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Motivation

Q: What is the law of interaction between particles/agents?

mẍi (t) = −νẋi (t) +
1
N

N∑
j=1,j 6=i

K (xi , xj ),

Newton’s law of gravitation:

K (x , y) = G
m1m2

r2 , r = |x − y |

Molecular fluid: K (x , y) = ∇x [Φ(|x − y |)]
Lennard-Jones potential: Φ(r) = c1

r12 − c2
r6 .

flocking birds/school of fish

K (x , y) = φ(|x − y |) x − y
|x − y |

opinion/voter models, bacteria/cells ...a

a(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-
sek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dy-
namics Enhances Consensus. 2014 ...
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An inference problem:

Infer the rule of interaction in the system

mẍi(t) = −νẋi(t)+
1
N

N∑
j=1,j 6=i

K (xi − xj), i = 1, · · · ,N, xi(t) ∈ Rd

from observations of trajectories.

xi is the position of the i-th particle/agent
Data: many independent trajectories {x j(t) : t ∈ T }Mj=1

Goal: infer φ : R+→ R in

K (x) = −∇Φ(|x |) = −φ(|x |) x
|x |

For simplicity, we consider only first-order systems (m = 0) ↓
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ẋi (t) =
1
N

N∑
j=1,j 6=i

φtrue(|xi − xj |)
xj − xi

|xj − xi |
→ ẋ = fφtrue (x(t))

Least squares regression: with Hn = span{ei}n
i=1,

φ̂n = arg min
φ∈Hn

EM(φ) :=
M∑

m=1

|‖ẋm − fφ(xm)‖|2

Choice of Hn & function space of learning?

Inverse problem well-posed/ identifiability?

Consistency and rate of “convergence”?
→ hypothesis testing and model selection
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Learning via nonparametric regression

The dynamical system:

ẋ = fφtrue (x(t))

Data: M-trajectories {xm(t) : t ∈ T }Mm=1
xm(0)

i.i.d∼ µ0 ∈ P(RdN)

T = [0,T ] or {t1, · · · , tL} with ẋ(ti)
Goal: nonparametric inference1 of φtrue

1(1) Bongini, Fornasier, Hansen, Maggioni: Inferring Interaction Rules for mean field equations, M3AS, 2017.
(2) Binev, Cohen, Dahmen, Devore and Temlyakov: Universal Algorithms for learning theory, JMLR 2005.
(3) Cucker, Smale: On the mathematical foundation of learning. Bulletin of AMS, 2001.
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φ̂M,H = arg min
φ∈H

EM(φ) :=
1

ML

L,M∑
l,m=1

‖fφ(X m(tl ))− ˙X m(tl )‖2

EM(φ) is quadratic in φ, and EM(φ) ≥ EM(φtrue) = 0

The minimizer exists for any H = Hn = span{e1, . . . ,en}

Tasks

Choice of Hn & function space of
learning?

Inverse problem well-posed/
identifiability?

Consistency and rate of
“convergence”?

EM(·) E∞(·)

φ̂M,H φ̂∞,H

φtrue

M→∞

??

?M→∞

?dist(H,φtrue)→0
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Review of classical nonparametric regression:

Estimate y = φ(z) : RD → R from data {zi , yi}Mm=1.
{zi , yj} are iid samples;

φ̂n := arg min
f∈Hn

EM(f ) :=
∑M

m=1 ‖yi − f (zi)‖2 → E[Y |Z = z]

Optimal rate: if dist(Hn, φtrue) . n−s and n∗ = (M/log M)
1

2s+1 ,
‖φ̂n∗ − φ‖L2(ρZ )

. M−
s

2s+D

Colloquium, Virginia Tech

Approximation Theory
Suppose � is s- Hölder.

{Hn}n ⇢ L1[0, R]

dim(Hn)  c0n

inf
'2Hn

k'� �k1  c1n
�s

Question
Given Xtraj,M , how to pick up Hn⇤ ?

Sui Tang — Learning dynamics in high dimensional dynamical systems 22/34

2

2(1) F.Cucker and S.Smale. On the mathematical foundations of learning. Bulletin of the AMS, 2002
(2) L.Györfi, M.Kohler, A.Krzyzak, H.Walk, A Distribution-Free Theoryof Nonparametric Regression (Springer 2002).
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Review of classical nonparametric regression:

Estimate y = φ(z) : RD → R from data {zi , yi}Mm=1.
{zi , yj} are iid samples;

φ̂n := arg min
f∈Hn

EM(f ) :=
∑M

m=1 ‖yi − f (zi)‖2

Optimal rate: if dist(Hn, φtrue) . n−s and n∗ = (M/log M)
1

2s+1 ,
‖φ̂n∗ − φ‖L2(ρZ )

. M−
s

2s+D

Our case: learning of kernel φ : R+ → R from data {xm(t)}

ẋi(t) =
1
N

N∑
j=1,j 6=i

φ(|xi − xj |)
xj − xi

|xj − xi |

{rm
ij (t) := |xm

i (t)− xm
j (t)|} not iid

The values of φ(rm
ij (t)) unknown
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Regression measure

Distribution of pairwise-distances ρ : R+ → R

ρT (r) =
1(N
2

)
L

L,N∑
l,i,i ′=1,i<i ′

Eµ0δrii′ (tl )(r)

unknown, estimated by empirical distribution ρM
T

M→∞−−−−→ ρT (LLN)

intrinsic to the dynamics

Regression function space L2(ρT )

the admissible set ⊂ L2(ρT )

H = piecewise polynomials ⊂ L2(ρT )

singular kernels ⊂ L2(ρT )
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Identifiability: a coercivity condition
EM(·) E∞(·)

φ̂M,H φ̂∞,H

φtrue

M→∞

?

