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@ Motivation and problem statement
© Learning via nonparametric regression
© Numerical examples

© Ongoing work and open problems



Q: What is the law of interaction between particles/agents?

Popkin. Nature(2016)

AT
Voter model (wiki)
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Q: What is the law of interaction between parhcles/agents"

mx;(t) = —vx(t +— Z K(xi, ),
/ 1A
@ Newton’s law of gravitation:

K(x,y) = G

@ Molecular fluid: K(x,y) = Vx[®(|x — y|)]
Lennard-Jones potential: ®(r) = & — %.

r=Ix=yl

Popkin. Nature(2016) @ flocking birds/school of fish
X—y

K(xy) = olx ~ ¥ =,

@ opinion/voter models, bacteria/cells ...2

4(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-
sek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dy-
namics Enhances Consensus. 2014 ...

Voter maodel (W|k|)



An inference problem:

Infer the rule of interaction in the system

N
. : 1 .
mii(t) = —vxi()+ | Z .K(x,- —x), i=1,--,N,x(t) € RY
J=1#
from observations of trajectories.
@ Xx; is the position of the i-th particle/agent
e Data: many independent trajectories {x/(t) : t € T}j"i1
@ Goal: infer ¢ : R+ — Rin
X
K(x) = =Vo(|x|) = —cb(IXI)m

For simplicity, we consider only first-order systems (m=0) |



Z ¢true |xi — Xj

/ 1,j#i
Least squares regression: with #, = span{e;}]_;,

‘ | - X= f¢true (X(t))

b = arg min Em(0) me (x| P

$EHn

@ Choice of H, & function space of learning?
@ Inverse problem well-posed/ identifiability?

@ Consistency and rate of “convergence”?
— hypothesis testing and model selection
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@ Motivation and problem statement
© Learning via nonparametric regression:
» Function space of regression
» Identifiability: a coercivity condition
» Consistency and rate of convergence
© Numerical examples
© Ongoing work and open problems



Learning via nonparametric regression

The dynamical system:
).( = f¢true (X( t))
Data: M-trajectories {x™(t):t € T}M_
o x™(0) "% g € P(RIV)
@ 7 =1[0,T]or{ty, -t} with x(&)
Goal: nonparametric inference’ of ¢yue

1(1) Bongini, Fornasier, Hansen, Maggioni: Inferring Interaction Rules for mean field equations, M3AS, 2017.
(2) Binev, Cohen, Dahmen, Devore and Temlyakov: Universal Algorithms for learning theory, JMLR 2005.
(3) Cucker, Smale: On the mathematical foundation of learning. Bulletin of AMS, 2001.



LM
~ 1 ’ .
- in& ::—E:met—X”’tz
(;bM,'H ar(ﬁger’?-lm M(¢) ML || ¢( ( /)) ( /)”

I,m=1
@ Eu(¢) is quadratic in ¢, and Ey(¢) > Em(biue) = 0
@ The minimizer exists for any H = H, = span{ei,...,en}
Tasks
_ | Eu() "= ()

@ Choice of H, & function space of

learning? l l
@ Inverse problem well-posed/ $M,H Moy gb\oo,?-t

. e
identifiability 7 X l?dist(?—[,@me)—m

@ Consistency and rate of #
“convergence”? true
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Review of classical nonparametric regression:
Estimate y = ¢(2) : RP — R from data {z;, y;}M_,.
@ {z,y;} are iid samples;
© dn:= argmin Ey(f) = T Iy = (@) > E[VIZ =]

Hn
@ Optimal rate: if dist(H,, ¢rue) < N~ and n, = (M/log M)z |
[on. — @lliz(py) S M 2550

Underfitting Balanced Overfitting

2(1) F.Cucker and S.Smale. On the mathematical foundations of learning. Bulletin of the AMS, 2002
(2) L.Gyorfi, M.Kohler, A.Krzyzak, H.Walk, A Distribution-Free Theoryof Nonparametric Regression (Springer 2002).
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Review of classical nonparametric regression:
Estimate y = ¢(2) : RP — R from data {z, y;}M_,.
@ {z.y;} are iid samples;

o by = arg min &y () := My — f(z)12
EHn

@ Optimal rate: if dist(H,, dwue) < N~ and n, = (M/log M) =+ |
[on, — @llizy) S M 20

Our case: learning of kernel ¢ : R* — R from data {x™(t)}

. 1 N i — X
i) = 0 ol —x)—

=1 X = il

o {r(t) := x/"(t) — x"(t)]} not id

@ The values of ¢(r;"(t)) unknown
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Regression measure

Distribution of pairwise-distances p : R; — R

] LN
pr(r) = ML Z Ey1007, (1) (1)
(2) Liyi'=1,i<i’

