Nonparametric inference of interaction laws in particle/agent systems

Fei Lu

Department of Mathematics, Johns Hopkins University
Joint with:
Mauro Maggioni, Sui Tang and Ming Zhong

February 13, 2019
CSCAMM Seminar, UMD

Motivation

Q: What is the law of interaction between particles/agents?

Motivation

Q: What is the law of interaction between particles/agents?

$$
m \ddot{x}_{i}(t)=-\nu \dot{x}_{i}(t)+\frac{1}{N} \sum_{j=1, j \neq i}^{N} K\left(x_{i}, x_{j}\right)
$$

- Newton's law of gravitation:

$$
K(x, y)=G \frac{m_{1} m_{2}}{r^{2}}, r=|x-y|
$$

- Molecular fluid: $K(x, y)=\nabla_{x}[\Phi(|x-y|)]$ Lennard-Jones potential: $\Phi(r)=\frac{c_{1}}{r^{12}}-\frac{C_{2}}{r^{6}}$.
- flocking birds/school of fish

$$
K(x, y)=\phi(|x-y|) \psi(\langle x, y\rangle)
$$

- opinion/voter models, bacteria models ... ${ }^{a}$

[^0]
An inference problem:

Infer the rule of interaction in the system

$$
m \ddot{x}_{i}(t)=-\nu \dot{x}_{i}(t)+\frac{1}{N} \sum_{j=1, j \neq i}^{N} K\left(x_{i}-x_{j}\right), \quad i=1, \cdots, N, x_{i}(t) \in \mathbb{R}^{d}
$$

from observations of trajectories.

- x_{i} is the position of the i-th particle/agent
- Data: many independent trajectories $\left\{\boldsymbol{x}^{j}(t): t \in \mathcal{T}\right\}_{j=1}^{M}$
- Goal: infer ϕ in $K(x)=-\nabla \Phi(|x|)=-\phi(|x|) x$
$m=0 \Rightarrow$ a first order system

$$
\dot{x}_{i}(t)=\frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi_{\text {true }}\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}-x_{i}\right):=\left[\mathbf{f}_{\phi}(\boldsymbol{x}(t))\right]_{i}
$$

Least squares regression: with $\mathcal{H}_{n}=\operatorname{span}\left\{e_{i}\right\}_{i=1}^{n}$,

$$
\hat{\phi}_{n}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi):=\sum_{m=1}^{M}\left\|\dot{\boldsymbol{x}}^{m}-\mathbf{f}_{\phi}\left(\boldsymbol{x}^{m}\right)\right\|^{2}
$$

- How to choose the hypothesis space \mathcal{H}_{n} ?
- Inverse problem well-posed/ identifiability?
- Consistency and rate of "convergence"?
(1) Learning via nonparametric regression:
- A regression measure and function space
- Identifiability: a coercivity condition
- Consistency and rate of convergence
(2) Numerical examples
- A general algorithm
- Lennard-Jones model
- Opinion dynamics and multiple-agent systems
(3) Open problems

Learning via nonparametric regression

The dynamical system:

$$
\dot{x}_{i}(t)=\frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}-x_{i}\right):=\left[\mathbf{f}_{\phi}(\boldsymbol{x}(t))\right]_{i}
$$

Admissible set (\approx globally Lipschitz):

$$
\mathcal{K}_{R, S}:=\left\{\varphi \in W^{1, \infty}: \operatorname{supp} \varphi \in[0, R], \sup _{r \in[0, R]}\left[|\varphi(r)|+\left|\varphi^{\prime}(r)\right|\right] \leq S\right\}
$$

Data: M-trajectories $\left\{\boldsymbol{x}^{m}(t): t \in \mathcal{T}\right\}_{m=1}^{M}$

- $\boldsymbol{x}^{m}(0) \stackrel{i . i . d}{\sim} \mu_{0} \in \mathcal{P}\left(\mathbb{R}^{d N}\right)$
- $\mathcal{T}=[0, T]$ or $\left\{t_{1}, \cdots, t_{L}\right\}$ with $\dot{\mathbf{x}}\left(t_{i}\right)$