?M→∞

?

φ̂M,H = arg min
φ∈H

EM(φ)

E∞(φ̂)−E∞(φtrue) =
1

NT

∫ T

0
Eµ0‖fφ̂−φtrue

(X (t))‖2dt ≥ c‖φ̂− φtrue‖2
L2(ρT )

Coercivity condition. ∃ cT ,H > 0 s.t. for all ϕ ∈ H ⊂ L2(ρT )

1
NT

∫ T

0
Eµ0‖fϕ(x(t))‖2dt = 〈〈ϕ,ϕ〉〉 ≥ cT ,H‖ϕ‖2

L2(ρT )

coercivity: bilinear functional 〈〈ϕ,ψ〉〉 := 1
NT

∫ T
0 Eµ0〈fϕ, fψ〉(x(t))dt

controls condition number of regression matrix
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Consistency of estimator

Theorem (L., Maggioni, Tang, Zhong)

Assume the coercivity condition. Let {Hn} be a sequence of compact
convex subsets of L∞([0,R]) such that infϕ∈Hn ‖ϕ− φtrue‖∞ → 0
as n→∞. Then

lim
n→∞

lim
M→∞

‖φ̂M,Hn − φtrue‖L2(ρT ) = 0, almost surely.

For each n, compactness of {φ̂M,Hn} and coercivity implies that
φ̂M,Hn → φ̂∞,Hn in L2

Increasing Hn and coercivity implies consistency.

In general, truncation to make Hn compact
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Optimal rate of convergence

Theorem (L. Maggioni, Tang, Zhong)
Let {Hn} be a seq. of compact convex subspaces of L∞[0,R] s.t.

dim(Hn) ≤ c0n, and inf
ϕ∈Hn

‖ϕ− φtrue‖∞ ≤ c1n−s.

Assume the coercivity condition. Choose n∗ = (M/log M)
1

2s+1 : then

Eµ0 [‖φ̂T ,M,Hn∗
− φtrue‖L2(ρT )] ≤ C

(
log M

M

) s
2s+1

.

The 2nd condition is about regularity: φ ∈ Cs

Choice of dim(Hn): adaptive to s and M
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Prediction of future evolution

Theorem (L., Maggioni, Tang, Zhong)

Denote by X̂ (t) and X (t) the solutions of the systems with kernels φ̂
and φ respectively, starting from the same initial conditions that are
drawn i.i.d from µ0. Then we have

Eµ0 [ sup
t∈[0,T ]

‖X̂ (t)− X (t)‖2] .
√

N‖φ̂− φtrue‖2
L2(ρT )

,

Follows from Grownwall’s inequality
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Numerical examples

The regression algorithm

EM(ϕ) =
1

LMN

L,M,N∑
l,m,i=1

∥∥∥∥∥ẋ (m)
i (tl )−

N∑
i′=1

1
N
ϕ(rm

i,i′(tl ))rm
i,i′(tl )

∥∥∥∥∥
2

,

Hn := {ϕ =
n∑

p=1

apψp(r) : a = (a1, . . . ,an) ∈ Rn},

EL,M(ϕ) = EL,M(a) =
1
M

M∑
m=1

‖dm −Ψm
L a‖2

RLNd .

1
M

M∑
m=1

Am
L a =

1
M

M∑
m=1

bm
L , rewrite as AMa = bM

can be computed parallelly
Caution: choice of {ψp} affects condi(AM )

18 / 36



Assume the coercivity condition: 〈〈ϕ,ϕ〉〉 ≥ cT ,H‖ϕ‖2
L2(ρT )

.

Proposition (Lower bound on smallest singular value of AM )

Let {ψ1, · · · , ψn} be a basis of Hn s.t.

〈ψp, ψp′〉L2(ρL
T )

= δp,p′ , ‖ψp‖∞ ≤ S0.

Let A∞ =
(
〈〈ψp, ψp′〉〉

)
p,p′ ∈ Rn×n. Then σmin(A∞) ≥ cT ,H .

Moreover, A∞ is the a.s. limit of AM . Therefore, for large M, the
smallest singular value of AM satisfies with a high probability that

σmin(AM) ≥ (1− ε)cT ,H

Choose {ψp} linearly independent in L2(ρT )

Piecewise polynomials: on a partition of support(ρT )

Finite difference ≈ derivatives⇒ an O(∆t) error to estimator
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Implementation
1 Approximate regression measure

I Estimate the ρT with large datasets
I Partition on support(ρT )

2 Construct hypothesis space H:

I choose the degree of piecewise polynomials
I set dimension of H according to sample size

3 Regression:

I Assemble the arrays (in parallel)
I Solve the normal equation
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Examples: Lennard-Jones Dynamics
The Lennard-Jones potential

VLJ(r) = 4ε
((σ

r

)12
−
(σ

r

)6
)
⇒ φ(r)r = V ′LJ(r)

ẋi (t) =
1
N

N∑
j=1,j 6=i

φ(|xi − xj |)(xj − xi )

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2
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time0.010

21 / 36



Examples: Lennard-Jones Dynamics
The Lennard-Jones potential

VLJ(r) = 4ε
((σ

r

)12
−
(σ

r

)6
)
⇒ φ(r)r = V ′LJ(r)
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The Lennard-Jones potential

VLJ(r) = 4ε
((σ

r

)12
−
(σ

r

)6
)
⇒ φ(r)r = V ′LJ(r)

piecewise linear estimator; Gaussian initial conditions.
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Optimal rate

VLJ(r) = 4ε
((σ

r

)12
−
(σ

r

)6
)
⇒ φ(r)r = V ′LJ(r)

VLJ is highly singular, yet we get close to optimal rate (-0.4).

