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Abstract

Performance benchmarking is a crucial component of time series classi-
fication (TSC) algorithm design, and a fast-growing number of datasets
have been established for empirical benchmarking. However, the empir-
ical benchmarks are costly and do not guarantee statistical optimality.
This study proposes to benchmark the optimality of TSC algorithms
in distinguishing diffusion processes by the likelihood ratio test (LRT).
The LRT is optimal in the sense of the Neyman-Pearson lemma: it
has the smallest false positive rate among classifiers with a controlled
level of false negative rate. The LRT requires the likelihood ratio of
the time series to be computable. The diffusion processes from stochas-
tic differential equations provide such time series and are flexible in
design for generating linear or nonlinear time series. We demonstrate
the benchmarking with three scalable state-of-the-art TSC algorithms:
random forest, ResNet, and ROCKET. Test results show that they
can achieve LRT optimality for univariate time series and multivari-
ate Gaussian processes. However, these model-agnostic algorithms are
suboptimal in classifying nonlinear multivariate time series from high-
dimensional stochastic interacting particle systems. Additionally, the
LRT benchmark provides tools to analyze the dependence of classi-
fication accuracy on the time length, dimension, temporal sampling
frequency, and randomness of the time series. Thus, the LRT with
diffusion processes can systematically and efficiently benchmark the
optimality of TSC algorithms and may guide their future improvements.
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1 Introduction

Time series classification (TSC) is one of the central tasks in time series anal-
ysis and streaming data processing. Recent years have seen an explosion in the
collection of time series data and a surge of TSC algorithms (see e.g.,[1–11]).
In particular, the recent reviews [5, 7, 9] have thoroughly compared dozens
of TSC algorithms on hundreds of public bakeoff datasets, providing valuable
understanding of the algorithms and the TSC tasks.

However, an optimality benchmark remains missing. The need for an opti-
mality benchmark grows along with the fast-growing numbers of datasets and
algorithms. Due to a lack of understanding of the complexity of the bake-
off datasets, current empirical benchmarks, which compare all methods using
bakeoff datasets, have skyrocketing computational and data storage cost. Yet,
even a top performer is not cleared to be optimal.

An ideal optimality benchmark would have three characteristics: (1) It has
a theory-guaranteed optimal reference to provide a direct diagnosis for any
TSC method. Notably, a method reaching the benchmark for a type of time
series is guaranteed optimal for classifying the underlying stochastic process,
and efforts can focus on improving the efficiency and scalability of the method.
(2) It is flexible in design to reflect the complexity of time series data in appli-
cations, ranging from univariate to multivariate time series, from Gaussian
processes to highly nonlinear non-Gaussian processes, and from small to large
randomness. (3) It is computationally efficient and scalable.

We propose to benchmark the optimality of binary TSC algorithms in dis-
tinguishing diffusion processes by the likelihood ratio test (LRT). The LRT is
an optimal classifier because it is uniformly most powerful by the Neyman-
Pearson lemma [12]; that is, it has the lowest false positive rate among
classifiers with a controlled level of false negative rate. The LRT can be com-
puted for time series sampled from Markov processes with known distributions.
Meanwhile, diffusion processes from stochastic differential equations (SDEs)
provide a large variety of such Markov processes, and these processes are
flexible to reflect the specific features of real-world applications [13, 14]. Addi-
tionally, the benchmarking test is computationally efficient and scalable. The
LRT does not require training and has a negligible computation cost. Further-
more, the simulation of SDEs can systematically generate large datasets with
different lengths, nonlinearities, and levels of randomness. Therefore, LRTs for
diffusion processes provide a reference of optimality for the performance (such
as the ROC curves and accuracy) of all TSC algorithms.

We demonstrate the LRT benchmarking using three state-of-the-art TSC
algorithms: random forest [1], ROCKET [8], and ResNet [4], in five representa-
tive classes of diffusion processes. The five processes are Brownian motions with
constant drifts, 1-dimensional nonlinear diffusions with different potentials, 1-
dimensional linear and nonlinear diffusions, multivariate Ornstein-Uhlenbeck
processes, and high-dimensional interacting particle systems. Test results (see,
e.g., Figure 5-6) show that the three algorithms achieve optimality in the case
of Brownian motions with constant drifts, and they are near optimal for the
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nonlinear univariate time series and multivariate Gaussian processes. However,
these three model-agnostic algorithms are significantly less accurate than the
model-aware LRT in the case of high-dimensional nonlinear non-gaussian pro-
cesses. Thus, it may be helpful to incorporate model information in developing
next-generation TSC algorithms.

Additionally, the LRT benchmarks show that the optimal accuracy of TSC
depends on the time series’s length, dimension, and temporal sampling fre-
quency. Analysis and numerical tests show that the accuracy increases with
either time length or dimension, which enlarges the effective sample size.
However, the classification rates are not sensitive to the frequency of the obser-
vations. Thus, in data collection, it is more helpful to collect data for a longer
time rather than at a higher temporal resolution.

The rest of the paper is organized as follows. In Section 2, we cast the TSC
as the learning of a function that maps a time series to a binary output so that
a TSC algorithm can be viewed as a hypothesis testing method. In particular,
we point out that the likelihood ratio test (LRT) is a uniformly most powerful
test by the Neyman-Pearson Lemma. Additionally, we show the computation
of the likelihood ratio for diffusion processes. Section 3 analytically computes
the LRT for two Gaussian processes. The analysis shows the dependence of the
classification accuracy on the time series’s dimension, length, and frequency.
Section 4 describes three examples of nonlinear diffusion processes and spec-
ifies the data generation for benchmarking tests. These examples showcase
the design of benchmarking tests. We present in Section 5 the test results of
benchmarking three scalable TSC algorithms: the random forest, ResNet, and
ROCKET. Finally, the Appendix briefly reviews the Girsanov theorem and
hypothesis testing.

2 Time series classification and distinguishing diffusions

We recast binary time series classification as a hypothesis testing problem,
so that the likelihood ratio test (LRT) provides an optimal classifier by the
Neyman-Pearson Lemma. On the other hand, diffusion processes provide a
large variety of time series whose LRT can be computed in a scalable fashion.
Thus, we propose to benchmark the optimality of TSC classifiers by LRT in
distinguishing diffusions.

2.1 TSC as a function learning problem

In the lens of statistical learning, a binary TSC algorithm learns the prob-
abilities that the time series belongs to two classes from training data
[15, 16].

Let the data be the time series (either univariate or multivariate) and their
labels,

Data: {x(m), y(m)}Mm=1, x(m) ∈ Rd×(L+1), y(m) ∈ {0, 1},

where for each m, x(m) = x
(m)
t0:tL = (xt1 , . . . , xtL)(m) is a sample path of a

stochastic process X = Xt0:tL with t0 < t1 < . . . < tL denoting time indices.
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Table 1: Confusion matrix of the classifier with {θ0} being positive.

Decision Rates/ Probability of errors
Truth \Decision Accept θ0 Reject θ0
θ0 (Positive) TP FN TPR = 1− α0

k FNR =α0
k = E[F (x, k) | θ0)]

θ1 (Negative) FP TN FPR = 1− α1
k TNR =α1

k = E[F (x, k) | θ1)]

* FN is also called type I error and FP is called type II error. The true positive rate (TPR)
is 1− α0

k and the false positive rate (FPR) is 1− α1
k.