Goal: nonparametric inference ${ }^{1}$ of ϕ

[^1]$$
\hat{\phi}_{M, \mathcal{H}}=\underset{\phi \in \mathcal{H}}{\arg \min } \mathcal{E}_{M}(\phi):=\frac{1}{M L} \sum_{l, m=1}^{L, M}\left\|\mathbf{f}_{\phi}\left(\boldsymbol{X}^{m}\left(t_{l}\right)\right)-\dot{\boldsymbol{X}}^{m}\left(t_{l}\right)\right\|^{2}
$$

- $\mathcal{E}_{M}(\phi)$ is quadratic in ϕ, and $\mathcal{E}_{M}(\phi) \geq \mathcal{E}_{M}\left(\phi_{\text {true }}\right)=0$
- The minimizer exists for any $\mathcal{H}=\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{n}\right\}$

Agenda

- a function space with metric $\operatorname{dist}\left(\widehat{\phi}, \phi_{\text {true }}\right)$;
- Learnability:
- Convergence of estimators?
- Convergence rate?

Review of classical nonparametric regression:

Estimate $\phi(z)=\mathbb{E}[Y \mid Z=z]: \mathbb{R}^{D} \rightarrow \mathbb{R}$ from data $\left\{z_{i}, y_{i}\right\}_{m=1}^{M}$.

- $\left\{z_{i}, y_{j}\right\}$ are iid samples;
- $\hat{\phi}_{n}:=\arg \min \mathcal{E}_{M}(f):=\sum_{m=1}^{M}\left\|y_{i}-f\left(z_{i}\right)\right\|^{2}$

$$
f \in \mathcal{H}_{n}
$$

- Optimal rate: if $\operatorname{dist}\left(\mathcal{H}_{n}, \phi_{\text {true }}\right) \lesssim n^{-s}$ and $n_{*}=(M / \log M)^{\frac{1}{2 s+1}}$,

$$
\left\|\hat{\phi}_{n_{*}}-\phi\right\|_{L^{2}\left(\rho_{Z}\right)} \lesssim M^{-\frac{s}{2 s+D}}
$$

Underfitting

Balanced

Overfitting

Review of classical nonparametric regression:

Estimate $\phi(z)=\mathbb{E}[Y \mid Z=z]: \mathbb{R}^{D} \rightarrow \mathbb{R}$ from data $\left\{z_{i}, y_{i}\right\}_{m=1}^{M}$.

- $\left\{z_{i}, y_{j}\right\}$ are iid samples;
- $\hat{\phi}_{n}:=\arg \min \mathcal{E}_{M}(f):=\sum_{m=1}^{M}\left\|y_{i}-f\left(z_{i}\right)\right\|^{2}$

$$
\breve{f \in \mathcal{H}_{n}}
$$

- Optimal rate: if dist $\left(\mathcal{H}_{n}, \phi_{\text {true }}\right) \lesssim n^{-s}$ and $n_{*}=(M / \log M)^{\frac{1}{s+1}}$,

$$
\left\|\hat{\phi}_{n_{*}}-\phi\right\|_{L^{2}\left(\rho_{z}\right)} \lesssim M^{-\frac{s}{2 s+D}}
$$

Our learning of kernel $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ from data $\left\{\boldsymbol{x}^{m}(t)\right\}$

$$
\dot{x}_{i}(t)=\frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}-x_{i}\right)
$$

- $\left\{r_{i j t}^{m}:=\left|x_{i}^{m}(t)-x_{j}^{m}(t)\right|\right\}$ not iid
- The values of $\phi\left(r_{j t}^{m}\right)$ unknown