12 13 14 15 16 17 18 19 20 21

log
2
(M)

-10

-9

-8

-7

-6

-5

lo
g

2
(e

rr
o

r)

Learning rate

 errors

 slope -0.36

 optimal decay
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Example: Opinion Dynamics

N = 10, x i ∈ R.

M = 250, µ0 = Unif [0, 10]10

T = [0, 10], 200 discrete instances

H = piecewise constant functions

conditions Xm
0 := Xm(0), Ẋm

0 := Ẋm(0), and �m0 := �m(0)
sampled independently from µX0 , µẊ0 , and µ�

0 respectively.
With Ẍm(tl) approximated by finite di�erence, we construct
estimators similar to those in Eq. (2)

(‚„E , ‚„A) := arg min
ÏE ,ÏAœHv

1
ML

M,Lÿ

m,l=1

||Ẍm(tl) ≠ Fv(Ẋm(tl),�m(tl))

≠ fÏE (Xm(tl)) ≠ fÏA(Xm(tl), Ẋm(tl))||2S ,
[13]

and the interactions acting on the auxiliary variable ›i can be
obtained separately as

‚„› := arg min
„›œH›

1
ML

M,Lÿ

m=1,l=2

||�̇ml ≠ F›(�ml ) ≠ f„› (Xm
l ,�ml )||2S ,

where �̇ml = Ẋm(tl), Xm
l = Xm(tl), �ml = �m(tl), ‚„› =

{„̂›
kkÕ}Kk,kÕ=1, and the state space norm ||·||S is defined similarly

to the first order case. Here we are using a vectorized notation
for ÏE ,ÏA, Hv (a suitable product hypothesis space). In
order to measure performance, for each pair (k, kÕ), we define
a probability measure on R+ ◊ R+

flkk
Õ

T (r, ṙ) = 1
TNkkÕ

⁄ T

t=0
E

ÿ

iœCk,iÕœCkÕ i”=iÕ
”riiÕ (t),ṙiiÕ (t)(r, ṙ)dt ,

and another probability measure on R+ ◊ R+,

flL,kk
Õ

T,r,› (r, ›) = 1
LNkkÕ

Lÿ

l=1

E
ÿ

iœCk,iÕœCkÕ ,i”=iÕ
”riiÕ (tl),›iiÕ (t)(r, ›) ,

where the expectation is with respect to initial conditions
distributed according to µX0 ◊ µẊ0 ◊ µ�

0 , and we let ṙ = ÎṙÎ
(with abuse of notation), ›iiÕ(t) =

--›iÕ(t) ≠ ›i(t)
--, NkkÕ =

NkNkÕ if k ”= kÕ and NkkÕ =
!
Nk
2

"
if k = kÕ (and Nk > 1,

as there is no kernel to learn if Nk = 1). Let flkk
Õ

T,r be the
marginal of flkk

Õ
T with respect to r. We will measure the errors

for „̂EkkÕ(r)r, „̂AkkÕ(r)ṙ and ‚„›
kkÕ(r)› in L2(flkkÕ

T,r), L2(flkkÕ
T ) and

L2(flkkÕ
T,r,›) respectively.

The algorithm to construct the estimator in Eq. (13) gen-
eralizes that for the first order single-type agent systems, and
involves a least squares problem with a structured matrix
with K2 vertical bands indexed by (k, kÕ), accommodating
the estimators for the interaction kernels. Note that such LS
problem takes into account, as it should, the dependencies in
learning the various interaction kernels, all at once.

We note that while of course the second order system may
be written as a first order system in the variables xi and
vi = ẋi; even when F vi © 0 and „Aki,kiÕ © 0, the resulting
equations for (xi, vi) are di�erent from those governing the
first order systems considered above in Eq. (8).

5. Examples

We consider the learning of interaction kernels and the predic-
tion of trajectories for three canonical categories of examples
of self-organized dynamics (see Sec. 3 in the SI for details).
Opinion dynamics. These are first-order ODE systems
with a single type of agent, with bounded, discontinuous,
compactly supported and attraction-only interaction kernels.

0 5 10 15 20

2

4

6

8

10

0 5 10 15 20

2

4

6

8

10

0 5 10 15 20

2

4

6

8

10

0 5 10 15 20

2

4

6

8

10

Fig. 4. Opinion dynamics. Top: Comparison between true and estimated interaction
kernel, together with histograms for flLT and flL,M

T
. The mean and standard deviation

of the relative error for the interaction kernel are 1.6 · 10≠1 ± 2.3 · 10≠3 over
10 independent learning runs. The standard deviation lines (in dash lines) on the
estimated kernel are so small to be barely visible. Bottom: Trajectories X(t) and
‚X(t) obtained with „ and „̂ respectively, for an initial condition in the training data

(top) and an initial condition randomly chosen (bottom). The black dashed vertical line
at t = T divides the “training” interval [0, T ] from the “prediction” interval [T, Tf ]
(which in this case, Tf = 2T ). We achieve small errors in all cases, in particular
predicting number and location of clusters for large time.

