Joint state—parameter estimation for nonlinear stochastic energy balance models

Fei Lu ¹ Nils Weitzel² Adam Monahan³

¹Department of Mathematics, Johns Hopkins

²Meteorological Institute, University of Bonn, Germany

³School of Earth and Ocean Science, University of Victoria, Canada

SIAM Minisymposium on Data Assimilation: Theory and Practice JMM 2019, January 17

Outline

- Motivation
 - Stochastic energy balance model
 - State space model representation
- Bayesian inference
 - Particle MCMC
 - Regularized posterior
- Numerical study
 - Diagnosis of Markov Chain
 - Parameter estimation
 - State estimation

Motivation

Paleoclimate: reconstruct past climate temperature from proxy data

- Spatio-temporal evolution
 - spatial correlations
 - ▶ physically laws: energy balance → SPDEs
- Sparse and noisy data
 - Proxy data: historical data, tree rings, ice cores, fossil pollen, ocean sediments, coral etc.

Plan: inference of SPDEs from sparse noisy data

joint state-parameter estimation

The SPDEs: stochastic Energy Balance Models

Idealized atmospheric energy balance (Fanning&Weaver1996)

$$\begin{array}{lll} \partial_t u & = & \underbrace{Q_T}_{\text{transport}} + \underbrace{Q_{SW}}_{\text{absorbed}} + \underbrace{Q_{SH}}_{\text{sensible}} + \underbrace{Q_{LH}}_{\text{latent}} + \underbrace{Q_{LW}}_{\text{longwave}} - \underbrace{Q_{LPW}}_{\text{longwave}} \\ & = & \nabla \cdot (\nu \nabla u) + \underbrace{\theta_0}_{} + \theta_1 u + \theta_4 u^4 + W(t,x) \end{array}$$

- u(t,x) normalized temperature (≈ 1)
- $\theta = (\theta_k)$: unknown parameters:
 - prior: a range of physical values
- W(t, x): Gaussian noise,
 - white-in-time Matern-in-space

Data: observation model

Observation at sparse locations/regions:

$$y_{t_i} = \int_{A_i} u(t_i, x) dx + V_i,$$

- $\{A_i\}$ are regions/locations of observations
- Gaussian noise $\{V_i\}$, iid, variance known
- Linear operator in state u

State space model formulation

SEBM:
$$\partial_t u = \nabla \cdot (\nu \nabla u) + \sum_{k=0,1,4} \theta_k u^k + W(t,x)$$

Observation data:
$$y_{t_i} = H(u(t_i, x)) + V_i$$

Discretization (simplification):

- finite elements in space
- semi-backward Euler in time

State space model

SEBM:
$$U_n = g(\theta, U_{n-1}) + W_n$$

Observation data: $Y_n = HU_n + V_n$

Goal: Given $y_{1:N}$, we would like to jointly estimate $(\theta, U_{1:N})$

Bayesian approach to quantify uncertainty

Joint state-parameter estimation

Bayesian approach:

$$p(\theta, u_{1:N}|y_{1:N}) \propto p(\theta)p(u_{1:N}|\theta)p(y_{1:N}|u_{1:N})$$

Posterior: quantifies the uncertainties

Approximate the posterior by sampling

- high dimensional (> 10³),
- non-Gaussian, mixed types of variables θ , $u_{1:N}$
- Gibbs Monte Carlo: $U_{1:N}|\theta$ and $\theta|U$ iteration
 - ▶ $U_{1:N}|\theta$ needs highD proposal density \rightarrow Sequential MC
 - ▶ combine SMC with Gibbs (MCMC) →

Particle MCMC methods based on conditional SMC

Sampling: particle MCMC

Particle MCMC (Andrieu&Doucet&Holenstein10)

- Combines Sequential MC with MCMC:
 - ► SMC: seq. importance sampling → highD proposal density
 - conditional SMC: keep a reference trajectory in SMC
 - MCMC transition by conditional SMC
 - → target distr invariant even w/ a few particles
- Particle Gibbs with Ancestor Sampling (Lindsten&Jordan&Schon14)
 - Update the ancestor of the reference trajectory
 - Improving mixing of the chain

However, standard Bayesian approach does not work:

for a Gaussian prior $p(\theta)$, unphysical samples of posterior: systems blowing up

However, standard Bayesian approach does not work:

for a Gaussian prior $p(\theta)$, unphysical samples of posterior: systems blowing up

Parameter estimation is ill-posed:

Singular Fisher infomation matrix for full perfect observation

ightarrow large oscillation in sample θ from Gibbs $\theta | \widehat{U}_{1:N}$

Regularized posterior

Recall the regularization in variational approach

Variational:
$$(\widehat{\theta}, \widehat{u}_{1:N}) = \underset{(\theta, u_{1:N})}{\operatorname{arg \, min}} C_{\lambda, y_{1:N}}(\theta, u_{1:N})$$

Bayesian : $p_{\lambda}(\theta, u_{1:N}|y_{1:N}) \propto p(\theta)^{\lambda} p(y_{1:N}|u_{1:N}) p(u_{1:N}|\theta)$

$$C_{\lambda, y_{1:N}}(\theta, u_{1:N}) = \underbrace{\lambda \log p(\theta)}_{\text{regularization}} + \underbrace{\log[p(y_{1:N}|u_{1:N})p(u_{1:N}|\theta)]}_{\text{likelihood}}$$

- $\lambda = 1$: Standard posterior $\xrightarrow{N \to \infty} \sim$ likelihood
- $\lambda = N$: regularized posterior

Numerical tests

Physical parameter set up:

- Gaussian prior $\frac{\theta_0}{\text{mean}} = \frac{\theta_0}{30.11} = \frac{\theta_4}{-24.08} = \frac{-5.40}{-5.40}$
- temperature near an equilibrium point (normalized, \approx 1)

Dimension of the states: 1200

- 12 spatial nodes
- 100 time steps
- observe 6 nodes each time;

Randomly generate a true value for parameter from prior

Diagnosis of Markov Chain

Chain length: 1000 (with 30% burnin)

Correlation length: 10-30 steps

Parameter estimation

- θ_0, θ_1 OK, +bias θ_4
- posterior close to prior
- Errors in 100 simulations $\theta_0 \qquad \theta_1 \qquad \theta_1$

• -bias θ_0 , +bias in θ_4

State estimation

Ensemble of sample trajectories:

Observe more or less nodes

When more modes are observed:

- State estimation gets more accurate
- Parameter estimation does not improve much: the posterior keeps close to prior.

Summary and discussion

Bayesian approach to jointly estimate parameter-state

- a stochastic energy balance model
- sparse and noisy data
- Estimate both parameters and states
 - regularized posterior due to singular Fisher matrix
 - Gibbs sampling via PGAS

Summary and discussion

Bayesian approach to jointly estimate parameter-state

- a stochastic energy balance model
- sparse and noisy data
- Estimate both parameters and states
 - regularized posterior due to singular Fisher matrix
 - Gibbs sampling via PGAS

Results:

- State estimation:
 - filtered noise on observed nodes;
 - large uncertainty in unobserved modes
- Parameter estimation:
 - slightly biased estimators
 - posterior close to prior

Open questions

- 1. Re-parametrization: avoid singular Fisher information matrix?
- 2. How many nodes need to be observed (for large mesh)? (theory of determining modes)

Open questions

- 1. Re-parametrization: avoid singular Fisher information matrix?
- 2. How many nodes need to be observed (for large mesh)? (theory of determining modes)

Thank you!