Regression measure

Distribution of pairwise-distances $\rho: \mathbb{R}_{+} \rightarrow \mathbb{R}$

$$
\rho_{T}(r)=\frac{1}{\binom{N}{2} L} \sum_{l, i, i^{\prime}=1, i<i^{\prime}}^{L, N} \mathbb{E}_{\mu_{0}} \delta_{r_{i^{\prime} \prime}\left(t_{l}\right)}(r)
$$

- unknown, estimated by empirical distribution $\rho_{T}^{M} \xrightarrow{M \rightarrow \infty} \rho_{T}$ (LLN)
- intrinsic to the dynamics

Regression function space $L^{2}\left(\rho_{T}\right)$

- the admissible set $\subset L^{2}\left(\rho_{T}\right)$
- $\mathcal{H}=$ piecewise polynomials $\subset L^{2}\left(\rho_{T}\right)$
- singular kernels $\subset L^{2}\left(\rho_{T}\right)$

Identifiability: a coercivity condition

$$
\begin{gathered}
\hat{\phi}_{M, \mathcal{H}}=\underset{\phi \in \mathcal{H}}{\arg \min } \mathcal{E}_{M}(\phi) \\
\mathcal{E}_{\infty}(\hat{\phi})-\mathcal{E}_{\infty}(\phi)=\frac{1}{N T} \int_{0}^{T} \mathbb{E}_{\mu_{0}}\left\|\mathbf{f}_{\hat{\phi}-\phi}(\boldsymbol{X}(t))\right\|^{2} d t \geq c\|(\hat{\phi}-\phi)(\cdot) \cdot\|_{L^{2}\left(\rho_{T}\right)}^{2}
\end{gathered}
$$

Coercivity condition. There exists $c_{T}>0$ s.t. for all $\varphi(\cdot) \cdot \in L^{2}\left(\rho_{T}\right)$

$$
\frac{1}{N T} \int_{0}^{T} \mathbb{E}_{\mu_{0}}\left\|\mathbf{f}_{\varphi}(\boldsymbol{x}(t))\right\|^{2} d t=\langle\langle\varphi, \varphi\rangle\rangle \geq c_{T}\|\varphi(\cdot) \cdot\|_{L^{2}\left(\rho_{T}\right)}^{2}
$$

- coercivity: bilinear functional $\langle\langle\varphi, \psi\rangle\rangle:=\frac{1}{N T} \int_{0}^{T} \mathbb{E}_{\mu_{0}}\left\langle\mathbf{f}_{\varphi}, \mathbf{f}_{\psi}\right\rangle(\boldsymbol{x}(t)) d t$
- controls condition number of regression matrix

Consistency of estimator

Theorem (L. Maggioni, Tang, Zhong)

Assume the coercivity condition. Let $\left\{\mathcal{H}_{n}\right\}$ be a sequence of compact convex subsets of $L^{\infty}([0, R])$ such that $\inf _{\varphi \in \mathcal{H}_{n}}\left\|\varphi-\phi_{\text {true }}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} \lim _{M \rightarrow \infty}\left\|\widehat{\phi}_{M, \mathcal{H}_{n}}(\cdot) \cdot-\phi_{\text {true }}(\cdot) \cdot\right\|_{L^{2}\left(\rho_{T}\right)}=0, \text { almost surely } .
$$

- For each n, compactness of $\left\{\widehat{\phi}_{M, \mathcal{H}_{n}}\right\}$ and coercivity implies that $\widehat{\phi}_{M, \mathcal{H}_{n}} \rightarrow \widehat{\phi}_{\infty, \mathcal{H}_{n}}$ in L^{2}
- Increasing \mathcal{H}_{n} and coercivity implies consistency.
- In general, truncation to make \mathcal{H}_{n} compact

Optimal rate of convergence

Theorem (L. Maggioni, Tang, Zhong)

Let $\left\{\mathcal{H}_{n}\right\}$ be a seq. of compact convex subspaces of $L^{\infty}[0, R]$ s.t.

$$
\operatorname{dim}\left(\mathcal{H}_{n}\right) \leq c_{0} n, \text { and } \inf _{\varphi \in \mathcal{H}_{n}}\left\|\varphi-\phi_{\text {true }}\right\|_{\infty} \leq c_{1} n^{-s} .
$$