Here y(m) has a label 1 if the times series x(m) is in class θ1; otherwise, its
label is 0 if the time series is in class θ0. We denote the two classes by {θ0, θ1},
which will be used as parameters for the time series models.

A TSC algorithm learns a function with a parameter β from data,

fβ(x) = z, x ∈ Rd(L+1), z ∈ [0, 1], (1)

such that the value fβ(x) approximates the probability of x being in class θ1,
i.e., P(θ = θ1 | X = x). This function leads to a classifier for any threshold
k ∈ (0, 1):

F (x, k) = 1Rk(x), where Rk = {x : fβ(x) > k}, (2)

where Rk is called the acceptance region to classify the time series x as in class
θ1 (equivalently, the rejection region for the class θ0).

The confusion matrix of the binary classifier (2) with θ0 as positive is shown
in Table 1. For a given threshold k, we have a false negative (FN) prediction if
F (x, k) = 1 while x is in class θ0, and we have a false positive (FP) prediction
if F (x, k) = 0 while x is in class θ1. The definitions of true positive (TP) and
true negative (TN) are similar. The false negative rates (FNR) and the true
negative rates (TNR) rates are the probabilities

FNR(k) = α0
k = E[F (x, k) | θ0)] = P(Rk | θ0) ≈ FN

TP + FN
,

TNR(k) = α1
k = E[F (x, k) | θ1)] = P(Rk | θ1) ≈ TN

TN + FP
,

(3)

where the empirical approximations are based on the number of counts.
Two popular metrics evaluating the performance of the classifier are the

Receiver operating characteristic (ROC) curve and accuracy. The ROC curve
is (1−α0

k, 1−α1
k)k∈(0,1), the curve of True Positive Rate (TPR, y-axis) versus

False Positive Rate (FPR, x-axis), both parametrized by the threshold k (see
e.g., [17] for an introduction). The ROC curve allows the user to define the
threshold and measure the quality of a classifier by the area under the curve
(AUC). A rule of thumb is that the larger is the AUC, the better is the classifier.
The accuracy is defined by:

Accuracy(k) =
1− α0

k + α1
k

2
≈ TP + TN

TP + TN + FP + FN
,
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where the approximate equality becomes an equality when the sample sizes
in the two classes are the same. The maximal accuracy is independent of the
threshold:

ACC∗ = max
0≤k≤1

Accuracy(k) , (4)

We will use AUC and the maximal accuracy to access the classifiers,
because they are independent of a specific threshold. There are many other
metrics to fit the goal of a specific field, i.e., choosing a threshold k to increase
the true positive rate (TPR) (aka sensitivity, power, or recall) 1 − α0

k or to
control the false positive rate (FPR) 1 − α1

k (aka specificity), or a balance
balancing these needs [15].

Sampling errors in training and testing.

Sampling errors are present in the training and the testing data, thus they
affect the accuracy of the classifier. The accuracy of the function learned in a
classifier can be analyzed through mathematical and statistical learning the-
ory (see e.g., [15, 16, 18]), and non-asymptotic error bounds are available to
quantify the dependence on the data size based on concentration inequalities
[19, 20]. The sampling error in the testing stage, on the other hand, can be
easily analyzed: the empirical approximation of the rates in (3) have a sam-
pling error of order O( 1√

m
) with m being the number of test samples, as the

next lemma shows (its proof is in Appendix A.2).

Lemma 1 (Sampling error in FNR/TNR) For each classifier in (2), the sampling
errors in the empirical approximations of the FNR and TNR rates in (3) are of

order 1√
m
σk,i with σk,i =

√
αik(1− αik) for i = 0, 1, where m is the number

samples in the test stage. Specifically, let {xj}mj=1 be the test samples, and let

α̂ik,m = 1
m

∑m
j=1 F (xj , k) conditional on θi. Then, α̂ik,m converges in distribution to

N (0, σ2
k,i) as m→∞, and P(|α̂ik,m − α

i
k| > ε) ≤ 2e−

mε2

2 for any ε > 0 and m > 0.

However, the learning theory does not provide empirical optimality criteria
for the performance of the classifier. The likelihood ratio test in the next section
fills the gap.

2.2 Hypothesis testing and the likelihood ratio test

The hypothesis testing methods construct the classifier function in a statistical
inference approach (see [21, Chapter 8] and Section A.3 for a brief review). In
particular, the Neyman-Pearson lemma provides a powerful tool for analyzing
the optimality of a binary classifier: it shows that the likelihood ratio test is a
uniformly most powerful test in the class of tests with the same level (see [21,
Chapter 8] and Section A.3 for a brief review).

In hypothesis testing, we set the null hypothesis to be H0 : θ = θ0 and the
alternative hypothesis to be H1 : θ = θ1, and we select a rejection region Rk
with a threshold k to reject θ0. Then, the classifier rejects the null hypothesis
H0 if the time series is in the rejection region Rk. In other words, we get a
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false native (FN) if we mistakenly reject H0 while the truth is θ0, and we get
a true negative (TN) if we correctly reject H0 when the truth is θ1. The false
negative rate (FNR) and true negative rate (TNR) are the probabilities in
(3). The major task in a hypothesis test is to select the rejection region Rk,
particularly, to select Rk with a tunable threshold k.

The likelihood ratio test (LRT) is a general hypothesis testing method that
is as widely applicable as maximum likelihood estimation. It determines the
rejection region by statistics derived from the likelihood ratio. The commonly-
used statistics is the log-likelihood ratio

l(x | θ1, θ0) = log
p(x | θ1)

p(x | θ0)

of the time series data x. From this statistics, we can define a function approx-
imating the probability of x being in class θ1, which is a counterpart of
fβ(x) in (1): f(x) = 1

el(x|θ1,θ0)+1
. Then, the classifier function for LRT is

F (x, k) = 1Rk(x) with the rejection region defined by

RLRT

k = {x : l(x | θ1, θ0) > ck}, ck = log
k

1− k
, (5)

for each threshold k ∈ (0, 1).
The Neyman-Pearson lemma shows that the LRT is optimal in the sense

that it has the smallest false positive rate among classifiers with a controlled
level of false negative rate:

Theorem 2 (Neyman-Pearson Lemma) The LRT is a uniformly most powerful clas-
sifier. Specifically, let x be a sample from one of two distributions with a likelihood
ratio l(x | θ1, θ0) and assume that P({x : l(x | θ1, θ0) = k}) = 0. Then, the test with
rejection region RLRTk defined in (5) is uniformly most powerful. That is, it has a
false positive rate no larger than any other test with a measurable rejection region R
such that P(R | θ0) ≤ P(RLRTk | θ0), i.e.,

1− P(R | θ1) ≥ 1− P(RLRTk | θ1), ∀R s.t. P(R | θ0) ≤ P(RLRTk | θ0).

As a result, the LRT provides an ideal tool to analyze the optimality of TSC
algorithms. The ROC curve of the LRT classifier provides an upper bound for
the ROC curve of any TSC classifier. Similarly, the LRT classifier’s accuracy
provides an upper bound for other classifiers.