They model how the opinions of people influence each other and
how consensus is formed based on di�erent kinds of influence
functions (see (13, 14, 37) and references therein).
Predator-Swarm System. We consider a first-order system
with a single predator and a swarm of preys, with the interac-
tion kernels (prey-prey, predator-prey, prey-predator) similar
to Lennard-Jones kernels (with appropriate signs to model
attractions and repulsions). Di�erent chasing patterns arise
depending on the relative interaction strength of predator-prey
vs. prey-predator interactions. We also consider a second or-
der Predator-Swarm system, with the collective interaction
acting on accelerations, leading to even richer dynamics and
chasing patterns (see e.g. (38–40)).
Phototaxis. This is a second order ODE system with a
single type of agents interacting in an environment, modeling
phototactic bacteria moving towards a far away fixed light
source. The response of the bacteria to the light source is
represented in the auxiliary variable ›i as the excitation level
for each bacteria i (see e.g. (41–43)). Another example which
we do not pursue here is the Vicsek model (44), which fits
perfectly in our model upon choosing ›i = ◊i (◊i: moving
direction of agent i).

In our experiments we report the measure flL,MT estimated
from the training data, our estimator, and similarly in the case
of noisy observations; we measure performance in terms of

Maggioni et al.
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The estimated kernels:
conditions Xm

0 := Xm(0), Ẋm
0 := Ẋm(0), and �m0 := �m(0)

sampled independently from µX0 , µẊ0 , and µ�
0 respectively.

With Ẍm(tl) approximated by finite di�erence, we construct
estimators similar to those in Eq. (2)

(‚„E , ‚„A) := arg min
ÏE ,ÏAœHv

1
ML

M,Lÿ

m,l=1

||Ẍm(tl) ≠ Fv(Ẋm(tl),�m(tl))

≠ fÏE (Xm(tl)) ≠ fÏA(Xm(tl), Ẋm(tl))||2S ,
[13]

and the interactions acting on the auxiliary variable ›i can be
obtained separately as

‚„› := arg min
„›œH›

1
ML

M,Lÿ

m=1,l=2

||�̇ml ≠ F›(�ml ) ≠ f„› (Xm
l ,�ml )||2S ,

where �̇ml = Ẋm(tl), Xm
l = Xm(tl), �ml = �m(tl), ‚„› =

{„̂›
kkÕ}Kk,kÕ=1, and the state space norm ||·||S is defined similarly

to the first order case. Here we are using a vectorized notation
for ÏE ,ÏA, Hv (a suitable product hypothesis space). In
order to measure performance, for each pair (k, kÕ), we define
a probability measure on R+ ◊ R+

flkk
Õ

T (r, ṙ) = 1
TNkkÕ

⁄ T

t=0
E

ÿ

iœCk,iÕœCkÕ i”=iÕ
”riiÕ (t),ṙiiÕ (t)(r, ṙ)dt ,

and another probability measure on R+ ◊ R+,

flL,kk
Õ

T,r,› (r, ›) = 1
LNkkÕ

Lÿ

l=1

E
ÿ

iœCk,iÕœCkÕ ,i”=iÕ
”riiÕ (tl),›iiÕ (t)(r, ›) ,

where the expectation is with respect to initial conditions
distributed according to µX0 ◊ µẊ0 ◊ µ�

0 , and we let ṙ = ÎṙÎ
(with abuse of notation), ›iiÕ(t) =

--›iÕ(t) ≠ ›i(t)
--, NkkÕ =

NkNkÕ if k ”= kÕ and NkkÕ =
!
Nk
2

"
if k = kÕ (and Nk > 1,

as there is no kernel to learn if Nk = 1). Let flkk
Õ

T,r be the
marginal of flkk

Õ
T with respect to r. We will measure the errors

for „̂EkkÕ(r)r, „̂AkkÕ(r)ṙ and ‚„›
kkÕ(r)› in L2(flkkÕ

T,r), L2(flkkÕ
T ) and

L2(flkkÕ
T,r,›) respectively.

The algorithm to construct the estimator in Eq. (13) gen-
eralizes that for the first order single-type agent systems, and
involves a least squares problem with a structured matrix
with K2 vertical bands indexed by (k, kÕ), accommodating
the estimators for the interaction kernels. Note that such LS
problem takes into account, as it should, the dependencies in
learning the various interaction kernels, all at once.

We note that while of course the second order system may
be written as a first order system in the variables xi and
vi = ẋi; even when F vi © 0 and „Aki,kiÕ © 0, the resulting
equations for (xi, vi) are di�erent from those governing the
first order systems considered above in Eq. (8).