Assume the coercivity condition. Choose $n_{*}=(M / \log M)^{\frac{1}{2 s+1}}$: then

$$
\mathbb{E}_{\mu_{0}}\left[\left\|\widehat{\phi}_{T, M, \mathcal{H}_{n_{*}}}(\cdot) \cdot-\phi_{\text {true }}(\cdot) \cdot\right\|_{L^{2}\left(\rho_{T}\right)}\right] \leq C\left(\frac{\log M}{M}\right)^{\frac{s}{2 s+1}}
$$

- The 2nd condition is about regularity: $\phi \in C^{s}$
- Choose \mathcal{H}_{n} according to s and M

Prediction of future evolution

Theorem (L. Maggioni, Tang, Zhong)

Denote by $\widehat{\boldsymbol{X}}(t)$ and $\boldsymbol{X}(t)$ the solutions of the systems with kernels $\widehat{\phi}$ and ϕ respectively, starting from the same initial conditions that are drawn i.i.d from μ_{0}. Then we have

$$
\mathbb{E}_{\mu_{0}}\left[\sup _{t \in[0, T]}\|\widehat{\boldsymbol{X}}(t)-\boldsymbol{X}(t)\|^{2}\right] \lesssim \sqrt{N}\|\widehat{\phi}(\cdot) \cdot-\phi(\cdot) \cdot\|_{L^{2}\left(\rho_{T}\right)}^{2},
$$

- Follows from Grownwall's inequality

Outline

(1) Learning via nonparametric regression:

- A regression measure and function space
- Learnability: a coercivity condition
- Consistency and rate of convergence
(2) Numerical examples
- A general algorithm
- Lennard-Jones model
- Opinion dynamics and multiple-agent systems
(3) Open problems

Numerical examples

The regression algorithm

$$
\begin{gathered}
\mathcal{E}_{M}(\varphi)=\frac{1}{L M N} \sum_{l, m, i=1}^{L, M, N}\left\|\dot{\boldsymbol{x}}_{i}^{(m)}\left(t_{l}\right)-\sum_{i^{\prime}=1}^{N} \frac{1}{N} \varphi\left(r_{i, i^{\prime}}^{m}\left(t_{l}\right)\right) \boldsymbol{r}_{i, i^{\prime}}^{m}\left(t_{l}\right)\right\|^{2} \\
\mathcal{H}_{n}:=\left\{\varphi=\sum_{p=1}^{n} a_{p} \psi_{p}(r): \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}\right\} \\
\mathcal{E}_{L, M}(\varphi)=\mathcal{E}_{L, M}(\mathbf{a})=\frac{1}{M} \sum_{m=1}^{M}\left\|\mathbf{d}^{m}-\Psi_{L}^{m} \mathbf{a}\right\|_{\mathbb{R}^{L N d}}^{2} \\
\frac{1}{M} \sum_{m=1}^{M} A_{L}^{m} \mathbf{a}=\frac{1}{M} \sum_{m=1}^{M} b_{L}^{m}, \text { rewrite as } A_{M} \mathbf{a}=b_{M}
\end{gathered}
$$

- can be computed parallelly
- Caution: choice of $\left\{\psi_{p}\right\}$ affects condi $\left(A_{M}\right)$

Assume coercivity condition: $\langle\langle\varphi, \varphi\rangle\rangle \geq c_{T}\|\varphi(\cdot) \cdot\|_{L^{2}\left(\rho_{T}\right)}^{2}$.

