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Paleoclimate: reconstruct past climate temperature from proxy data
@ Spatio-temporal evolution

» spatial correlations
» physically laws: energy balance — SPDEs

@ Sparse and noisy data

» Proxy data: historical data, tree rings, ice cores, fossil pollen,
ocean sediments, coral etc.

Plan: inference of SPDEs from sparse noisy data
@ joint state-parameter estimation
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The SPDEs: stochastic Energy Balance Models

Idealized atmospheric energy balance (Fanning&Weaver1996)

ou = Qr + Qsw + Qsy + Qv+ Qv  — Qiew
~—~ ~—~— ~— ~—~ N~ N——

transport absorbed sensible latent longwave longwave

shortwave heat heat surf.—atmos. into space

= V-(wVu)+ 0+ 01u+0su* +W(t, x)
—_— —

@ u(t, x) normalized temperature (=~ 1)

@ 0 = (6k): unknown parameters:
» prior: a range of physical values

@ W(t, x): Gaussian noise,
» white-in-time Matern-in-space
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Data: observation model

Observation at sparse locations/regions:

yt/:/ U(t,‘7X)dX—|— Vl'v
A

@ {A;} are regions/locations of observations
@ Gaussian noise {V;}, iid, variance known
@ Linear operator in state u
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State space model formulation

SEBM: dwu =V -(wVu)+ > 0k + W(t x)
k=0,1,4
Observation data: y; = H(u(t, x))+ Vi

Discretization (simplification):
@ finite elements in space
@ semi-backward Euler in time

A 4
State space model
SEBM Un — g(97 Un7‘|) + Wn
Observation data: Y, = HU,+ V,

Goal: Given y;.n, we would like to jointly estimate (6, Us.n)
@ Bayesian approach to quantify uncertainty
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Joint state-parameter estimation

Bayesian approach:
p(0, ur.n|y1:n) o< p(0)p(ur.n|@)p(yi:n|us:n)

@ Posterior: quantifies the uncertainties

Approximate the posterior by sampling
@ high dimensional (> 103),
@ non-Gaussian, mixed types of variables 0, uy.n

@ Gibbs Monte Carlo: Uy.n|0 and 6|U iteration

» Uy.n|0 needs highD proposal density — Sequential MC
» combine SMC with Gibbs (MCMC) —

Particle MCMC methods based on conditional SMC
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Sampling: particle MCMC

Particle MCMC (Andrieu&Doucet&Holenstein10)
@ Combines Sequential MC with MCMC:

» SMC: seq. importance sampling — highD proposal density
» conditional SMC: keep a reference trajectory in SMC
» MCMQC transition by conditional SMC

— target distr invariant even w/ a few particles

@ Particle Gibbs with Ancestor Sampling (Lindsten&Jordan&Schon14)

» Update the ancestor of the reference trajectory
» Improving mixing of the chain

8/20



However, standard Bayesian approach does not work:

for a Gaussian prior p(9),
unphysical samples of posterior: systems blowing up
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However, standard Bayesian approach does not work:

for a Gaussian prior p(9),
unphysical samples of posterior: systems blowing up

Parameter estimation is ill-posed:
Singular Fisher infomation matrix for full perfect observation

— large oscillation in sample 6 from Gibbs H\UHV
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Regularized posterior

Recall the regularization in variational approach

Variational: (6, Uy.n) = argmin Coyin(0, U1:N)
(95u1:n)

BayeSian : p)\(ev u1:N‘y1:N) X p(e)Ap(y1:N|u1:N)p(u1:N’e)

Coyin(0; th:n) = Alog p(6) + log[p(ys:n|us:n)p(us:n|6)]
——

regularization likelihood

@ )\ = 1: Standard posterior 2=~ likelihood
@ )\ = N: regularized posterior
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Numerical tests

Physical parameter set up:

. . 0o 2 04
@ Gaussian prior “mean 30.11 2408 -5.40
std 0.82 046 0.20

@ temperature near an equilibrium point (normalized, ~ 1)

All nodes
T

Dimension of the states: 1200
@ 12 spatial nodes
@ 100 time steps
@ observe 6 nodes each time;

120

Mean and std of Utrue
T T T

1 A0 Randomly generate a true value
for parameter from prior
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Diagnosis of Markov Chain

Chain length: 1000 (with 30% burnin)

Correlation of chain: states . Correlation of chain: parameters

Update rate of the MCMC

Update rates
—

-0.4

. . . 04 . . .
0 50 100 150 200 0 50 100 150 200
Time Lag Time Lag

State update rate: > 0.55
Correlation length: 10-30 steps

13/20



Parameter estimation

Marginal posterior 00
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Marginals of the posterior

o 90,91 OK, +bias 04

@ posterior close to prior

@ Errors in 100 simulations
6o 04 04

Mean -0.74 0.11 0.22
Std 0.73 046 0.20

» -bias g, +bias in 6,4
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State estimation

Ensemble of sample trajectories:

Ensemble trajectories of Node 1, Reltive error of MeanEst =0.007
" ? i ? ) r }
—o—MeanEst
o |||[——true

o Obs I

10 20 30 40 50 60 70 80 90 100
Time steps

Observed node:
filtered out noise

ies of Node 8, Reltive error of MeanEst =0.013

—o—MeanEst
——true

o Obs

10 20 30 40 50 60 70 80 90 100
Time steps

Unobserved node:
large spread, mean close to truth
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Observe more or less nodes

When more modes are observed:

@ State estimation gets more accurate

@ Parameter estimation does not improve much:
the posterior keeps close to prior.
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Summary and discussion

Bayesian approach to jointly estimate parameter-state

@ a stochastic energy balance model
@ sparse and noisy data

@ Estimate both parameters and states

» regularized posterior due to singular Fisher matrix
» Gibbs sampling via PGAS
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Summary and discussion

Bayesian approach to jointly estimate parameter-state

@ a stochastic energy balance model
@ sparse and noisy data

@ Estimate both parameters and states

» regularized posterior due to singular Fisher matrix
» Gibbs sampling via PGAS

Results:
@ State estimation:

» filtered noise on observed nodes;
» large uncertainty in unobserved modes

@ Parameter estimation:

» slightly biased estimators
» posterior close to prior
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Open questions
1. Re-parametrization: avoid singular Fisher information matrix?

2. How many nodes need to be observed (for large mesh)?
(theory of determining modes)
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Open questions
1. Re-parametrization: avoid singular Fisher information matrix?

2. How many nodes need to be observed (for large mesh)?
(theory of determining modes)

Thank you!
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