5. Examples

We consider the learning of interaction kernels and the predic-
tion of trajectories for three canonical categories of examples
of self-organized dynamics (see Sec. 3 in the SI for details).
Opinion dynamics. These are first-order ODE systems
with a single type of agent, with bounded, discontinuous,
compactly supported and attraction-only interaction kernels.
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Fig. 4. Opinion dynamics. Top: Comparison between true and estimated interaction
kernel, together with histograms for flLT and flL,M

T
. The mean and standard deviation

of the relative error for the interaction kernel are 1.6 · 10≠1 ± 2.3 · 10≠3 over
10 independent learning runs. The standard deviation lines (in dash lines) on the
estimated kernel are so small to be barely visible. Bottom: Trajectories X(t) and
‚X(t) obtained with „ and „̂ respectively, for an initial condition in the training data

(top) and an initial condition randomly chosen (bottom). The black dashed vertical line
at t = T divides the “training” interval [0, T ] from the “prediction” interval [T, Tf ]
(which in this case, Tf = 2T ). We achieve small errors in all cases, in particular
predicting number and location of clusters for large time.

They model how the opinions of people influence each other and
how consensus is formed based on di�erent kinds of influence
functions (see (13, 14, 37) and references therein).
Predator-Swarm System. We consider a first-order system
with a single predator and a swarm of preys, with the interac-
tion kernels (prey-prey, predator-prey, prey-predator) similar
to Lennard-Jones kernels (with appropriate signs to model
attractions and repulsions). Di�erent chasing patterns arise
depending on the relative interaction strength of predator-prey
vs. prey-predator interactions. We also consider a second or-
der Predator-Swarm system, with the collective interaction
acting on accelerations, leading to even richer dynamics and
chasing patterns (see e.g. (38–40)).
Phototaxis. This is a second order ODE system with a
single type of agents interacting in an environment, modeling
phototactic bacteria moving towards a far away fixed light
source. The response of the bacteria to the light source is
represented in the auxiliary variable ›i as the excitation level
for each bacteria i (see e.g. (41–43)). Another example which
we do not pursue here is the Vicsek model (44), which fits
perfectly in our model upon choosing ›i = ◊i (◊i: moving
direction of agent i).

In our experiments we report the measure flL,MT estimated
from the training data, our estimator, and similarly in the case
of noisy observations; we measure performance in terms of
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Example: Opinion Dynamics

N = 10, x i ∈ R.

M = 250, µ0 = Unif [0, 10]10

T = [0, 10], 200 discrete instances

H = piecewise constant functions

conditions Xm
0 := Xm(0), Ẋm

0 := Ẋm(0), and �m0 := �m(0)
sampled independently from µX0 , µẊ0 , and µ�

0 respectively.
With Ẍm(tl) approximated by finite di�erence, we construct
estimators similar to those in Eq. (2)

(‚„E , ‚„A) := arg min
ÏE ,ÏAœHv

1
ML

M,Lÿ

m,l=1

||Ẍm(tl) ≠ Fv(Ẋm(tl),�m(tl))

≠ fÏE (Xm(tl)) ≠ fÏA(Xm(tl), Ẋm(tl))||2S ,
[13]

and the interactions acting on the auxiliary variable ›i can be
obtained separately as

‚„› := arg min
„›œH›

1
ML

M,Lÿ

m=1,l=2

||�̇ml ≠ F›(�ml ) ≠ f„› (Xm
l ,�ml )||2S ,

where �̇ml = Ẋm(tl), Xm
l = Xm(tl), �ml = �m(tl), ‚„› =

{„̂›
kkÕ}Kk,kÕ=1, and the state space norm ||·||S is defined similarly

to the first order case. Here we are using a vectorized notation
for ÏE ,ÏA, Hv (a suitable product hypothesis space). In
order to measure performance, for each pair (k, kÕ), we define
a probability measure on R+ ◊ R+

flkk
Õ

T (r, ṙ) = 1
TNkkÕ

⁄ T

t=0
E

ÿ

iœCk,iÕœCkÕ i”=iÕ
”riiÕ (t),ṙiiÕ (t)(r, ṙ)dt ,

and another probability measure on R+ ◊ R+,

flL,kk
Õ

T,r,› (r, ›) = 1
LNkkÕ

Lÿ

l=1

E
ÿ

iœCk,iÕœCkÕ ,i”=iÕ
”riiÕ (tl),›iiÕ (t)(r, ›) ,

where the expectation is with respect to initial conditions
distributed according to µX0 ◊ µẊ0 ◊ µ�

0 , and we let ṙ = ÎṙÎ
(with abuse of notation), ›iiÕ(t) =

--›iÕ(t) ≠ ›i(t)
--, NkkÕ =

NkNkÕ if k ”= kÕ and NkkÕ =
!
Nk
2

"
if k = kÕ (and Nk > 1,

as there is no kernel to learn if Nk = 1). Let flkk
Õ

T,r be the
marginal of flkk

Õ
T with respect to r. We will measure the errors

for „̂EkkÕ(r)r, „̂AkkÕ(r)ṙ and ‚„›
kkÕ(r)› in L2(flkkÕ

T,r), L2(flkkÕ
T ) and

L2(flkkÕ
T,r,›) respectively.

The algorithm to construct the estimator in Eq. (13) gen-
eralizes that for the first order single-type agent systems, and
involves a least squares problem with a structured matrix
with K2 vertical bands indexed by (k, kÕ), accommodating
the estimators for the interaction kernels. Note that such LS
problem takes into account, as it should, the dependencies in
learning the various interaction kernels, all at once.

We note that while of course the second order system may
be written as a first order system in the variables xi and
vi = ẋi; even when F vi © 0 and „Aki,kiÕ © 0, the resulting
equations for (xi, vi) are di�erent from those governing the
first order systems considered above in Eq. (8).