Proposition (Lower bound on smallest singular value of A_{M})

Let $\left\{\psi_{1}, \cdots, \psi_{n}\right\}$ be a basis of \mathcal{H}_{n} s.t.

$$
\left\langle\psi_{p}(\cdot) \cdot, \psi_{p^{\prime}}(\cdot) \cdot\right\rangle_{L^{2}\left(\rho_{T}^{L}\right)}=\delta_{p, p^{\prime}},\left\|\psi_{p}\right\|_{\infty} \leq S_{0} .
$$

Let $A_{\infty}=\left(\left\langle\left\langle\psi_{p}, \psi_{p^{\prime}}\right\rangle\right\rangle\right)_{p, p^{\prime}} \in \mathbb{R}^{n \times n}$. Then $\sigma_{\min }\left(A_{\infty}\right) \geq c_{L}$.
Moreover, A_{∞} is the a.s. limit of A_{M}. Therefore, for large M, the smallest singular value of A_{M} satisfies with a high probability that

$$
\sigma_{\min }\left(A_{M}\right) \geq(1-\epsilon) c_{L}
$$

- Choose $\left\{\psi_{p}(\cdot) \cdot\right\}$ linearly independent in $L^{2}\left(\rho_{T}\right)$
- Piecewise polynomials: on a partition of $\operatorname{support}\left(\rho_{T}\right)$
- Finite difference \approx derivatives \Rightarrow an $O(\Delta t)$ error to estimator

Implementation

(1) Approximate regression measure

- Estimate the ρ_{T} with large datasets
- Partition on support $\left(\rho_{T}\right)$
(2) Construct hypothesis space \mathcal{H} :
- degree of piecewise polynomials
- set dimension of \mathcal{H} according to sample size
(3) Regression:
- Assemble the arrays (in parallel)
- Solve the normal equation

Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

$$
V_{L J}(r)=4 \epsilon\left(\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right) \Rightarrow \phi(r) r=V_{L J^{\prime}}(r)
$$

$$
\dot{x}_{i}(t)=\frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}-x_{i}\right)
$$

Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

$$
V_{L J}(r)=4 \epsilon\left(\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right) \Rightarrow \phi(r) r=V_{L J^{\prime}}(r)
$$

$$
\dot{x}_{i}(t)=\frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}-x_{i}\right)
$$

Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

$$
V_{L J}(r)=4 \epsilon\left(\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right) \Rightarrow \phi(r) r=V_{L J^{\prime}}(r)
$$

$$
\dot{x}_{i}(t)=\frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}-x_{i}\right)
$$

Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

$$
V_{L J}(r)=4 \epsilon\left(\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right) \Rightarrow \phi(r) r=V_{L J^{\prime}}(r)
$$

$$
\dot{x}_{i}(t)=\frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}-x_{i}\right)
$$

Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

$$
V_{L J}(r)=4 \epsilon\left(\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right) \Rightarrow \phi(r) r=V_{L J^{\prime}}(r)
$$

$$
\dot{x}_{i}(t)=\frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}-x_{i}\right)
$$

The Lennard-Jones potential

$$
V_{L J}(r)=4 \epsilon\left(\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right) \Rightarrow \quad \phi(r) r=V_{L J^{\prime}}(r)
$$

- piecewise linear estimator; Gaussian initial conditions.

Optimal rate

$$
V_{L J}(r)=4 \epsilon\left(\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right) \Rightarrow \phi(r) r=V_{L J^{\prime}}(r)
$$

- $V_{L J}$ is highly singular, yet we get close to optimal rate (-0.4).

Example: Opinion Dynamics

$$
\phi(r)=\left\{\begin{array}{lll}
1, & 0 \leq r<\frac{1}{\sqrt{2}}, & N=10, d=1 \\
0.1, & \frac{1}{\sqrt{2}} \leq r<1, & \left.M=250, \mu_{0}=\text { Unif[0, 10 }\right]^{10} \\
0, & 1 \leq r . & \mathcal{T}=[0,10], 200 \text { discrete instances } \\
& \mathcal{H}=\text { piecewise constant functions }
\end{array}\right.
$$

Summary and open problems

Learning theory

- extended the classical regression theory
- a coercivity condition for identifiability

Theory guided regression algorithms

- Selection of \mathcal{H} (basis functions \& dimension)
- Measurement of error of estimators
- Optimal learning rate
- Model selection

