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Motivation and problem statement

Political election: difficult to predict
Biden is favoredto win the election

We simulate the election 40,000 times to see who wins most often. The sample

538 pred |Ct|0ns Of U S p reS|de nt electlon of 100 outcomes below gives you a good idea of the range of scenarios our

model thinks is possible.
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Pollsters: ‘Impossible’ to say why 2020 polls were wrong

A new report couldn't answer the big question plaguing political polling: Why were surveys off by so much in
20207

Fundamental elements in political election: Opinions



Problem statement

Opinions evolve. How to predict them?

- Describe the dynamics:

“opinion dynamics”, “agent-based models”, “interacting particles”
- discrete- /continuous- models ikrause 2000, Motsch+Tadmor 2014,Duggins17...]

- clusters / consensus -

consensus
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- Dynamics + Data " Duggins1 7JASES

- learn the dynamics from data
- partial noisy data: uncertainty >>> Bayesian prediction

>> Prediction, Control / influence
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1. State-space model formulation
Opinion Dynamics
)Cti — opinion of agent i at time t

. 1 & o
th+1 — X = N Z P |x{ — X | )(X{ — Xx,)At (in RY, d arbitrary)
: N — number of agents
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1. State-space model formulation

Dynamics + Data >>> state-space model

Ti+1 — g(iﬁt), 1 M(‘)a state model

2z = Hxy + &, observation model

»  data z,.7; initial distribution 4 known;
»  observe N; < N agents: H is a projection;
> nonlinear state model; Gaussian noise

Observability (noiseless data, linear system)

Theorem g0 @ linear system is observable iff

at most 1 agent is not observed

Bayesian: posterior of states and clusters



2. Bayesian approach

Bayesian: posterior of states and clusters

p(r1.7 | 21:7), posterior of x1.7 conditional on z{.7
p(x1.7 | z1.7) empirical approximation of p(x1.7 | z1.7)
{xgsz : wt(s)} samples and weights

p(|Cil | z1:7), p(Tc, | z1.7)  posteriors of |C;| and Z¢,

Samples {x'*), W}S)} state mode|  samples of clusters

Sampling the posterior

>  high dimension: MCMC no good

»  Sequential Monte Carlo: sequential importance sampling
[Doucet+Johansen2009, Liu2008,...]

> Particle MCMC: SMC+MCMC [andrieu etc2010, Lindsten etc2014]



3. Sequential Monte Carlo

Sequential importance sampling:

pe | x_pp(z, | x) t-1
p(Zt | Z1:t—1) ,

Pyl z1.) =pCoy | 21421)

Weighted samples from importance density t

(5) (5)
xtS \)

~ q('xtlx =1’ Zl t)

(s) (s) p(2t | SU(S))

Wy 1 -

p(at™ | =)

gz | 238) | 214

importance

_ weighting
> recursive for all t;

> resampling to reduce degeneracy
> Key: good importance densities
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3. Sequential Monte Carlo

(’xt—l—l — g(xt) T €¢, 51771 ™~ N7Vi7

At — Hajt _|_€t7

where ¢; ~ N(0,0214x) and & ~ N(0,0¢ 1, ).

Implicit sampling: [Chorin, Tu, Morztel] Optimal 1-step importance sampling

( )
P (xt | Xt_l)p(Zt | xt)
Pyl 21) = POy | 214-1) :
JJCARIPY opt
\_ > g | Xy 20)

> (Gaussian bc linear Gaussian observation model
> not updated using information from new observations

Auxiliary implicit sampling:

> using two-step observations (look ahead strategy) [pit+Shephard1999,Lin+Chen+Liu2013,...]
> linear approximation of the state model
>>> informative importance density



4. Numerical results: State estimation
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cluster predict

4. Numerical results

's centers and sizes AIS>1IS > SIR
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4. Numerical results: cluster prediction
How robust is the predictions in 100 simulations ?

Center: ~90% success

Size: difficult to predict
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5. Randomization enhances observability

Instead of tracking, randomly poll at each time

Observability (noiseless data, linear system)

Theorem (Lu-zhang-zhang21): randomly pick K out of N at each
time. At time T, the linear system is observable with probability

P (all but one is visited) ~ 1 — N(l—%)T

e exponential goesto 1 as T increases
e observation ratio K/N in the base

N-1-K

P (visit all butone)=N(1—%)T 1 — Z (—=1)- 1( >H(1——)T
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Summary

1. Bayesian prediction for clusters of opinion dynamics

2. Auxiliary implicit sampling (AIS) SMC method

- two-step observations (a lookahead strategy)

3. Randomization enhances observability

Open research

- Prediction for stochastic systems
- Privacy-preserving randomization
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