The LRT classifier can be readily applied to time series with a computable
likelihood ratio, and there is no training stage. When the time series is sampled
from a Markov process, the transition densities determine the likelihood ratio.
Suppose that for each θi, the transition probability of the Markov process has
a density function p(xtl+1

| xtl , θi) for each l. Then, the probability density
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function of a data path xt0:tL conditional on θi is

p(xt0:tL | θi) =

L−1∏
l=0

p(xtl+1
| xtl , θi),

and the log-likelihood ratio of the path is

l(xt0:tL | θ1, θ0) = log
p(xt0:tL | θ1)

p(xt0:tL | θ0)
=

L−1∑
l=0

log
p(xtl+1

| xtl , θ1)

p(xtl+1
| xtl , θ0)

. (6)

However, the transition probabilities and the likelihood ratio are unavail-
able for most time series, except for a few simple examples such as Gaussian
processes and linear models (see Section 3). In particular, to benchmark the
performance of TSC algorithms, it is desirable to have nonlinear time series
datasets with varying length, temporal sampling frequency, and dimension.
The diffusions defined by stochastic different equations provide a large class
of such Markov processes.

2.3 Distinguishing diffusions

Diffusion processes provide a large class of time series whose likelihood ratio
can be accurately computed. An Itô diffusion is defined by a stochastic
differential equation

dXt = bθ(Xt)dt+ σ(Xt)dBt, (7)

where Bt is a standard Rd-valued Brownian motion. Here for simplicity, we
assume that both the diffusion coefficient σ : Rd → Rd×d and the drift bθ :
Rd → Rd with parameter θ are Lipschitz, and the diffusion satisfies the uniform
elliptic condition

∑
1≤i,j≤d cicjσkiσkj(x) ≥ γ

∑
i c

2
i with γ > 0 for all x and

ci ∈ R. Beyond such diffusions, we can also consider Itô processes with b and
σ being general stochastic processes satisfying suitable integrability conditions
[14].

The likelihood ratio of a sample path xt0:tL of the diffusion Xt0:tL sat-
isfying (7) can be computed by numerical approximation of the transition
probabilities. In particular, when the temporal sampling frequency is high, i.e.,
maxl{∆tl = tl+1 − tl} is small, the Euler-Maruyama scheme

∆Xtl = Xtl+1
−Xtl ≈ bθi(Xtl)∆tl + σ(Xtl)∆Wl

yields an accurate approximation of the transition probability

p̂(Xl+1 | Xl, θi) ∝ e−
1

2∆t‖∆Xtl−bθi (Xtl )∆tl)‖
2
Σ ,
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where Σ(x) = σσ>(x) ∈ Rd×d and ‖z‖2Σ = z>Σ−1z for any z ∈ Rd. Using it
in (6), we obtain an approximate likelihood ratio:

l̂(Xt0:tL | θ1, θ0)

=

L−1∑
l=0

(
[bθ1 − bθ0 ](Xtl)

>Σ(Ys)
−1∆Xtl −

1

2
[‖bθ1‖2Σ − ‖bθ0‖2Σ](Xtl)∆tl

)
.

(8)

As the temporal sampling frequency increases, i.e., maxl{tl+1 − tl} → 0, the
above likelihood ratio converges to the likelihood ratio of the continuous path
X[0,T ]. The limit ratio is the Radon-Nikodym derivative between the two dis-
tributions of the path, as characterized by the Girsanov theorem (see Section
A.1):

l(X[0,T ] | θ1, θ0)

=

∫ T

0

[bθ1 − bθ0 ](Ys)
>Σ(Ys)

−1dYs −
1

2

∫ T

0

[‖bθ1‖2Σ − ‖bθ0‖2Σ](Xt)dt.
(9)

There are three advantages to benchmarking TSC algorithms by diffusions.
First, the LRT of the diffusion processes provides the theoretical optimal rates,
which can be used to detect overfitting when training TSC classifiers. Second,
the diffusions provide a large variety of testing time series data, whose length,
sampling frequency, dimension, and nonlinearity can vary as needed. Third,
the likelihood ratio between diffusion processes can be efficiently computed by
numerical approximation as in (8).

3 Examples with analytical likelihood ratios

The likelihood ratio can be computed analytically for Brownian motions with
constant drifts and the Ornstein-Uhlenbeck (OU) processes. In particular,
these two examples offer insights into how the classification accuracy depends
on the temporal sampling frequency, length of paths, the randomness, and the
dimension of the time series data.

3.1 Brownian motions with constant drifts

Let (Xt, t ≥ 0) be an Rd-valued Brownian motion with a constant drift:

dXt = θdt+ σdBt, ⇔ Xt = X0 + θt+ σBt, (10)

where θ ∈ {θ0, θ1} ⊂ Rd and the process (Bt, t ≥ 0) is the standard Brownian
motion starting at 0. Then, the exact log-likelihood ratio in (6) for a given
sample path Xt0:tL is

l(Xt0:tL | θ1, θ0) = σ−2

[
(θ1 − θ0)>(XtL −Xt0)− 1

2
(|θ1|2 − |θ0|2)(tL − t0)

]
.
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Note that XtL −Xt0 = θ(tL− t0) +σ(BtL −Bt0) for each θ. Thus, conditional
on the hypotheses θ = θ0 and θ = θ1, the likelihood ratios have distributions

Hypothesis θ = θ0 : l(Xt0:tL | θ1, θ0) ∼ −ml + vlZ,

Hypothesis θ = θ1 : l(Xt0:tL | θ1, θ0) ∼ ml + vlZ,

where Z is a standard Gaussian random variable and

ml =
1

2
|θ1 − θ0|2(tL − t0), vl = σ|θ1 − θ0|

√
tL − t0.

Let the rejection region be Rk = {Xt0:tL : l(Xt0:tL | θ1, θ0) > ck} with ck =
log k

1−k as defined in (5). Then, the false negative rate (FNR) and the true
negative rate (TNR) of the LRT are

FNR(k) = α0
k = P(xt0:tL ∈ Rk | θ0) = P(Z > ckv

−1
l +mlv

−1
l )

TNR(k) = α1
k = P(xt0:tL ∈ Rk | θ1) = P(Z > ckv

−1
l −mlv

−1
l ).

Then, the accuracy 1
2 (1 − α0

k + α1
k) is ACCk = 1

2 +
1
2P
(
−mlv

−1
l < Z − ckv−1

l < mlv
−1
l

)
. Since Z is centered Gaussian, the

threshold maximizing the accuracy is k∗ = arg max
k∈(0,1)

(ACCk) = 0. As a result,

the maximal accuracy is

ACC∗ =
1

2
+

1

2
P
(
−mlv

−1
l < Z < mlv

−1
l

)
=

1

2
+

1

2
P
(
− 1

2σ
|θ1 − θ0|

√
(tL − t0) < Z <

1

2σ
|θ1 − θ0|

√
(tL − t0)

)
.

The above FNR and TNR rates and the maximal accuracy depend on
three factors: the path length tL − t0, the scale of the noise σ (which affects
the variance of the time series), and the distance |θ1 − θ0| which depends on
the dimension d. As either

√
tL − t0, |θ1 − θ0|, or σ−1 increases, the maximal

accuracy increases. For example, when θ0 = a0[1, ..., 1]>, and θ1 = a1[1, ..., 1]>,
|θ1 − θ0| = d1/2, and the maximal accuracy is

ACCk∗ = 1− P(|Z| ≥ 1

2σ
|a1 − a0|

√
d(tL − t0)).

