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Motivation: weather/climate prediction

Schematic for Global
i del

High-dimensional Discrete partial |__

x'=f(x)+U(x.y), Observeonly  Forecast
Y =9(x,y). {x(nh)})_4. x(1),t > Nh.

@ Complex full systems:

ECMWEF: 16 km horizontal

grid — 109 freedoms

» can only afford to resolve x’ = f(x)
» y: unresolved variables (subgrid-scales)

@ Discrete partial observations: missing i.c.
@ Ensemble prediction: need many simulations

The Lorenz 96 system
Wilks 2005
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Motivation: weather/climate prediction

Schematic for Global
il iinsiibintng High-dimensional + Discrete partial |__ >
- Full system data

x'=f(x)+U(x.y), Observeonly  Forecast
Y =9(x,y). {x(nh)})_4. x(1),t > Nh.

@ Complex full systems:

ECMWEF: 16 km horizontal

grid — 109 freedoms

» can only afford to resolve x’ = f(x)
» y: unresolved variables (subgrid-scales)

@ Discrete partial observations: missing i.c.
@ Ensemble prediction: need many simulations

— Develop a reduced model that

@ quantifies the model error U(x, y)

The Lorenz 96 system @ captures key statistical + dynamical properties
Wilks 2005
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@ Stochastic model reduction
(A first step: reduction from simulated data)
» Discrete-time stochastic parametrization (NARMA)

» Application to chaotic dynamical systems

@ Data assimilation with the reduced model
(An intermediate step: NARMA + noisy data — state estimation and
prediction)



Stochastic model reduction

X' =1(x) + Ulx,y), y' = g(x.y).
Data {x(nh)}N_,

Memory effects (Mori, Zwanzig, Chorin, Ghil, Majda, Wilks, . ..)

@ Takens Theorem: delay embedding
@ Mori-Zwanzig formalism: “generalized Langevin equation”

ax t .
— = f(x +/th—s,sds+W,
a= S0+ [ K- s).s)ds + W
Markov term noise
memory

Goal: a non-Markovian stochastic reduced system for x



Differential system or discrete-time system?

X' =f(X)+ Z(t,w) Xni1 = Xn+ Bu(Xpn) + Z
informative, neat messy
Inference’ likelihood
Discretization? error correction by data

"Talay, Mattingly, Stuart, Higham, Milstein, Tretyakov, ...
2Brockwell, Sarensen, Pokern, Wiberg, Samson,. ..



Discrete-time stochastic parametrization

NARMA(p, g)
Xn = Xn—1 —+ Rh(Xn—1) =+ Zna
Zn = <I>n +&n,
q
1 i=1 =1
J=1i= J
Auto-Regression Moving Average

@ Ry(Xh—1) from a numerical scheme for x” =~ f(x)
@ &, depends on the past
Tasks:
Structure derivation: terms and orders (p, r, s, q) in ¢,
— physical laws, asymptotic behavior, discretization
Parameter estimation: &;, b; j, ¢;, and o
— conditional likelihood methods



Application to chaotic dynamics systems

Example I: the Lorenz 96 system
A chaotic dynamical system (a simplified atmospheric model)

d 1
g% = X1 (Xert = Xe—2) = X +10 — 5 > s
i

d 1
atVei = S Wit Whjo1 = Yicjea) = Yiej + X,

where x € R'8, y € R30, ¢ = 0.5 — no scale separation.

Find a reduced system for x ¢ R'8 based on

> Data {x(nh)}N_,

> %Xk A2 Xk—1 (Xk+1 — Xk—2) — Xk + 10.

Wilks 2005



m NARMA:

n n

% — X_1—|—F1’h( n—1)+zn_zn_ n_'_gn7

" = a+ZZb,,(x”/ +ch,,(x"f +Zd§ K

j=1 I=1

1, h=0.01;

=2,dy=3;q=
p=2 0 q {o, h=0.05.
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m NARMA:

n n

% — X_1—|—Rh( n—1)+zn_zn_ n_'_gn7

o7 = a+ZZb,,(x”’ —|—ZC]Rh X"y +Zd§ .

j=1 I=1

1, h=0.01;
=2,0dy=3; 9= ’ '
P x q { 0, h=0.05.
m Polynomial autoregression (POLYAR)3
d
g = X (X1 — Xk—2) — Xk + 10 + .7
U = P(x)+nk, withdn(t) = ¢ne(t) + dBk(t).

where P(x) = Y% ajx. Optimal dy = 5.
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Long-term statistics
Empirical probability density function (PDF)
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Prediction (h = 0.05)