Open directions

- 1st- and 2nd-order heterogeneous agent dynamics
- Multiple type of agents (leader-follower, predator-prey)
- Angle and/or alignment based interactions
- Stochastic systems, mean field equations
- Partial and noisy observations
- The coercivity condition

The coercivity condition

$$
\dot{x}_{i}(t)=\frac{1}{N} \sum_{j=1}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}(t)-x_{i}(t)\right), \quad x_{i} \in \mathbb{R}^{d}
$$

- Exchangeability: particles indistinguishable.
- $U=x_{1}(t)-x_{2}(t), V=x_{1}(t)-x_{3}(t)$ correlated.

The coercivity condition is equivalent to

$$
c_{t}:=\inf _{g \in \mathcal{H},\|g\|_{2}=1} \mathbb{E}_{p_{t}}\left[g(|U|) g(|V|) \frac{\langle U, V\rangle}{|U||V|}\right] \geq C>0
$$

where $g(r)=\phi(r) r$, and p_{t} is the joint distribution of (U, V).

Conjecture

The coercivity condition holds for compact \mathcal{H} if $c_{0}>0$.

Current status:

- Proved $c_{0}>0$ if initial distributions with iid particles, or Gaussian with $\operatorname{cov}(U)-\operatorname{cov}(U, V)=\lambda I_{d}$.
- Basic idea: positive definite kernel

$$
\mathbb{E}\left[g(|U|) g(|V|) \frac{\langle U, V\rangle}{|U||V|}\right]=\int g(r) g(s) \mathcal{K}(r, s) d r d s
$$

- The kernel \mathcal{K} is a positive definite kernel:

$$
\mathcal{K}(r, s)=\sum_{i} \lambda_{i} e_{i}(r) e_{i}(s) .
$$

- When $t>0$: no proof yet, verified by numerical tests

A route in plan:

$$
\begin{gathered}
d X(t)=-\nabla J(X(t)) d t+\sqrt{2 / \beta} d W(t), \quad X(t) \in \mathbb{R}^{d N} \\
J(X)=\frac{1}{2 N} \sum_{i, j} \Phi\left(\left|X_{i}-X_{j}\right|\right)
\end{gathered}
$$

- Ergodic with invariant meas.: $p_{\infty}(x)=Z^{-1} e^{-\beta J(x)}$
- Need: positive definite kernel for all t

$$
p_{t}(u, v):=\int p_{t}\left(x_{1}, x_{1}-u, x_{1}-v, x_{4: N}\right) d x_{1} d x_{4: N} .
$$

- Uniform in $t \in[0, \infty]$ for lower bound of the spectrum on \mathcal{H}

Thanks to my collaborators

Mauro Maggioni

Sui Tang

Ming Zhong

Helpful discussions with

- F. Lu, M. Maggioni, and S. Tang. Learning interaction rules in deterministic interacting particle systems: a Monte Carlo Approach. Preprint.
- F. Lu, M. Maggioni, S. Tang and M. Zhong. Discovering governing laws of interaction in heterogeneous agents dynamics from observations. arXiv
- M. Bongini, M. Fornasier, M. Maggioni and M. Hansen. Inferring Interaction Rules From Observations of Evolutive Systems I: The Variational Approach, Mathematical Models and Methods in Applied Sciences, 27(05), 909-951, 2017

Thank you!

[^0]: ${ }^{a}(1)$ Cucker+Smale: On the mathematics of emergence. 2007. (2) Vicsek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dynamics Enhances Consensus. 2014 ...

[^1]: ${ }^{1}$ (1) Bongini, Fornasier, Hansen, Maggioni: Inferring Interaction Rules for mean field equations, M3AS, 2017.
 (2) Binev, Cohen, Dahmen, Devore and Temlyakov: Universal Algorithms for learning theory, JMLR 2005.
 (3) Cucker, Smale: On the mathematical foundation of learning. Bulletin of AMS, 2001.