@ unknown, estimated by empirical distribution p¥ 2= 57 (LLN)
@ intrinsic to the dynamics

Regression function space L?(pr)

@ the admissible set C L2(p7)
@ H = piecewise polynomials C L?(p71)

@ singular kernels C L3(p7)
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- o - Em() "= ()
Identifiability: a coercivity condition l l

2 ~ Moo
$m,3 = argmin Em(d) M T boo

peH \ I

PDtrue

R 1 /7 R
Eoo(D)—Eoc(Ptrue) = NT/O Epiol1f5_ 5, (X(O) 20t > ¢l|d — el
Coercivity condition. 3 cr 3, > 0s.t. forall p € # C L?(pr)

o [ Bt IRt = (.00 = oranlel

@ coercivity: bilinear functional (e, 1)) := 7 fo o (o ) (X(£)) ot

@ controls condition number of regression matrix
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Consistency of estimator

Theorem (L., Maggioni, Tang, Zhong)

Assume the coercivity condition. Let {H,} be a sequence of compact
convex subsets of L>([0, R]) such that inf,cu, [l — dtuelloc — O
asn— oo. Then

n—oo

lim lim || ém3, — uvelliz(oy) = 0, almost surely.
M— oo

@ For each n, compactness of {(EM,M} and coercivity implies that
M3, = Poom, IN L2
@ Increasing #H, and coercivity implies consistency.

@ In general, truncation to make H,, compact
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Optimal rate of convergence

Theorem (L. Maggioni, Tang, Zhong)
Let {H,} be a seq. of compact convex subspaces of L*°[0, R] s.t.

dim(H,) < con, and inf ||¢ — druelloo < C1N75.
pEHn
Assume the coercivity condition. Choose n. = (M/log M) =5 : then

o log M\ %1
EM[H%,M,HH*—¢tme||L2(pT)]gc< : ) .

@ The 2nd condition is about regularity: ¢ € C®
@ Choice of dim(#,): adaptive to s and M
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Prediction of future evolution

Theorem (L., Maggioni, Tang, Zhong)

Denote by X(t) and X(t) the solutions of the systems with kernels ¢
and ¢ respectively, starting from the same initial conditions that are
drawn i.i.d from py. Then we have

Byl up, I1X(1) = X(1)[P] < VNII$ — biwell ey,
€10,

@ Follows from Grownwall’s inequality
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@ Motivation and problem statement

© Learning via nonparametric regression:
» A regression measure and function space
» Learnability: a coercivity condition
» Consistency and rate of convergence

© Numerical examples
» A general algorithm

» Lennard-Jones model
» Opinion dynamics and multiple-agent systems
© Ongoing work and open problems
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Numerical examples

The regression algorithm

L,M,N N
ORI FROED SR CHDAD
I,m,i=1 ir—1
Hn={p= Zapwp (a1,...,an) € R"},
M
Emle) = ELm(a Z [d™ — wal P .
m:

<

— Z b, rewrite as Aya = by

m=1 m=1

(1=
S
3

@ can be computed parallelly
@ Caution: choice of {1} affects condi(Ay)
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Assume the coercivity condition: {(, ¢)) > CTYHHaprQ(pT).

Proposition (Lower bound on smallest singular value of Ay)
Let {41, -+ ,vn} be a basis of H, s.t.

(¥, Yp ) 12(ot) = Opprs [¥plloc < So-

Let A, = («qpp,wp,)))pp, € R™". Then omin(Ax) > CT 3 -
Moreover, A, is the a.s. limit of Ay. Therefore, for large M, the
smallest singular value of Ay satisfies with a high probability that

Umin(AM) > (1 - 6)CT,’H

@ Choose {¢} linearly independent in L2(p7)
@ Piecewise polynomials: on a partition of support(p7)

@ Finite difference =~ derivatives = an O(At) error to estimator
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Implementation
@ Approximate regression measure

» Estimate the pr with large datasets
» Partition on support(pr)

@ Construct hypothesis space H:

» choose the degree of piecewise polynomials
» set dimension of H according to sample size

© Regression:

» Assemble the arrays (in parallel)
» Solve the normal equation
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Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

vt =4<((9)" = (9)°) = otor= v

r r

J=1,0F#0
time0.010

2 :

15¢
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Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

vt =4<((9)" = (9)°) = otor= v

r r

J=1,0F#0
time0.210
2 ; ; ,
15+
gl o
O
0.5 o
O
or o
05F ©
o
Ak
15F
,2 L
2 15 1 0.5 0 0.5 1 15 2
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Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

vt =4<((9)" = (9)°) = otor= v

r r

J=1,J#i
time0.410
2 ;
15+
1t
o
0.5 o
°© o
0 )
o
05 ©
Ak
15F
2 .
2 15 1 0.5 0 0.5 1 15 2
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Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

vt =4<((9)" = (9)°) = otor= v

r r

J=1,0F#0
time0.610
2 T
15}
1k
O
05 o)
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24/36



Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

vt =4<((9)" = (9)°) = otor= v

r r

J=1,J#i
time0.810
2 ;
15+
1t
o
0.5
© o
o
0
© o
o
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The Lennard-Jones potential

g g

vt =4 ((9) = (2)7) = otr = viotn)

r r

@ piecewise linear estimator; Gaussian initial conditions.