5. Examples

We consider the learning of interaction kernels and the predic-
tion of trajectories for three canonical categories of examples
of self-organized dynamics (see Sec. 3 in the SI for details).
Opinion dynamics. These are first-order ODE systems
with a single type of agent, with bounded, discontinuous,
compactly supported and attraction-only interaction kernels.
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Fig. 4. Opinion dynamics. Top: Comparison between true and estimated interaction
kernel, together with histograms for flLT and flL,M

T
. The mean and standard deviation

of the relative error for the interaction kernel are 1.6 · 10≠1 ± 2.3 · 10≠3 over
10 independent learning runs. The standard deviation lines (in dash lines) on the
estimated kernel are so small to be barely visible. Bottom: Trajectories X(t) and
‚X(t) obtained with „ and „̂ respectively, for an initial condition in the training data

(top) and an initial condition randomly chosen (bottom). The black dashed vertical line
at t = T divides the “training” interval [0, T ] from the “prediction” interval [T, Tf ]
(which in this case, Tf = 2T ). We achieve small errors in all cases, in particular
predicting number and location of clusters for large time.

They model how the opinions of people influence each other and
how consensus is formed based on di�erent kinds of influence
functions (see (13, 14, 37) and references therein).
Predator-Swarm System. We consider a first-order system
with a single predator and a swarm of preys, with the interac-
tion kernels (prey-prey, predator-prey, prey-predator) similar
to Lennard-Jones kernels (with appropriate signs to model
attractions and repulsions). Di�erent chasing patterns arise
depending on the relative interaction strength of predator-prey
vs. prey-predator interactions. We also consider a second or-
der Predator-Swarm system, with the collective interaction
acting on accelerations, leading to even richer dynamics and
chasing patterns (see e.g. (38–40)).
Phototaxis. This is a second order ODE system with a
single type of agents interacting in an environment, modeling
phototactic bacteria moving towards a far away fixed light
source. The response of the bacteria to the light source is
represented in the auxiliary variable ›i as the excitation level
for each bacteria i (see e.g. (41–43)). Another example which
we do not pursue here is the Vicsek model (44), which fits
perfectly in our model upon choosing ›i = ◊i (◊i: moving
direction of agent i).

In our experiments we report the measure flL,MT estimated
from the training data, our estimator, and similarly in the case
of noisy observations; we measure performance in terms of

Maggioni et al.

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

PNAS | June 3, 2019 | vol. XXX | no. XX | 7

The rate of convergence:

2 3 4 5 6

log
10

M

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(R

e
l 
E

rr
)

Relative Errors
slope=-0.31
optimal decay

29 / 36



Example: 2nd-order Prey-Predator system

D. Trajectory-based Performance Measures. It is important
not only that ‚„ is close to „, but also that the dynamics of the
system governed by ‚„ approximate well the original dynamics.
The error in prediction may be bounded trajectory-wise by a
continuous-time version of the error functional, and bounded
in average by the L2(flT ) error of the estimated kernel (further
evidence of the usefulness of flT ):

Proposition 3.4. Assume ‚„(Î · Î)· œ Lip(Rd), with Lipschitz
constant CLip. Let ‚X(t) and X(t) be the solutions of systems
with kernels ‚„ and „ respectively, started from the same initial
condition. Then for each trajectory

sup
tœ[0,T ]

Î ‚X(t) ≠X(t)Î2 Æ 2Te8T
2C2

Lip

⁄ T

0

..Ẋ(t) ≠ fÏ̂(X(t))
..2
dt ,

and on average w.r.t. the distribution µ0 of initial conditions:

Eµ0 [ sup
tœ[0,T ]

Î ‚X(t) ≠X(t)Î] Æ C
Ô
NÎ„̂(·) · ≠„(·) · ÎL2(flT ) ,

where the measure flT is defined in Eq. (4) and C = C(T,CLip).

4. Extensions: Heterogeneous agent systems, first
and second order

The method proposed extends naturally to a large variety of
interacting agent systems arising in a multitude of applications
(4), including systems with multiple types of agents, driven
by second order equations, and including interactions with
an environment. For detailed discussions of related topics on
self-organized dynamics, we refer the readers to (3, 31–34) and
the recent surveys (35, 36).

A. First Order Heterogeneous Agents Systems. Let the
agents be divided into K disjoint sets {Ck}Kk=1 (“types”), with
di�erent interaction kernels for each ordered pair of types:

ẋi(t) =
Nÿ

iÕ=1

1
NkiÕ

„kikiÕ (riiÕ(t))riiÕ(t) , [8]

where ki is the index of the type of agent i, i.e. i œ Cki ;
NkiÕ is the number of agents in type CkiÕ ; riiÕ = xiÕ ≠ xi and
riiÕ = ÎriiÕ Î; „kkÕ : R+ æ R is the interaction kernel governing
how agents in type CkÕ influence agents in type Ck. As usual
we let X := (xi)Ni=1 œ RdN be the vector describing the state
of the system. We assume that the interaction kernels „kikiÕ ’s
are the only unknown factors in the model; in particular we
know the sets Ck’s (i.e. the type of each agent is known). The
goal is to infer the interaction kernels „kkÕ from observations
{Xm(tl)}L,Ml,m=1 with 0 = t1 < · · · < tl = T and with the initial
conditions Xm(0) = Xm

