Data Assimilation with Stochastic Model Reduction of Chaotic Systems

Fei Lu

Department of Mathematics, Johns Hopkins Joint work with: Alexandre J. Chorin (UC Berkeley) Kevin K. Lin (U. of Arizona) Xuemin Tu (U. of Kansas)

Snowbird, SIAM-DS, May 23, 2019

Model error from sub-grid scales

ECMWF: 16 km horizontal

grid $\rightarrow 10^9~\text{freedoms}$

From: Wikipedia, ECWMF

The Lorenz 96 system

Wilks 2005

Model error from sub-grid scales

ECMWF: 16 km horizontal grid \rightarrow 10⁹ freedoms

The Lorenz 96 system

Wilks 2005

- HighD multiscale full systems:
 - can only afford to resolve x' = f(x)
 - y: unresolved variables (subgrid-scales)
- Discrete noisy observations: missing i.c.
- Ensemble prediction: need many simulations

Model error from sub-grid scales

ECMWF: 16 km horizontal grid \rightarrow 10⁹ freedoms

The Lorenz 96 system Wilks 2005

- HighD multiscale full systems:
 - can only afford to resolve x' = f(x)
 - y: unresolved variables (subgrid-scales)
- Discrete noisy observations: missing i.c.
- Ensemble prediction: need many simulations

 \rightarrow How to account for the model error U(x, y)?

Given a highD multiscale full system:

$$\mathbf{x}' = f(\mathbf{x}) + \mathbf{U}(\mathbf{x}, \mathbf{y}), \mathbf{y}' = g(x, y).$$

Ensemble prediction: can afford to resolve x' = f(x) online.

Accounting model error U(x, y) from subgrid scales

- Indirect approaches: correct the forecast ensemble
 - ▶ e.g. Inflation and Localization;¹ relaxation/bias correction²,
 - in Assimilation step; deficiency in forecast model remains
- Direct approach: improve the forecast model
 - parametrization methods ³, <u>non-Markovian</u> ⁴
 - random perturbation, averaging+homogenization ⁵

¹Mitchell-Houtekamer(00), Hamill-Whitaker(05), Anderson(07)

²Zhang-etc (04), Dee-Da Silva(98)

³Palmer, Arnold+(01,13), Wilks(05), Meng-Zhang(07), Danforth-Kalnay-Li+(08,09), Berry-Harlim(14), Mitchell-Carrissi(15), Van Leeuwen etc(18)

⁴Chorin+(00-15), Marjda-Timofeyev-Harlim+(03-13), Chekroun-Kondrashov-Gil+(11,15), Cromellin+Vanden-Eijinden(08), Gottwald+(15)
 ⁵Hamill-Whitaker(05),Houtekamer+(09) Pavliotis-Stuart(08), Gottwald+(12-13)

Outline

1. Stochastic model reduction

(reduction from simulated data)

- Discrete-time stochastic parametrization (NARMA)
- Data assimilation with the reduced model (Noisy data + reduced model → state estimation and prediction)

Stochastic model reduction

Why stochastic reduced models?

$$x' = f(x) + U(x, y), y' = g(x, y).$$

Data $\{x(nh)\}_{n=1}^{N}$

- The system is "ergodic": $\frac{1}{N} \sum_{n=1}^{N} F(x(nh)) \xrightarrow{N \to \infty} \int F(x) \mu(dx)$
- U(x, y) acts like a stochastic force

Stochastic model reduction

Why stochastic reduced models?

$$x' = f(x) + U(x, y), y' = g(x, y).$$

Data $\{x(nh)\}_{n=1}^{N}$

- The system is "ergodic": $\frac{1}{N} \sum_{n=1}^{N} F(x(nh)) \xrightarrow{N \to \infty} \int F(x) \mu(dx)$
- U(x, y) acts like a stochastic force

Memory effects (Mori, Zwanzig, Chorin, Kubo, Majda, Wilks, Ghil, ...)

• Mori-Zwanzig formalism \rightarrow generalized Langevin equ.

$$\frac{dx}{dt} = \underbrace{\mathbb{E}[RHS|x]}_{\text{Markov term}} + \underbrace{\int_{0}^{t} \mathcal{K}(x(s), t-s)ds}_{\text{memory}} + \underbrace{W_{t}}_{\text{noise}},$$

• Fluctuation-dissipation theory \rightarrow Hypoelliptic SDEs

$$dX = a(X, Y)dt + Y; \quad dY = b(X, Y)dt + c(X, Y)dW,$$

• Parametrization: multi-layer stochastic models

Goal: develop a non-Markovian stochastic reduced system for x

Discrete-time stochastic parametrization

NARMA(p, q)

$$X_{n} = X_{n-1} + R_{h}(X_{n-1}) + Z_{n},$$

$$Z_{n} = \Phi_{n} + \xi_{n},$$

$$\Phi_{n} = \sum_{j=1}^{p} a_{j}X_{n-j} + \sum_{j=1}^{r} \sum_{i=1}^{s} b_{i,j}P_{i}(X_{n-j}) + \sum_{j=1}^{q} c_{j}\xi_{n-j}$$
Auto-Regression
Moving Average

- $R_h(X_{n-1})$ from a numerical scheme for $x' \approx f(x)$
- Φ_n depends on the past

Tasks:

Structure derivation: terms and orders (p, r, s, q) in Φ_n ;

Parameter estimation: a_j , $b_{i,j}$, c_j , and σ .