A typical ensemble forecast:

tor POLYAR

o 05 1 15 2 25 3 35 4 45 5
time

@ forecast trajectories in cyan

@ true trajectory in blue
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Prediction (h = 0.05)

A typical ensemble forecast:

POLYAR

o 05 1 15 2 25 3 35 4
time

@ forecast trajectories in cyan

@ true trajectory in blue

RAMSE

RMSE of many forecasts:

Forecast time:
POLYAR: T ~1.25

NARMA: T=25
(Full model: T ~ 2.5

“Best” forecast time achieved! )
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the Kuramoto-Sivashinsky equation

Example Il

Vt + VXX + VXXXX + VVX — 0 9 t > 0, X E [0, 27TV],periOdiC

Spatio-temporally chaotic
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solved with 128 Fourier modes

DA
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Example II: the Kuramoto-Sivashinsky equation

Vt + VXX + VXXXX + VVX — 0 9 t > 0, X E [0, 27TI/],pef'iOdiC
Spatio-temporally chaotic

1000

Problem setting: v = 3.43

@ Observing only 5 Fourier modes
@ to predict their evolution

Reduced models:

@ the truncated system not accurate
@ Discrete-time sto. paramtrization?:
derive structure from inertial manifold

— an effective NARMA model
4Lu-Lin-Chorin17

solved with 128 Fourier modes

DAy
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Key point 1: long-term statistics <+ Large time behavior of PDE#*

Inertial manifolds M: - finite-dimensional, positively invariant manifolds
- exponentially attracts all trajectories

Let v = u + w. Rewrite the KSE:
Oon M, w=1y(u)
@:AquPf(qu w) du
i PAu + Pf(u + ¢(u)).

aw
i Aw + Qf(u + w)
Approximate inertial manifolds (AIMs): approximate w = (u)

@ W rx0=waAQf(u+w),
@ Fixed point: 1o = 0; thn 1 = AT QF(U + n).

Key point 2: parametrize the AIM

@ AIM with 5 modes: unstable
(An accurate AIM requires m = dim(u) to be large!)

@ use the terms; estimate their coefficients from data
— an effective NARMA model
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NARMA with AIMs®
The AlMs hint at how the high modes depend on the low modes:

k| >K: Wrgip=(A"0f ), =h~o > Ul

1<l [k=1I<K
n [ .
o uj,K 1<j<K;
/i . non .
I kurul,, K<j<2K.

A discrete-time stochastic system: (p =2,g=1)

Ul = ul + hRI(U™) + hzp,

z7 = & + &7,

P K q
DL(0k) = i + Z by juy ! + Z Cr U7y kU i + Ck,(K+1)H£(Un) + Z dyj&p .
=0 = =
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Long-term statistics:

|

bt Data Data
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Prediction

A typical forecast:

0.5¢1

the truncated systel
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Forecast time:

the truncated system: T =~ 5

15¢

10t

RMSE of many forecasts:
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the truncated system

40 80
lead time

the NARMA system: T =~ 50
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Part Il: Data assimilation with the reduced model

X' = f(x) + U(x. )

Y =9(xy)
Noisy data: x(nh)+ W(n

), n=1,2,...

Data assimilation:
@ state estimation and prediction
@ EnKF: ensemble from forward model + Kalman update

Assume: we can simulate the full system offline
— use the solution to quantify model error U(x, y) by

@ tuning inflation and localization of EnKF
@ deriving a NARMA reduced model
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The Lorenz 96 system

. Estimate and predict x based on
> Noisy Data z(n) = x(nh) + W(n)

> Forward models
@ L96x: %Xk Xk 1 (Xk+1 — kag) — Xk + 10
(account for the model error by IL in EnKF )

@ NARMA (account for the model error by
parametrization in the forward model)

Wilks 2005
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Relative error of state estimation
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> NARMA
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std of observation noise

Relative error for different observation noises.
(ensemble size: =1000 for L96x and NARMA; =10 for the full model)
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RMSE of state prediction
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time
RMSE of 10* ensemble forecasts.
(ensemble size: =1000 for L96x and NARMA; =10 for the full model)

Summary: The NARMA modeling improves performance of DA.
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Summary and ongoing work

X = 100 + Uxy), ¥'= gxy) Data-driven stochastic model reduction by
Data {X(nh)}ﬁ:' Y= 9% Discrete-time stochastic parametrization

@ effective non-Markovian reduced model
(NARMA)
» captures key statistical-dynamical features
» makes medium-range forecasting

Inference T
@ Improves performance of Data assimilation

4 Open and ongoing work: if noisy data only?
@ DA with non-Markovian models

“Xn+1 =Xn+ Rh(Xn) +2z,” . . .
for prediction @ inference for hidden non-Markovian models

Thank you!
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