Joint state-parameter estimation for nonlinear stochastic energy balance models

Fei Lu¹ Nils Weitzel² Adam Monahan³

¹Department of Mathematics, Johns Hopkins

²Meteorological Institute, University of Bonn, Germany

³School of Earth and Ocean Science, University of Victoria, Canada

SIAM DS 2019, May 22

Outline

An SPDE from paleoclimate reconstruction

- Stochastic energy balance model
- State space model representation

2 Bayesian joint state-parameter estimation

- Sampling the posterior: Particle MCMC
- Ill-posedness: regularized posterior

- Parameter estimation
- State estimation

An SPDE from paleoclimate reconstruction

Paleoclimate: reconstruct past climate temperature from proxy data

- the temperature: a spatio-temporal process
 - \blacktriangleright physically laws: energy balance \rightarrow SPDEs
 - discretized: a high-D process with spatial correlation
- Sparse and noisy data
 - Proxy data: historical data, tree rings, ice cores, fossil pollen, ocean sediments, coral etc.
- Plan: inference of SPDEs from sparse noisy data
 - joint state-parameter estimation

The SPDEs: stochastic Energy Balance Models

Idealized atmospheric energy balance (Fanning&Weaver1996)

- $\theta = (\theta_k)$: unknown parameters
 - prior: a range of physical values
 - $g_{\theta}(u)$ has a **stable** fixed point
- W(t, x): Gaussian noise,
 - white-in-time Matern-in-space

Data: sparse noisy observations

State space model formulation

SEBM:
$$\partial_t u = \nabla \cdot (\nu \nabla u) + \sum_{k=0,1,4} \theta_k u^k + W(t,x)$$

Observation data: $y_{t_i} = H(u(t_i, x)) + V_i$

Discretization (simplification):finite elements in spacesemi-backward Euler in time

State space model

SEBM: $U_n = g(\theta, U_{n-1}) + W_n$ Observation data: $y_n = HU_n + V_n$

Joint parameter-state estimation

SEBM: $U_n = g(\theta, U_{n-1}) + W_n$ Observation data: $y_n = HU_n + V_n$

Goal: Given $y_{1:N}$, we would like to jointly estimate $(\theta, U_{1:N})$

- Gaussian prior for θ
- 12 spatial nodes, 100 time steps

Bayesian approach:

 $p(\theta, u_{1:N}|y_{1:N}) \propto p(\theta)p(u_{1:N}|\theta)p(y_{1:N}|u_{1:N})$

- Posterior: quantifies the uncertainties
- Approximate the posterior by sampling
 - high dimensional (> 10³),
 - non-Gaussian, mixed types of variables θ , $u_{1:N}$
 - Gibbs Monte Carlo: $U_{1:N}|\theta$ and $\theta|U$ iteration
 - ► $U_{1:N}|\theta$ needs highD proposal density \rightarrow Sequential MC
 - combine SMC with Gibbs (MCMC) \rightarrow

Particle MCMC methods based on conditional SMC

Sampling: particle MCMC

Particle MCMC (Andrieu&Doucet&Holenstein10)

- Combines Sequential MC with MCMC:
 - $\blacktriangleright\,$ SMC: seq. importance sampling $\rightarrow\,$ highD proposal density
 - conditional SMC: keep a reference trajectory in SMC
 - MCMC transition by conditional SMC
 - \rightarrow target distr invariant even w/ a few particles
- Particle Gibbs with Ancestor Sampling (Lindsten&Jordan&Schon14)
 - Update the ancestor of the reference trajectory
 - Improving mixing of the chain

Ill-posed inverse problem

For the Gaussian prior $p(\theta)$, unphysical samples of posterior: systems blowing up Ill-posed inverse problem

For the Gaussian prior $p(\theta)$, unphysical samples of posterior: systems blowing up

Parameter estimation is ill-posed:

Singular Fisher infomation matrix \rightarrow large oscillation in sample θ from Gibbs $\theta | \widehat{U}_{1:N}$

Regularized posterior

Recall the regularization in variational approach

Variational:
$$(\widehat{\theta}, \widehat{u}_{1:N}) = \underset{(\theta, u_{1:n})}{\arg\min} C_{\lambda, y_{1:N}}(\theta, u_{1:N})$$
Bayesian : $p_{\lambda}(\theta, u_{1:N}|y_{1:N}) \propto p(\theta)^{\lambda} p(y_{1:N}|u_{1:N}) p(u_{1:N}|\theta)$

$$\begin{split} \mathcal{C}_{\lambda, y_{1:N}}(\theta, u_{1:N}) &= \underbrace{\lambda \log p(\theta)}_{\text{regularization}} + \underbrace{\log[p(y_{1:N}|u_{1:N})p(u_{1:N}|\theta)]}_{\text{likelihood}} \\ &= \lambda \left(\log p(\theta) + \frac{1}{\lambda} \log[p(y_{1:N}|u_{1:N})p(u_{1:N}|\theta)]\right) \end{split}$$

- $\lambda = 1$: Standard posterior $\xrightarrow{N \to \infty} \sim$ likelihood¹
- $\lambda = N$: regularized posterior

 $p_{\lambda}(\theta, u_{1:N}|y_{1:N}) \propto p(\theta) \left[p(y_{1:N}|u_{1:N})p(u_{1:N}|\theta)\right]^{1/N}$

¹Bernstein-von Mises theorem

Parameter estimation

- posterior close to prior;
- Errors in 100 simulations

	θ_0	θ_1	$ heta_4$
Posterior mean	-0.44 ± 0.58	$\textbf{0.09} \pm \textbf{0.42}$	0.11 ± 0.20
MAP	-0.32 ± 0.61	$\textbf{0.02} \pm \textbf{0.42}$	$\textbf{0.03} \pm \textbf{0.21}$

State estimation

State estimation

14/18

Observing more or less nodes:

When more modes are observed:

• State estimation gets more accurate

• Parameter estimation does not improve much: The posterior keeps close to prior due to the need of regularization

Summary and discussion

Bayesian approach to jointly estimate parameter-state

- a stochastic energy balance model
- sparse and noisy data
- Ill-posed parameter estimation problem (The parameters are correlated on a lowD manifold)

Introduced a regularized posterior:

- Enabling state estimation
- Large uncertainty in parameter estimation due to ill-posedness

Open questions

1. Re-parametrization/ nonparametric to avoid ill-posedness?

2. How many nodes need to be observed (for large mesh)? (theory of determining modes)

Open questions

- 1. Re-parametrization/ nonparametric to avoid ill-posedness?
- 2. How many nodes need to be observed (for large mesh)? (theory of determining modes)

Thank you!