These rates and the maximal accuracy do not depend on the temporal sam-
pling frequency of the time series because the likelihood ratio is exact. However,
the temporal sampling frequency will affect the accuracy when the likelihood
ratio is approximated numerically as in (8), particularly for nonlinear time
series; see the numerical examples in Section 5.
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3.2 Ornstein-Uhlenbeck processes

Consider two Rd-valued OU processes with parameters θ ∈ {θ0, θ1} ⊂ R:

dXt = θXtdt+ σdBt ⇔ Xt+∆t = eθ∆tXt + σ

∫ t+∆t

t

eθ(t+∆t−r)dBr (11)

for each t > 0, where (Bt, t ≥ 0) is an Rd-valued standard Brownian motion
and σ > 0 is a constant. Then, conditional on Xt and θi, the random variable

Xt+∆t has a distribution N
(
Xte

θi∆t, σ
2

2θi

(
1− e2θi∆t

)
Id

)
, and the transition

probability density of this Markov process is

p(xt+∆t | xt, θi) = (2πσ2
i,∆t)

−d/2 exp

(
− 1

σ2
i,∆t

‖xt+∆t − e2θi∆tyt‖2
)

with σ2
i,∆t = σ2

2θi

(
1− e2θi∆t

)
. Let Xt0:tL be a discrete path with tl = l∆t for

0 ≤ l ≤ L. By the Markov property, the logarithm probability density of Xt0:tL

conditional on θi is

log p(Xt0:tL | θi) = C − dL

2
log(σ2

i,∆t)−
1

2σ2
i,∆t

L−1∑
l=0

‖Xtl+1
− eθi∆tXtl‖2,

where C is a constant. Thus, the log-likelihood ratio in (6) is

l(Xt0:tL | θ1, θ0) =
dL

2
log

(
σ2

0,∆t

σ2
1,∆t

)

+
1

2

L−1∑
l=0

(
‖Xtl+1

− eθ0∆tXtl‖2

σ2
0,∆t

−
‖Xtl+1

− eθ1∆tXtl‖2

σ2
1,∆t

)
.

Let the rejection region be Rk = {Xt0:tL : l(Xt0:tL | θ1, θ0) > ck}. Note that
conditional on θ0, Nl := 1

σ0,∆t

(
Xtl+1

− eθ0∆tXtl

)
has a distribution N (0, Id)

for each l, and Xtl+1
= eθ0∆tXtl+σ0,∆tNl. Then, with Yl = (eθ1∆t−eθ0∆t)Xtl+

σ0,∆tNl, the false positive rate (FNR) is

α0
k =P (l(Xt0:tL | θ1, θ0) > ck | θ0)

=P

(
L−1∑
l=0

[
‖Nl‖2 − σ−2

1,∆t‖Yl‖
2
]
> 2ck − dL log

(
σ2

0,∆t

σ2
1,∆t

))
,
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with Nl ∼ N (0, Id). Similarly, denoting Y ′l = (eθ0∆t− eθ1∆t)Xtl + σ1,∆tNl, we
can compute the true negative rate (TNR)

α1
k = P

(
L−1∑
l=0

[
σ−2

0,∆t‖Y
′
l ‖2 − ‖Nl‖2

]
> 2ck − dL log

(
σ2

0,∆t

σ2
1,∆t

))
.

The optimal threshold k = arg max
k

1
2 (1−α0

k+α1
k) depends on the various fac-

tors of the time series, so is the maximal accuracy. The numerical examples in
Section 5 shows that the maximal accuracy increases as either d or L increases.

4 Benchmark design: example diffusions

We demonstrate the construction of diffusions for TSC benchmarking with
three representative examples. In each example, the procedure is straightfor-
ward: first, we construct pairs of diffusions through varying the drifts. Then,
we generate data from these diffusions, and compute the statistics of LRT,
which will be used as a reference for the performance of the state-of-the-art
machine learning TSC algorithms in the next section.

4.1 Diffusions with different drifts

Nonlinear diffusions can be constructed by varying the drifts {bθi}i=0,1:

dXt = bθi(Xt) dt+ σ(Xt)dBt, bθi(Xt) =

J∑
j=1

θi,jφj(Xt), (12)

where Xt ∈ Rd, θi = (θi,1, . . . , θi,J) ∈ RJ are the parameters, {φj} are pre-
specified basis functions, and (Bt, t ≥ 0) is the standard Brownian motion
in Rd. Here the diffusion coefficient σ(Xt) the same for the two diffusions,
representing either a multiplicative noise (when it depends on the state) or
an additive noise (when it is a constant). To test the optimality of the TSC
algorithms, we consider three pairs of nonlinear diffusions: gradient systems
with different potentials, SDEs with linear and nonlinear drifts, and high-
dimensional interacting particle systems with different interaction kernels.

Example 3 (Different potentials) Consider two gradient systems with different
potentials: a double-well potential Vθ0(x) = 1

2 (x2−1)2 and a single flat well-potential

Vθ1(x) = 1
4x

4:
dXt = −∇Vθi(Xt)dt+ dBt.

Writing them in the parametric form Vθi(X) =
∑4
j=0 θi,jx

j with θi = (θi,1, . . . , θi,4),

we have θ0 = 1
4 (1, 0,−2, 0, 1) and θ1 = (0, 0, 0, 0, 1

4 ).

The double-well potential is a widely-used prototype model for systems
with metastable states [13]. These two potentials are visually different, see
Figure 1 (left). Each potential is confining and leads to an ergodic process
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Fig. 1: Different potentials in Example 3 and a few sample paths.

with a stationary distribution. Thus, long sample paths that explore the full
landscape of the potentials can distinguish the diffusions from the empirical
densities. However, the short sample paths look similar and are difficult to
distinguish, as shown in Figure 1 (right).

Fig. 2: Linear v.s. nonlinear drifts in Example 4 and a few typical sample
paths.

Example 4 (Linear v.s. nonlinear drifts) Consider two 1D Itô processes

dXt = bθ(t,Xt)dt+XtdBt

with linear and nonlinear drifts bθ0(t, x) = −πx + sin(πt) and bθ1(t, x) = −0.1x +
cos(πx), which can be written as bθi(t, x) = θi,1x+ θi,2 cos(πx)) + θi,3 sin(πt)) with
θ0 = (−π, 0, 1) and θ1 = (−0.1, 1, 0).

The two drift functions are clearly different, since bθ0(t, x) is linear in x and
the other is nonlinear in x. Their sample paths are also visually different: the
sample paths of bθ0 are smoother than those of bθ1 ’s (they decay faster); see
Figure 2. Thus, we expect that all TSC algorithms can achieve a high accuracy.

Example 5 (Interacting particles) Consider a system withN interacting agents with

Xj
t ∈ Rd1 denoting the position or opinion the j-th agent at time t. Suppose that

the agents interact with each other according to the following stochastic differential
equation:

dXj
t =

1

N

N∑
j=1

φθ(‖X
j
t −X

i
t‖)(Xj

t −X
i
t) + σdBjt ,

where φθ : R+ → R is the interaction kernel, {Bjt , j = 1, . . . , N} are independent
standard Brownian motions, and σ > 0 is a scalar for the strength of the stochastic
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force. We will consider two types of interaction kernels (see Figure 3 (left))

φθ0(r) =


0.2, r ∈ [0,

√
2),

2, r ∈ [
√

2, 2),

0, r ∈ [2,∞).