0 randomly sampled from µ0.
Let f„(Xm) œ RdN to be the vectorization of the right

hand sides of Eq. (8), and „ = („kkÕ)Kk,kÕ=1. Dropping from
the notation of quantities that are assumed known, we rewrite
the equations for the dynamics in Eq. (8) as Ẋm = f„(Xm).
We use an error functional similar to Eq. (2), with a weighted
norm, to define the estimators:

‚„ := arg min
ÏœH

1
ML

M,Lÿ

m=1,l=1

..Ẋm(tl) ≠ fÏ(xm(tl))
..2
S , [9]

where Ï = (ÏkkÕ)Kk,kÕ=1, ‚„ = („̂kkÕ)Kk,kÕ=1 and ÎXÎ2
S :=qN

i=1
1
Nki

ÎxiÎ2. The weighted norm Î·Î2
S is introduced so

that, when di�erent types of agents have significantly di�er-
ent cardinalities (e.g. a large number of preys vs. a single
predator), the error functional will take into suitable consider-
ation the least numerous type. Otherwise only the interaction
kernel of the most numerous type of agents would be accu-
rately learned. Other more general weighting strategies may
be considered, with minimal changes to the algorithm.

The generalization of flLT in Eq. (5) (similarly for flT ) to
the heterogeneous-agent case is the family, indexed by ordered
pairs {(k, kÕ)}k,kÕœ{1,...,K}, of probability measures on R+

flL,kk
Õ

T (r) = 1
LNkkÕ

Lÿ

l=1

EX0≥µ0

ÿ

iœCk,iÕœCkÕ ,i”=iÕ
”riiÕ (tl)(r), [10]

where NkkÕ = NkNkÕ when k ”= kÕ and NkkÕ =
!
Nk
2

"
when

k = kÕ (for Nk > 1, otherwise there is no interaction kernel to
learn). The error of an estimator, „̂kkÕ , will be measured by..„̂kkÕ(·) · ≠„kkÕ(·)·

..
L2(fl

L,kkÕ
T

).
While this case requires learning multiple interaction ker-

nels, it turns out that the learning theory developed for the
single-type agent systems can be generalized, and the estima-
tor in Eq. (9) still achieves optimal rates of convergence, and
a similar control on the error of predicted trajectories can be
obtained.

B. Second order heterogeneous agent systems. Here we fo-
cus on a broad family of second order multi-type agent systems
(not included, even when rewritten as first order systems, in
the family discussed above). We consider systems with K
types of agents:

Y
____]
____[

miẍi = F v
i (ẋi, ›i) +

Nÿ

iÕ=1

1
NkiÕ

!
„EkikiÕ (riiÕ)riiÕ + „AkikiÕ (riiÕ)ṙiiÕ

"

›̇i = F ›
i (›i) +

Nÿ

iÕ=1

1
NkiÕ

„›
kikiÕ

(riiÕ)›iiÕ ,
[11]

for i = 1, . . . , N . Here ki œ {1, . . . ,K} is the type of agent
i, ›i œ R is a variable modeling the agent’s response to the
environment (e.g. food/light source), ›iiÕ = ›iÕ ≠ ›i, and:
mi, Nk mass of agent i and number of agents of type k
Fvi , F ›

i non-collective influences on ẋi and ›i
„EkkÕ , „AkkÕ , „›

kkÕ energy-, alignment- and ›≠type interaction kernels

Note that here each agent is influenced by a weighted sum
of di�erent influences over agents of di�erent types, lead-
ing to a rich family of models (including but not limited to
prey-predator, leader-follower, cars-pedestrian models). Using
vector notation, let f„E (Xm) and f„A(Xm, Ẋm) œ RdN be
the collection of the energy and alignment induced interaction
terms respectively, and Fv(Ẋm,�m)i = F v

i (ẋi, ›i) (similar
setup for F›(�m) and f„› (Xm,�m)) we can rewrite the equa-
tions as:

I
Ẍm = Fv(Ẋm,�m) + f„E (Xm) + f„A(Xm, Ẋm)
�̇m = F›(�m) + f„› (Xm,�m) ,

[12]

where „E = {„EkkÕ}, „A = {„AkkÕ} and „› = {„›
kkÕ}, with

k, kÕ = 1, . . . ,K. We assume that the interaction kernels are
the only unknowns in the model, to be estimated from the
observations {Xm(tl), Ẋm(tl),�m(tl)}L,Ml,m=1, with M initial
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Table S14

[0, T ] [T, Tf ]
meanIC: Training ICs 3.5 · 10≠1 ± 1.2 · 10≠1 7.9 · 10≠1 ± 2.1 · 10≠1

stdIC: Training ICs 6.5 · 10≠1 ± 2.7 · 10≠1 1.2 ± 3.7 · 10≠1

meanIC: Random ICs 3.5 · 10≠1 ± 1.2 · 10≠1 8.0 · 10≠1 ± 2.3 · 10≠1

stdIC: Random ICs 5.8 · 10≠1 ± 1.6 · 10≠1 1.2 ± 3.1 · 10≠1

meanIC: Larger N 2.0 · 10≠1 ± 3.0 · 10≠2 4.6 · 10≠1 ± 1.2 · 10≠1

stdIC: Larger N 1.1 · 10≠1 ± 1.4 · 10≠2 2.5 · 10≠1 ± 5.6 · 10≠2

(PS2nd) Trajectory Errors

Fig. S11. (PS2nd) Interaction kernels learned with Unif.([≠‡,‡]) multiplicative noise, for ‡ = 0.1 in the observed positions and velocities, with parameters as in Table S12.
The estimated kernels are minimally affected, mostly in regions with small flLT near 0.
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Fig. S12. (PS2) Relative error, in log10 scale, of „̂E
k,kÕ (with (k, kÕ) increasing lexicographically from top-left to bottom-right) as a function of L and M . The error decreases