Overview:

$$x' = f(x) + U(x, y), y' = g(x, y).$$

Data $\{x(nh)\}_{n=1}^{N}$

Discrete-time stochastic parametrization

NARMA

$$\begin{array}{rcl} X_n & = & X_{n-1} + R_h(X_{n-1}) + Z_n, \\ Z_n & = & \Phi_n + \xi_n, \\ \Phi_n & = & \sum_{j=1}^p a_j X_{n-j} + \sum_{j=1}^q c_j \xi_{n-j} \\ & & + \sum_{j=1}^r \sum_{i=1}^s b_{i,j} P_i(X_{n-j}). \end{array}$$

- 1. compute $R_h(x)$
- 2. derive structure
- 3. estimate parameters

Application to the chaotic Lorenz 96 system

A chaotic dynamical system (a simplified atmospheric model)

$$\frac{d}{dt}x_{k} = x_{k-1}(x_{k+1} - x_{k-2}) - x_{k} + 10 - \frac{1}{J}\sum_{j} y_{k,j},$$
$$\frac{d}{dt}y_{k,j} = \frac{1}{\varepsilon}[y_{k,j+1}(y_{k,j-1} - y_{k,j+2}) - y_{k,j} + x_{k}],$$

where $x \in \mathbb{R}^{18}$, $y \in \mathbb{R}^{360}$.

Find a reduced system for $x \in \mathbb{R}^{18}$ based on

> Data $\{x(nh)\}_{n=1}^{N}$

$$\succ \frac{d}{dt} x_k \approx x_{k-1} \left(x_{k+1} - x_{k-2} \right) - x_k + 10.$$

Wilks 2005

$$x^{n} = x^{n-1} + R_{h}(x^{n-1}) + z^{n}; \ z^{n} = \Phi^{n} + \xi^{n},$$

$$\Phi^{n} = a + \sum_{j=1}^{p} \sum_{l=1}^{d_{x}} b_{j,l}(x^{n-j})^{l} + \sum_{j=1}^{p} c_{j}R_{h}(x^{n-j}) + \sum_{j=1}^{q} d_{j}\xi^{n-j}.$$

$$p = 2, d_x = 3; q = \begin{cases} 1, h = 0.01; \\ 0, h = 0.05. \end{cases}$$

⁶Wilks 05: an MLR model in atmosphere science

$$\frac{d}{dt}x_{k} = x_{k-1}(x_{k+1} - x_{k-2}) - x_{k} + 10 + U,$$

$$U = P(x_{k}) + \eta_{k}, \text{ with } d\eta_{k}(t) = \phi\eta_{k}(t) + dB_{k}(t).$$

where $P(x) = \sum_{j=0}^{d_x} a_j x^j$. Optimal $d_x = 5$.

⁶Wilks 05: an MLR model in atmosphere science

Long-term statistics

Empirical probability density function (PDF)

Empirical autocorrelation function (ACF)

Prediction (h = 0.05)

A typical ensemble forecast:

- forecast trajectories in cyan
- true trajectory in blue

Prediction (h = 0.05)

A typical ensemble forecast:

- forecast trajectories in cyan
- true trajectory in blue

RMSE of many forecasts:

Outline

- 1. Stochastic model reduction (reduction from simulated data)
 - Discrete-time stochastic parametrization (NARMA)
- 2. Data assimilation with the reduced model (Noisy data + reduced model \rightarrow state estimation and prediction)

Data assimilation with the reduced model

x' = f(x) + U(x, y), y' = g(x, y).Noisy data: x(nh) + W(n), n = 1, 2, ...

Data assimilation:

- estimate the state of a forward model
- make prediction (by ensembles of solutions)

The widely used method: Ensemble Kalman filters (EnKF)

The Lorenz 96 system

Wilks 2005

Estimate and predict x based on

> Noisy Data z(n) = x(nh) + W(n)

Forward models >

- L96x: the truncated model $\frac{d}{dt}x_k \approx x_{k-1}(x_{k+1}-x_{k-2})-x_k+10$ (account for the model error by IL in EnKF)
- NARMA (account for the model error by parametrization in the forward model)

Relative error of state estimation

RMSE of state prediction

Summary: The stochastic model improves performance of DA.

Summary and ongoing work

Accounting model error U(x, y) from subgrid scales

- Stochastic model reduction by Discrete-time stochastic parametrization
 - simplifies the inference from data
 - incorporates memory flexibly
 - effective reduced model (NARMA)
 - capture key statistical-dynamical features
 - make medium-range forecasting

Improve the forecast model

 \rightarrow Improve performance of DA

Ongoing work:

- noisy data: state estimation and model inference
 - data assimilation with non-Markovian models
 - inference for hidden non-Markovian models
- model reduction for (stochastic) PDEs
 - stochastic Burgers equation, N-S equation

References

Data-driven stochastic model reduction

- Chorin-Lu: Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics. PNAS 112 (2015), no. 32, 9804–9809.
- Lu-Lin-Chorin: Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems. CAMCoS, 11 (2016), no. 8, 4227–4246. (With K. Lin and A. Chorin).
- Lu-Lin-Chorin: Data-based stochastic model reduction for the Kuramoto Sivashinsky equation. Physica D, 340 (2017), 46–57. (With K. Lin and A. Chorin)
- Data assimilation
 - Lu-Tu-Chorin: Accounting for model error from unresolved scales in EnKFs: improving the forecast model. MWR, 340 (2017).

Thank you!