φθ1(r) =


2, r ∈ [0,

√
2),

0.2, r ∈ [
√

2, 2),

0, r ∈ [2,∞).

This system leads to high-dimensional data, with Xt = (X1
t , . . . , X

N
t ) ∈ Rd with

d = d1N . We will consider d1 = 2 and σ = 1 with N varying to change the dimension
of the system.

Fig. 3: Interaction kernels in Example 5 and sample paths of the 1st dimension
of an agent.

Such interacting particle systems have been increasingly studied because of
their wide-range of applications in biology, engineering and social science (see
e.g.,[22–25]). The difference between the two kernels is the strength of inter-
action between “far” and “close” neighbors: the kernel φθ1 makes the close
neighbors interact stronger than those far away, whereas the kernel φθ0 makes
the far neighbors interact stronger than those nearby. Then, the dynamics of
the two systems are different, and it is shown in [24] that the more heterophil-
ious kernel φθ0 enhances consensus when there is no stochastic force (i.e., the
systems is deterministic). As a result, it is relatively easy to distinguish the
two diffusions when the stochastic force is small. On the other hand, when the
stochastic force is relatively large (e.g., σ = 1), the sample paths of the agents
in the two systems are similar (Figure 3 (right)), making the classification a
difficult task.

4.2 Data generation and the LRT benchmarks

The simulated diffusion processes allow us to test the dependence of classifica-
tion performance on three parameters: path length in time tL, the dimension
d of the state, and temporal sampling frequency (by varying the time gap
∆t). We test each of the three parameters with four values using two diffusion
models, thus in total we generate 24 datasets in 6 cases with these parameters
specified in Table 2.

In each dataset, the training data consists of M = 2000 sample trajectories

{X(m)
t0:tL}

M
m=1 of the pair of Rd-valued diffusions with θ ∈ {θ0, θ1}, 1000 paths

for each of the pair. Here the time instances are tl = l∆t, and these data
paths are downsampled from the solutions of the SDEs simulated by the Euler-
Maruyama scheme with a fine time step δ = 0.01. For example, the path with
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Table 2: Settings of the time series data in numerical tests.

Model d L tL, ∆t
a) Constant drifts 1 {10, 20, 40, 80} {1, 2, 4, 8}, 0.1
b) Different potentials 1 {20, 40, 80, 160} {2, 4, 8, 16}, 0.1
c) OU processes {1, 2, 4, 8} 20 2 , 0.1
d) Interacting particles {6, 12, 24, 48} 20 2, 0.1
e) Linear v.s. nonlinear 1 {5, 10, 20, 40} 1, 0.1× {2, 1, 0.5, 0.25}
f) Interacting particles 24 {10, 20, 40, 80} 4, 0.1× {4, 2, 1, 0.5}

∗ The models “Constant drifts” and “OU processes” are defined in Equations (10) and (11), and

the models “Different potentials”, “Interacting particles” and “Linear v.s. nonlinear” are defined

in Examples 3–5.

∆t = 0.1 makes an observation every 10 time steps from the fine simulated

solution. The initial conditions {X(m)
t0 }

M
m=1 are sampled from the standard

normal distribution in Rd. Each sample path is augmented with its time grid
t0 : tL with t0 = 0.

For each dataset, we obtain two types of LRT benchmarks by computing
the LRT in two ways: one using the fine paths and the other using the time
series dataset, both compute the likelihood ratio using the Euler-Maruyama
approximation in (8). Since there is no need of training, each classifier makes
prediction directly on the whole dataset of M paths, and returns a single ROC
curve, AUC and ACC∗, which will be used as references.

The LRT classifier using the fine solution is called “LRT hidden truth”, and
it provides the optimal classification rates by the Neyman–Person lemma (see
Theorem 2). The other LRT classifier using the training data is called “LRT
numerical”. It does not use the hidden fine path, but it uses the diffusion model
information that are not used by the TSC algorithms. It has a relatively large
numerical error when the SDE is nonlinear, particularly when the observation
time interval ∆t is much larger than the simulation time step δ. Thus, it
provides a lower baseline for the TSC algorithms. The two LRT benchmarks
are the same when the time series are samples of a Gaussian process from a
linear SDE, e.g., the cases of Brownian motions with constant drifts and OU
processes.

4.3 Discussions on benchmark design

The LRT benchmark design has two main components: selection of the diffu-
sion processes and generation of simulated data. In addition to the examples
in Table 2, there is a large variety of diffusion processes from stochastic differ-
ential equations in the form of (12), such as gradient systems and stochastic
Hamiltonian systems [13, 14]. The two diffusions should have the same dif-
fusion coefficient, so that the likelihood ratio can be computed based on the
Girsanov theorem.

To generate simulated data, we recommend using the Euler-Maruyama
scheme so that the likelihood ratio of the fine trajectory is exact. The time
series data are downsampled from the fine trajectories. It is helpful to compute
two LRT benchmarks, one using the fine trajectories and the other using the
downsampled data, to provide an optimality benchmark and a lower baseline
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benchmark. In particular, the optimality benchmark can detect the overfitting
of a TSC algorithm in the training stage.

Four parameters can be tuned to adjust the theoretical classification accu-
racy: the time length of paths, the dimension, the temporal sampling frequency,
and the strength of the driving noise (as suggested by the analysis in Section
3). The time length of paths and the dimension affect the effective sample size
and hence the classification rates. The temporal sampling frequency affects
the LRT baseline but it may have a limited effect on the model-agnostic TSC
algorithms. At last, a large noise dims the signal from the drifts, thus lowering
the accuracy of classification.

5 Benchmarking random forest, ROCKET and ResNet

5.1 Random forest, ROCKET, and ResNet

We benchmark three scalable TSC methods: random forest [1], ROCKET [8],
and ResNet [4]. They have been shown to be state-of-the-art in recent review
papers [5, 7, 9]. In particular, the most recent review [9] compares 11 multi-
variate time series classifiers that are top-performers in [5, 7], including both
non-deep learning methods (including ROCKET and HIVE-COTE (Hierarchi-
cal Vote Collective Of Transformation-based Ensembles) [3]) and deep learning
methods (including ResNet and InceptionTime [10]), using 26 UEA archive
datasets [6]. The recommended method is ROCKET due to its high overall
accuracy and remarkably fast training time.

Random Forest.

The random forest (RF) is an ensemble learning technique that combines a
large number of decision trees, and it is applicable to both classification and
regression. The original RF described by [1] is a classifier consisting of a col-
lection of tree-structured classifiers {f(x, βi)}nTi=1 with independent identically
distributed parameters βi and each tree casts a unit vote for the input x to be
in a class. These votes lead to a function fβ(x) = 1

nT

∑nT
1=1 f(x, βi) approxi-

mating the probability of x being in the class (i.e., the probability P(θ = θ1 | x)
of x in the class θ1 in our notation in Section 2.1). The classifier function with
a threshold k is F (x, k) as in (2). It is user-friendly with only a few parameters
easy to tune to achieve robust performance, and its performance is compara-
ble to other classifiers such as discriminate analysis, support vector machine
and neural networks [26, 27].

We use the default HalvingRandomSearchCV strategy in scikit-learn [28]
to search for parameter values in the ranges listed below.

# of trees max depth max features min SS bootstrap
RF {10 : 100} {3,None} {1 : 11} {2 : 11} {True,False} ,

where “min SS” represents minimal samples split, and the quality of a split
is measured by the Gini index Note that number of trees is medium so as to
have a comparable computational cost with other methods.