both in L and M , in fact roughly in the product ML (we impute the lack of monotonicity of some of the entries in the plots to the variance in the results). The fourth plot is an
identically 0 absolute error, because both „E2,2 and its estimator are identically 0, since there is only one predator. Note M ∫ 1 seems to be needed for accurate inference of
the interaction kernels, regardless of how large L is: the trajectories explored for small M do not explore enough configuration to enable estimation, suggesting that the limit
M æ +Œ considered in this work is of fundamental importance, at least for non-ergodic systems.
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Table S12

d N1 N2 M L T

2 9 1 150 300 10
n1,1 n1,2 = n2,1 n2,2 deg(ÂEkkÕ ) Preys µX0 Pred. µX0
1620 540 180 [1, 1; 1, 0] Unif. on [0.1, 1]2 Unif. on [0, 0.08]2

(PS2nd) System Parameters

Note that the two dynamics, predator-prey 1st order and predator-prey 2nd order, use a similar set of interaction kernels,
however, the resulting dynamics are significantly di�erent from each other, as demonstrated in both the distribution of pairwise
distance data and in the trajectories.

In the middle column of Fig. 5 in the main text, we show the comparison of the learned interaction kernels versus the true
interaction kernels (with flL,kk

Õ
T,r and flL,M,kkÕ

T,r shown in the background), and the comparison of true and learned trajectories
over two di�erent sets of initial conditions. Similar observations to those for the 1st order system apply here. Errors of the
estimators in the L2(flL,kk

Õ
T ) norms are reported in Table S13. The test on trajectories (bottom middle portion (4 sub-figures)

of Fig. 5 in the main text) shows visually the accuracy of the predicted trajectories, quantified by the numerical report in
Table S14. We also compare in Fig. S10 the true and learned trajectories over a corresponding system with Nnew agents. We
consider the e�ect of adding noise to observations, with results visualized in Figure S11. Figures S9 and S12 show the behavior
of the error of the estimator (for systems (PS1st) and (PS2nd) respectively) as both L and M are increased.

Fig. S10. (PS2nd) TrajectoriesX(t) and ‚X(t) obtained with „ and „̂ respectively, for two randomly chosen initial conditions and evolved for Nnew agents (with the same
setup as in the case of N agents). Trajectory errors are shown in Table S14.

Table S13

Rel. Err. for „̂E1,1 1.5 · 10≠1 ± 5.0 · 10≠2

Rel. Err. for „̂E1,2 1.3 · 10≠1 ± 1.1 · 10≠2

Rel. Err. for „̂E2,1 7.1 · 10≠1 ± 3.8 · 10≠1

Abs. Err. for „̂E2,2 0
(PS2nd) Estimator Errors

Fei Lu, Ming Zhong, Sui Tang, Mauro Maggioni
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Example: model selection

Order selection
Learned as 1st order Learned as 2nd order

1st order system 0.01 ± 0.002 1.6 ± 1.1
2nd order system 1.7 ± 0.3 0.2 ± 0.06

Interaction type selection
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Summary and open problems

Learning theory
extended the classical
regression theory
a coercivity condition for
identifiability

ET ,M(·) ET ,∞(·)

φ̂T ,M,H φ̂T ,∞,H

φ

optimalH

M→∞

dist(H,φ)→0

Theory guided regression algorithms
Selection of H (basis functions & dimension)
Measurement of error of estimators
Optimal learning rate
Model selection
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Ongoing work

Different type of systems:
I 1st- and 2nd-order
I Multiple type of agents (leader-follower, predator-prey)
I Stochastic systems

Coercivity condition

Adaptive basis functions

Partial and noisy observations; Mean field equations

Real data applications:
learning cell-dynamics
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Ongoing work: The coercivity condition

〈〈ϕ,ϕ〉〉 ≥ cT
H‖ϕ‖2L2(ρT )

,H compact

Exchangeability, g(r) = φ(r)r m Ut = x1(t)− x2(t),Vt = x1(t)− x3(t)∫ T

0
E
[
g(|Ut |)g(|Vt |)

〈Ut ,Vt〉
|Ut ||Vt |

]
︸ ︷︷ ︸∫ +

R
∫ +
R g(r)g(s)Kt (r ,s)drds

dt > 0

Proposition (Li-Lu19)

Coercivity condition holds for systems with Φ(r) = rβ, β ∈ [1,2].

positiveness of integral operator↔ K(·, ·) :=
∫ T

0 Kt (·, ·)dt

I Müntz type theorem: span{r2ne−r}∞n=1 dense in L2(R+).

Conjecture: true for general systems
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Ongoing work: Adaptive basis functions {ψp}

AMa = bM , with E[AM ] =
(

〈〈ψp, ψp′〉〉︸ ︷︷ ︸∫ +
R

∫ +
R ψp(r)ψp′ (s)K(r ,s)drds

)
p,p′∈1,...,n

Current: piecewise polynomials + uniform partition supp(ρ̄)

Adaptive strategies:
Adaptive partition based on ρ̄
Eigenfunctions of integral kernel K

I K̂ from data: noisy
I goal: smooth eigenfunctions
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