Many short time trajectories learning x10"
-0.3
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-0.15

-0.1

-0.05

L L e A L 0

2 3 4 5
r (pairwise distance)
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Optimal rate
Viu(r) = 4e ((0)12 - <0>6) = (r)r= V()

r r
@ Vy, is highly singular, yet we get close to optimal rate (-0.4).

Learning rate

-5 :
® errors
L — slope -0.36
- 61 -- optimal decay ||
e
S 7t
N
=)
o
8t
9 S 4
-10 I I I I I I I I
12 13 14 15 16 17 18 19 20 21

log,,(M)
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Example: Opinion Dynamics

N =10, x; € R. 10
8
M = 250, ug = Unif[0, 10]"0 .
»
T = [0, 10], 200 discrete instances 4
H = piecewise constant functions 2
0 5 10 15 20
The estimated kernels:
x10' 10"
0.1 —¢
.-\ B 0.12
0.08 v
Pr

0.02 Li 0.04
0 - ;

0 1 2 3 4 5 6 7 8 9
r (pairwise distance)
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Example: Opinion Dynamics

1
N=10,x €R. Z
M = 250, ug = Unif[0, 10]"0 6
T = [0,10], 200 discrete instances 4
‘H = piecewise constant functions 2
0 5 10 15 20

The rate of convergence:

-0.5

. erlative Errors
—slope=-0.31
--optimal decay §

Iogm(ReI Err)
&
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%

Coord. 2 of (1)

K
\

2 3 3 2 3 4

1 0 1 40 1 2
Coord. 1 of xi(t) Coord. 1 of %(t)
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Example: model selection

@ Order selection

| Learned as 15 order | Learned as 2™ order
15T order system 0.01 +0.002 1.6 £1.1

29 order system 1.7 £0.3 0.2 +£0.06
@ Interaction type selection
x10° x10"  x107 x107t
43 6 3
O - S
4 —
0.1 2 2 i)l 2
E 0 rw—««»‘;
= 1 2t _g
0.3 4
0 0
2 4 6 8 10 2 4 6 8 10
r (pairwise distance) r (pairwise distance)
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Summary and open problems

Erm(:) — Er.0(")

Learning theory
@ extended the classical l l
regression theory ¢T M M=o ¢T o0,
@ a coercivity condition for %,
d )
identifiability M l Ist(#,4)=0

Theory guided regression algorithms
@ Selection of H (basis functions & dimension)
@ Measurement of error of estimators
@ Optimal learning rate
@ Model selection
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Ongoing work

@ Different type of systems:

» 1st- and 2nd-order
» Multiple type of agents (leader-follower, predator-prey)
» Stochastic systems

@ Coercivity condition
@ Adaptive basis functions

@ Partial and noisy observations; Mean field equations

@ Real data applications:
learning cell-dynamics
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Ongoing work: The coercivity condition
(e, 0 = chllellZ,,), H compact

Exchangeability, g(r) = ¢(r)r { Ur = x (1) — xa(t), Ve = x1(t) — xa(t)

T <Ul‘a >
/ E[guutr)g(\vnw”w dt > 0

fR fR g(s)K¢(r,s)drds

Proposition (Li-Lu19)

Coercivity condition holds for systems with &(r) = r?, 3 € [1,2].

@ positiveness of integral operator <> K(- fo Ke(-,-)dt
» Muntz type theorem: span{rz”e—’};,“;1 dense in L3(R*).

@ Conjecture: true for general systems
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Ongoing work: Adaptive basis functions {p}

Aua = by, with E[Ay] = ( (¥p, Ypr) )p,p’e1,...,n
N——
Jo J& ¥p(r)ey (s)K(r,s)drds

Current: piecewise polynomials + uniform partition supp(p)

Adaptive strategies: o e
@ Adaptive partition based on p 2;22[ w0
@ Eigenfunctions of integral kernel K | e

» K from data: noisy ::Zl“
» goal: smooth eigenfunctions 1 2 s a s °

 (pairwise distance)
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