16 Benchmarking Optimality of TSC algorithms

ResNet.

The deep residual network (ResNet) for time series classification [4] is a net-
work with three consecutive blocks, each comprised of three convolutional
layers, followed by a global average pooling layer and a final dense layer with
softmax activation function. The major characteristic is that the three con-
secutive blocks are connected by residual “shortcut” connections, enabling the
flow of the gradient directly through them, thus reducing the vanishing gradi-
ent effect [29]. It outperforms other deep learning time series classifiers in [7],
especially for univariate datasets [4].

We maintain all hyper-parameter settings from [7].
Structure layers activate normalize residue dropout
ResNet 9+2 ReLU batch between blocks none .

There are nine convolution layers in the three blocks, each with the ReLU
activation function that is preceded by a batch normalization operation. The
number of filters in each convolution layer is 64 in the first block; while the
number is 128 for the second and third blocks. In each residual block, the kernel
size (or the length of the filter) is set to 8, 5 and 3 respectively for the first,
second and third convolution. The optimization settings is also similar to [7]:

Training optimizer rlr epochs batch learning rate weight decay
ResNet Adam yes 150 16 0.001 0.0 ,

where “ rlr” means that the learning rate is reduced by a half if the model’s
training loss has not improved for 5 consecutive epochs with a minimum learn-
ing rate set to 0.0001. Here we set the epochs to 150 to have a computational
cost comparable with other methods while maintaining accuracy.

ROCKET.

The ROCKET (Random Convolutional Kernel Transform) [8] is the current
state-of-the-art multivariate time series classifier [9]. It uses random transfor-
mations followed by a linear classifier (ridge regression or logistic regression).
In the transformation part, a large number of random convolution kernels are
applied to each time series, each kernel producing a feature map. From each
of these feature maps, two features are extracted: the maximal value and the
proportion of positive value (ppv). Thus, each random kernel extracts two fea-
tures from each time series. The linear classifier then makes classification based
on these features.

We keep the default setting for ROCKET in the sktime reposItôry 1, and
we use the ridge regression (the parameter regularization strength α is searched
by the build-in function RidgeCV). The randomness comes from the kernel’s
parameters: length, weights, bias, dilation, and padding:

Kernel length weight dilation padding or not stride
ROCKET {7, 9, 11} N (0, 1) b2xc equal probability 1.

1https://github.com/alan-turing-institute/sktime/blob/master/sktime/transformers/
series as features/rocket.py.

https://github.com/alan-turing-institute/sktime/blob/master/sktime/transformers/series_as_features/rocket.py.
https://github.com/alan-turing-institute/sktime/blob/master/sktime/transformers/series_as_features/rocket.py.
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Here x ∼ N (0, A) with A = log2
linput−1
lkernel−1 , where linput and lkernel are the

lengths of the time series and the kernel. The number of kernels is set to 10000,
resulting in 20000 features for each time series.

5.2 ROC curves in a typical test

We compare the performance of these TSC algorithms with the LRT bench-
marks in three statistics: the ROC curve in a typical test, the box-and-whisker
plots of AUC (area under the ROC curve) and the optimal accuracy (denoted
by ACC∗) in 40 different runs. In each run, we train the algorithms using ran-
domly sampled 3/4 of the data paths and use the rest 1/4 of the data for
prediction test. Thus, each algorithm is trained using Mtraining = 3

4M = 1500
sample paths and the rates in prediction are computed using 1

4M = 500 sam-
ple paths. By Lemma 1, each prediction rate has a standard deviation at the
scale of 0.5√

500
= 0.02. Thus, two algorithms perform similarly if the difference

between their rates are within the sampling error of 0.04 (in two standard
deviations).

Fig. 4: ROC curves in a typical test in each of the 6 cases (each using the first
of the settings in Table 2). The three algorithms achieve the optimal LRT in
Case (a), and they are in-between the two LRT benchmarks in Cases (b,e).
They are suboptimal in comparison with the “LRT numerical” in Cases (c,f)
and they have unsuccessful classification in Case (d).

Figure 4 shows the ROC curves in a typical test in each of the 6 cases
in the Table 2. Each case uses its first of the four settings, e.g., the constant
drifts dataset has (tL, d,∆t) = (1, 1, 0.1), the dataset for different potentials
has (tL, d,∆t) = (20, 1, 0.1), and the OU processes dataset in Case (c) has
(tL, d,∆t) = (2, 1, 0.1). The datasets for the interacting particles in Cases (d)
and (f) have (tL, d,∆t) = (2, 6, 0.1) and (tL, d,∆t) = (4, 24, 0.4), respectively.

For univariate time series in the Cases (a,b,e), the three algorithms either
reach or are close to the optimality benchmark by the LRT. They achieve
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the optimal benchmark of “LRT hidden truth” for the Brownian motion with
constant drifts. They are nearly optimal with curves in-between the two LRT
benchmarks in distinguishing the diffusions with different potentials and the
diffusions with linear or nonlinear drifts.

For the univariate time series in Case (c) and the multivariate time series
in Case (f), the three algorithms are suboptimal as their ROC curves are below
the “LRT numerical” with ∆t = 0.1 and ∆t = 0.4, respectively.

However, the three algorithms have unsuccessful classifications in Case (d),
which is the multivariate interacting particles with (tL, d,∆t) = (2, 6, 0.1).
Their ROC curves are around the diagonal line. In contrast, the benchmark
of “LRT numerical” with ∆t = 0.1 has a reasonable ROC curve and the ROC
curve of “LRT hidden truth” is much higher. Thus, the data has rich infor-
mation for the classification, and there is room for improvements in these
algorithms. We note that the LRT makes use of the model information while
the three algorithms are model agnostic. Hence, the success of the “LRT
numerical” shows the importance of model information in the classification of
nonlinear multivariate time series.

In particular, the contrast between the failure in Case (c) and the success in
Case (f) invites further examination of the factors that affect the performance
of the algorithms. Note that both Case (d) and Case (f) are for the interact-
ing particle systems, and they are different only at (tL, d,∆t) = (2, 6, 0.1) and
(tL, d,∆t) = (4, 24, 0.4). Thus, in the next section, we examine the algorithms
with varying (tL, d,∆t). We will also examine the dependence of the classifica-
tion accuracy on randomness and training sample size (Figure 8). Additionally,
a single test is insufficient to draw a conclusive comparison because of the ran-
domness in the data; hence, we run multiple tests in each setting and report the
statistics of AUC and ACC in the next section to benchmark the optimality.

Also, one may notice that the random forest lags behind the other two in
Case (c) and the ROCKET lags behind in Case (f), both with rate differences
larger than two theoretical standard deviations (0.04). Such differences are due
to the randomness in the data in this single test, the statistics from multiple
tests in the next section show that no method is superior in all settings.

5.3 Optimality benchmarking in AUC and maximal accuracy

We benchmark the optimality of a classifier by examining the statistics of the
AUC and optimal accuracy (ACC∗) in 40 independent simulations for each 4
settings of the 6 cases in Table 2. We present the box-and-whisker plots (the
minimum, the maximum, the sample median, and the first and third quartiles,
and the outliers) of the AUC and ACC∗, which reflects the randomness in the
classifications.

