexed by t. This system is an Euler approx-
imation of the corresponding differential equations with time
step size ∆t = 0.05.

Since we are interested in the cases when the system for-
mulates multiple clusters instead of a consensus, we consider a
communication function φ that is piecewise-constant:

φ(r) =






1, r ∈ [0,
√
2/2),

0.1, r ∈ [
√
2/2, 1),

0, r ∈ [1,∞).

This local communication function represents a stronger inter-
action between alike-opinions than different-opinions, and it
is more likely to lead to multiple clusters than heterophilious
interactions [3]. We obtain multiple clusters by selecting the
initial conditions as follows: we randomly draw initial condition
for each agent fromµ ∼ Unif([−4, 4]d), and reject those leading
to consensus. We will call the empirical distribution of these
selected initial conditions as initial distribution of the opinion
dynamics. This initial distribution injects randomness into the
dynamics.

Our goal is to predict the clustering of the system, particularly
the sizes and the locations of the largest clusters, supposing
that we only observe the trajectories of N1 of the N agents
for a relatively short time, far before the clusters are formulated.
In particular, we assume that we observe the system for only
n = 300 time steps, when the observations can not tell if the
clusters have formulated. The clustering usually takes more than
30 time units, or equivalently 600 time steps. (For instance, the
system described by Fig. 5 clustered at about 1500 time steps.)
As discussed in Section II, a Bayesian approach provides a prob-
abilistic framework for state estimation and cluster prediction,
with uncertainties quantified by the posterior. We sample the
posterior by the auxiliary implicit sampling (AIS) algorithm in
Algorithm 5 with ensemble size S = 100. For the sake of the
AIS, we rewrite the system in the form of a state-space model:

{
xt+1 = g(xt) + εt, xi

1 ∼ µ,∀i,

zt = Hxt + ξt,

where εt ∼ N (0,σ2
ε IdN ) and ξt ∼ N (0,σ2

ξIdN1).
We consider systems with both noiseless and noisy obser-

vations. To avoid degenerate distributions, we set an artificial
noise for the deterministic state model. For the case of noiseless
observations, we set σε = 0.01 and σξ = 0.005, so that the
artificial noise is relatively small with respect to the signal.
For noisy observations with σξ = 0.01 (which represents a
signal-to-noise ratio about 2%), we set σε = 0.05. In both cases,
we have σξ/σε < 1 so that the important densities trust the state

Fig. 2. State estimation (noiseless observations): Estimation of the trajectory
of agents for system without noise, observing N1 = 30 of the N = 60 agents.
(2a) shows the paths of the first coordinate of two unobserved agents for all
the S = 100 samples (blue dots). At each time, the blue curve is the smoothed
empirical marginal posterior density from the samples (Sample density), and the
blue shaded area is the 95% credible interval. For each agent, samples become
concentrated around the truth (the red dash line) as time increases, with the
marginal posterior peaks near the truth. The sample density may have multiple
modes and the true value is in the 95% credible interval for most of the times.
(2b) shows the trajectories of all agents, where the blue and green dots are the
observed and unobserved truth, and the red diamonds are the unobserved agents
in a sample; all with color changing from light to dark as time increases. The
estimated trajectories of unobserved agents by the sample can be far away from
the truth, particularly at the initial time, but the clustering of the sample is close
to the truth.

model more than the observations while keeping relatively large
variances, see (11)–(13) and (18)–(20).

B. State Estimation

As a Bayesian approach, our goal of state estimation is to
represent the posterior of the states, which is approximated by
the empirical measure of the samples in our sequential Monte
Carlo algorithm. We demonstrate the state estimation by the
marginal posteriors of the trajectories of the first coordinate
of two unobserved agents. We also show the trajectories of all
agents, comparing the estimated path of unobserved agents in a
sample with the truth.

a) Noiseless observations: Consider first the case when the
system is deterministic and half of the N = 60 agents are
observed without noise. Fig. 2(a) shows the trajectories of all
the S = 100 samples for the first coordinate of two unobserved
agents, along with the smoothed sample density at each time,
representing the marginal posterior. For each agent, samples
become concentrated around the truth (the red dash line) as time
increases, with the marginal posterior peaks near the truth. Such
a concentration of the sample agrees with the intuition that the
uncertainty in the posterior of the states decreases when more ob-
servations are available, since the system is deterministic and the
randomness comes only from the initial condition. The marginal
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Posterior of cluster’s centers and sizes

Center:

Size:

 AIS > IS > SIR
the largest cluster the 2nd largest cluster
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How robust is the predictions in 100 simulations ?
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Instead of tracking, randomly poll at each time

Observability (noiseless data, linear system)


Theorem (Lu-Zhang-Zhang21): randomly pick K out of N at each 
time. At time T, the linear system is observable with probability

ℙ (all but one is visited) ≈ 1 − N(1− K
N )T

ℙ (visit all but one) = N(1− K
N )T 1 −

N−1−K

∑
ℓ=1

(−1)ℓ−1(N − 1
ℓ )

ℓ

∏
j=1

(1− K
N − j )

T

5. Randomization enhances observability

• exponential goes to 1 as T increases

• observation ratio K/N in the base
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1. Bayesian prediction for clusters of opinion dynamics 
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