Recall that the “LRT hidden truth” provides an upper bound of optimality
and the “LRT numerical” provides a low baseline for them. Thus, a classifier
achieves the optimality for the Gaussian processes if its AUC and ACC∗ con-
centrate around the “LRT hidden truth”. A classifier is suboptimal if its AUC
or ACC∗ is below the baseline of “LRT numerical”, particularly when the tem-
poral sampling frequency of observation is relatively low. We say it is near
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Fig. 5: AUC for the 6 Cases with varying (tL, d,∆t) in Table 2. All three algo-
rithms perform similarly: they reach the optimal LRT for Gaussian processes
in Case (a), and they are near optimal in Cases (b,e), suboptimal in the Cases
(c,f), and are unsuccessful in Case (d).

Fig. 6: Maximal accuracy (ACC∗) with varying (tL, d,∆t) in Table 2. All
three algorithms are suboptimal in comparison with the LRT benchmarks.

optimal when its statistics lie in between the benchmark lines, particularly
when the two lines are close.

Figure 5 shows the statistics of the AUCs in the six cases with varying
path time lengths tL, dimension d and temporal sampling frequency (through
∆t). In the case of univariate time series data, the three algorithms achieve
the optimality represented by the LRT hidden truth for the Gaussian process
in Case (a), and they are near optimal for nonlinear time series in Cases
(b,e). They are unsuccessful in all settings in Case (d), the high-dimensional
interacting particle system with short sample paths, and they are suboptimal
in Cases (c,f). These results agree with those from the ROC curves.
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Additionally, we notice two patterns. (i) The AUC increases as the path
length in time tL or the dimension d increases, which can be clearly seen in
Cases (a,b,e,d). (ii) The AUC of the three methods is not sensitive to the
temporal sampling frequency of observation, because Cases (e,f) show that
the AUC changes insignificantly as ∆t refines. Note that the slopes of the
LRT benchmarks in Case (c) are much steeper than those in Case (d). This is
because the entries of the OU processes are independent, whereas the entries
of the interacting particles are correlated through the interactions. Thus, the
increment of AUC is due to the increased effective sample size through either
d or tL. Such patterns of AUC’s dependence on path length and sample size
will be further examined in Figure 8 for the interacting particle systems.

Figure 6 shows the statistics of the maximal accuracy (ACC∗) in the six
cases. It turns out that all three algorithms have smaller maximal accuracy
than the benchmark of “LRT numerical” (not to mention the “LRT hidden
truth”). Thus, there is a room for their improvements. On the other hand, the
two patterns on the dependence of (tL, d,∆) are similar to those observed in
AUC in Figure 5.

Figure 7 shows the statistics of the computation time in training of these
tests. The computation is carried out on a node of 3.0GHz Intel Cascade Lake
6248R with 48cores, 192GB RAM 1TB NMVe local SSD. The figure shows
that the random forest (RF) has a controlled computation time for all cases.
The computation time of either ResNet or the ROCKET increases in the
path length (L = tL

∆t ) as shown in Cases (a,b,e,f), and is not sensitive to the
dimension d as Cases (c,d) suggests. The ResNet has the largest computation
time in most cases. The LRT benchmarks are not shown here because their
computation time is negligible (since they only involve the evaluations of the
likelihood ratio).

Figure 8 further examines the dependence of the classification performance
on the path length tL, the randomness (in terms of σ), and the training sam-
ple size in Cases (a)–(c), respectively, for the interacting particle systems.
These cases show that the AUC of each method increases when either the path
time length increases, or the randomness decreases, or the training sample size
increases. In particular, Case (c) shows that a growing training sample size can
significantly improve the AUC of each algorithm; yet, with a training sample
size of 4000, their AUCs are far below the LRT benchmarks (which do not need
to be trained by taking into account the model information). Additionally, we
note that the variation of each algorithm reduces as the sample size increases,
indicating that the learning error decays in the sample size. The ResNet has
the largest variation among the three algorithms, but its performance improves
the most when the sample size increases.

In summary, the LRT benchmarks show that all three algorithms can
achieve the LRT optimal AUC for univariate time series and multivariate Gaus-
sian processes. However, these model-agnostic algorithms are suboptimal in
classifying nonlinear multivariate time series from high-dimensional stochas-
tic interacting particle systems. Also, the maximal accuracy of each algorithm
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Fig. 7: Computation time (in seconds) for the tests with varying (tL, d,∆t)
in Table 2. The random forest (RF) has a controlled computation time. The
ResNet and the ROCKET have computation times increasing with the path
length (L = tL

∆t ) in Cases (a,b,e,f), and not sensitive to the dimension d in
Cases (c,d). The ROCKET has the smallest computation time when the length
L is not large.

Fig. 8: AUC for interacting particles in three additional settings: a): tL ∈
{2, 4, 8, 16}, σ = 1 and M = 2000; b): σ ∈ {0.8, 0.4, 0.2, 0.1}, tL = 2 and
M = 2000; c): Mtraining ∈ {500, 1000, 2000, 4000}, (tL, σ) = (2, 0.4). In all
cases, the test sample size is 500 and (d,∆t) = (12, 0.1).

is below the LRT benchmark in all cases, suggesting room for improvement.
Importantly, the LRT benchmarks focuses on the

5.4 Discussion

The performance of a classifier depends on multiple factors, including the
design of the classifier, the training data size, and the properties of the time
series (such as its dimension, randomness, time length, and temporal sampling
frequency). The LRT benchmarks help separate these factors so that we can
better examine the classifier.

• The optimal classification accuracy is determined by the distribution of the
underlying discrete-time stochastic process from which the time series is
sampled. This distribution varies in the properties of the time series, such as
its dimension, randomness, time length, and temporal sampling frequency.
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The optimal classification accuracy increases when the dimension or the
time length increases or the randomness reduces, but it is not sensitive to
the temporal sampling frequency. Thus, in data collection in practice, it is
more helpful to collect data for a longer time rather than a higher sampling
frequency.

• The performance of a classifier is bounded above by the optimal classifica-
tion accuracy, and it is limited by its structure and the training data size. In
particular, the training data size can significantly affect the classifier’s accu-
racy. The size needed to achieve a prescribed level of accuracy increases with
the uncertainty in the distribution of the time series, as well as the structure
of the classifier. A classifier with a larger complexity requires more data to
train. The ResNet, which uses neural networks, improves the most from an
enlarging sample size compared to the random forest and ROCKET, which
use simpler designs. We would expect a bias-variance trade-off for which one
can select the degree of complexity of the algorithms adaptive to data size,
and we leave this as future work.

• The model-agnostic TSC algorithms do not use the model information and
rely on data to learn the classifier function; thus, they require a large amount
of training data. In contrast, the LRT relies on the model information and
does not need to be trained. Therefore, we would expect a TSC algorithm
using the model information can significantly increase the performance while
reducing the training data size.

6 Conclusion

We have shown that the likelihood ratio test (LRT) distinguishing diffusion
processes provides ideal optimality benchmarks for time series classification
(TSC) algorithms. The benchmarking is computationally scalable and is flexi-
ble in design for generating linear or nonlinear time series to reflect the specific
characteristics of real-world applications.

Numerical tests show that the three state-of-the-art TSC algorithms, ran-
dom forest, ResNet, and ROCKET, can achieve the optimal benchmark for
univariate time series and multivariate Gaussian processes. However, these
model-agnostic methods are suboptimal compared to the model-aware LRT in
classifying high-dimensional nonlinear non-Gaussian processes.

The LRT benchmarks also show that the classification accuracy increases
with either the time length or the time series dimension. However, the classifi-
cation accuracy is less sensitive to the frequency of the observations. Thus, in
data collection, it is more helpful to collect data for a longer time rather than
a higher sampling frequency.

In future work, we propose to quantitatively analyze the dependence on
these factors in terms of the effective sample size, the bias-variance trade-off
in the training of the algorithms, and the incorporation of model information
into the algorithms.
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Appendix A Appendix

A.1 Itô-diffusion and the Girsanov theorem

Theorem 6 (Girsanov Theorem) Let Pθi be the probability measure induced by the
solution of the SDEs (12) for t ∈ [t0, T ], and let P0 be the law of the respective
drift-less process. Suppose that the drifts {bθi} and the diffusion Σ = σσ′ fulfill the
Novikov condition

EPθi

[
exp

(
1

2

∫ T

t0

bθi(Xt, t)
>Σ−1bθi(Xt, t)dt

)]
<∞.

Then, Pθi and P0 are equivalent measures with Radon-Nikodym derivative given by

dPθi
dP0

(
X[t0,s]

)
= exp

(
−
∫ s

t0

b>θiΣ
−1dXt +

1

2

∫ s

t0

[
b>θiΣ

−1bθi

]
(Xt)dt

)
for all s ∈ [t0, t] and X[t0,s] = (Xt)t∈[t0,s]. In particular, the likelihood ratio between
Pθ1 and Pθ0 is

dPθ1
dPθ0

(
X[t0,s]

)
= exp

(
−
∫ s

t0

[bθ1−bθ0 ]>Σ−1dXt+
1

2

∫ s

t0

[
b>θ1Σ−1bθ1 − b

>
θ0Σ−1bθ0

]
(Xt)dt

)
.

Theorem 6 can be found in [30, Section 3.5] or [14, Section 8.6].

A.2 Sampling error in the classification rates

Proof of Lemma 1 Fix a threshold k, the classifier defines a random variable ξ =
ξ(x) = F (x, k). Then, conditional on θi with i ∈ {0, 1}, the random variable ξ has a
Bernoulli distribution that takes the value 1 with a probability αik. In particular, the

https://github.com/feilumath/benchmark_TSC
https://github.com/feilumath/benchmark_TSC
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test samples {xj}mj=1 lead to samples {ξj}mj=1 of ξ, and the empirical approximations
of the FNR and TNR by these samples are

α̂ik,m =
1

m

m∑
j=1

ξj , conditional on θi, i = 0, 1.

Therefore, by the Central Limit Theorem, the empirical estimators converge in
distribution

√
m[α̂ik,m − α

i
k]→ N (0, σ2

ξ,i), where σ2
ξ,i = αik(1− αik)

as m → ∞ for each i = 0, 1. Also, the Hoeffding’s inequality (see e.g., [16, 19, 20])
implies that for any ε > 0,

P(|α̂ik,m − α
i
k| > ε) ≤ 2e−

mε2

2 ,

which provides a non-asymptotic bound for each m > 0. �

A.3 Hypothesis testing and the Neyman-Pearson lemma

Here we briefly review the hypothesis testing inference method in statistics
[21, Chapter 8]. Recall that a hypothesis test is a rule that specifies for which
sample values the decision is made to accept a hypothesis H0 as true, and reject
the complement hypothesis H1. We assume that the family of distributions
of the samples are parametrized by θ ∈ Θ, where Θ is the entire parameter
space. We denote that the null alternative hypotheses by H0 : θ ∈ Θ0 and
H1 : θ ∈ Θc

0, respectively, where Θ0 is a subset Θ. The binary classification is
therefore a hypothesis testing with Θ = {θ0, θ1} and Θ0 = {θ0}.

The likelihood ratio test is as widely applicable as maximum likelihood
estimation. When there are two parameters, it is defined as follows.

Definition 1 (Likelihood Ratio Test.) Let the probability density function (or prob-
ability mass function) corresponding to θi be f(x | θi) for i = 0, 1. The likelihood
ratio statistic for testing H0 : θ = θ0 versus H1 : θ = θ1 is:

λ(x) =
f(x | θ1)

f(x | θ0)
.

A likelihood ratio test (LRT) is any test that determines the rejection region for H0

by λ(x).

The LRT in (5) determines the rejection region using the log-likelihood
l(x) = log λ(x). The rejection region with threshold k ∈ (0, 1) is equivalent to

RLRT

k = {x :
1

λ(x) + 1
> k} = {x : λ(x) >

k

1− k
}.

The reject region is selected to control the probability of falsely rejecting
H0, i.e., false negative rate (FNR). Meanwhile, it is also desirable to control
the false positive rate (FPR), e.g., reduce the possibility of false alarms.

The hypothesis tests are evaluated by the probabilities of making mistakes.
A strategy to compare hypothesis tests is to control the FNR in a class and
compare the FPR. The power function provides a tool to define the class.
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Definition 2 (Power function, size α test.) The power function of the hypothesis
test with a rejection region R and sample x is the probability β(θ) = P(x ∈ R | θ) as
a function of θ ∈ Θ. A test with power function β is a size α test if supΘ0

β(θ) = α;
a test with power function β is a level α test if supΘ0

β(θ) ≤ α.

An ideal hypothesis test would have a power function β(θ) = 0 for all
θ ∈ Θ0 and β(θ) = 1 for all θ ∈ Θc

0. Thus, a good test would have β(θ) close
to 0 for all θ ∈ Θ0 and β(θ) near 1 for all θ ∈ Θc

0.
Next, we define the uniformly most powerful test as the test with the

smallest FPR uniformly for all θ ∈ Θc
0 in the class of tests with a controlled

FNR.

Definition 3 ( Uniformly Most Powerful (UMP) Test) Let C be a class of tests for
testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc0. A test in class C, with power function β(θ),
is a uniformly most powerful (UMP) class C test if β(θ) ≥ β′(θ) for every θ ∈ Θc0
and every function β′(θ) that is a power function of a test in class C.

The Neyman-Pearson lemma shows that a LRT with a rejection region

R = {x : f(x|θ1)
f(x|θ0) > c} is a UMP test when Θ0 = {θ0} and Θc

0 = {θ1} for any

c ∈ (0,∞) such that P({x : f(x|θ1)
f(x|θ0) = c}) = 0.

Theorem 7 (Neyman-Pearson Lemma) Consider testing H0 : θ = θ0 versus
H1 : θ = θ1, where the probability density function (or probability mass function)
corresponding to θi is f(x | θi) for i = 0, 1, using a test with rejection region R that
satisfies {

x ∈ R, if f(x | θ1) > cf(x | θ0)

x ∈ Rc, if f(x | θ1) < cf(x | θ0)
(A1)

for some c > 0, and
α = Pθ0(X ∈ R) (A2)

Then:

1. (Sufficiency) Any test that satisfies (A1) and (A2) is a UMP level α test.
2. (Necessity) If there exists a test satisfying (A1) and (A2) with c > 0, then

every UMP level α test is a size α test (satisfies (A2)) and every UMP level
α test satisfies (A1) except perhaps on a set A satisfying Pθ0(X ∈ A) =
Pθ1(X ∈ A) = 0.
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