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IDENTIFIABILITY OF INTERACTION KERNELS IN1

MEAN-FIELD EQUATIONS OF INTERACTING PARTICLES2

Quanjun Lang and Fei Lu ˚

Department of Mathematics, Johns Hopkins University
3400 N. Charles Street, Baltimore, MD 21218, USA

ABSTRACT. This study examines the identifiability of interaction kernels in mean-field equations of interacting
particles or agents, an area of growing interest across various scientific and engineering fields. The main focus
is to identify data-dependent function spaces where a quadratic loss functional possesses a unique minimizer. We
consider two data-adaptive L2 spaces: one weighted by a data-adaptive measure and the other using the Lebesgue
measure. In each L2 space, we show that the function space of identifiability is the closure of the RKHS associated
with the integral operator of inversion. Alongside prior research, our study completes a full characterization of
identifiability in interacting particle systems with either finite or infinite particles, highlighting critical differences
between these two settings. Moreover, the identifiability analysis has important implications for computational
practice. It shows that the inverse problem is ill-posed, necessitating regularization. Our numerical demonstrations
show that the weighted L2 space is preferable over the unweighted L2 space, as it yields more accurate regularized
estimators.

Keywords: mean-field equations, identifiability, RKHS, regularization, inverse problem.3

1. Introduction. Systems of interacting particles or agents have become increasingly used in many areas of4

science and engineering (see [2, 31, 26, 1] and the references therein). Driven by these applications, there is a5

growing interest in inferring the interaction kernel (or the interaction potential) from data, either parametrically6

[16, 7, 28, 9] or in a nonparametrically for broader applicability [4, 23, 21, 22, 17, 10, 32].7

The inference problem can be classified into two categories: (i) a statistical learning problem when the8

system consists of finitely many particles and the data includes multiple trajectories of all particles, and (ii)9

a deterministic inverse problem for the mean-field equation (MFE) from data consisting of a solution to the10

MFE, which arises when the number of particles is so large that only the macroscopic density of particles can11

be observed. For the statistical learning of kernels in systems with finitely many particles, previous studies12

[23, 21, 22] minimize loss functionals based on the mean-square error or the likelihood of the data, estab-13

lishing computationally efficient algorithms that yield nonparametric estimators achieving the minimax rate14

of convergence. In particular, the studies [19, 18] show that any square-integrable kernel is identifiable under15

a coercivity condition, which imposes constraints on the distribution of the data trajectories. For the inverse16

problem of the MFE, the study [17] has introduced a derivative-free probabilistic loss functional and based on17

it, a scalable nonparametric regression algorithm that produces a convergent estimator robust to discrete noisy18

data. However, it remains open to study the identifiability of the kernel in the MFE from data.19

This study provides a complete characterization of the identifiability of kernels in MFE by the probabilistic20

loss functional. The key is to determine the data-dependent function space of identifiability (FSOI), in which the21

quadratic loss functional has a unique minimizer. We consider two data-adaptive L2 spaces: one is unweighted22

with the Lebesgue measure, and the other is weighted with a data-dependent exploration measure. In each L223

space, the second-order derivative of the loss functional defines a semi-positive integral operator, which acts24

as the operator of inversion. The FSOI is then the closure of this integral operator’s eigenspace of nonzero25

eigenvalues. Furthermore, identifiability holds in the L2 space if and only if the integral operator is strictly26

positive. However, the inverse problem is ill-posed due to the inversion of a compact operator. Our results27

apply to both radial and non-radial interaction kernels.28
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Together with [19, 18], this study completes a full characterization of the identifiability of kernels in inter-1

acting particle systems with either finitely or infinitely many particles. Notably, there are significant differences2

between these two settings. For systems with N particles, the identifiability holds in the weighted L2 space3

because of a coercivity condition with a constant 1
N´2 (see [19, Proposition 2.1]), and the inverse problem is4

well-posed. In contrast, for the inverse problem of the MFE, no coercivity holds in L2 (in agreement with the5

above coercivity constant vanishes as N Ñ 8), the identifiability barely holds in L2, and the inverse problem6

is ill-posed.7

The identifiability has important implications for computational practice. The ill-posedness implies that the8

normal matrix in regression becomes ill-conditioned as the dimension of the hypothesis space increases. Thus,9

regularization is necessary. The two ambient L2 spaces provide natural norms for the Tikhonov regularization.10

We demonstrate numerically that the weighted L2 norm is preferable over the unweighted L2 space because it11

leads to more accurate regularized estimators in the context of singular value decomposition (SVD) analysis.12

Furthermore, the identifiability theory introduces adaptive RKHSs for regularization. They are different from13

the widely-used kernel regression [11, 27, 9] or RKHS regularization [8], where the reproducing kernels are14

pre-selected. They invite further study on data-adaptive regularization strategies for ill-posed statistical learning15

and inverse problems [20].16

The exposition in our manuscript proceeds as follows. In Section 2, we define identifiability and introduce the17

main results. Section 3 studies identifiability for radial kernels and Section 4 extends the results to general non-18

radial kernels. We discuss in Section 5 the implications of identifiability to computational practice. Appendix19

A.1 provides a brief review of positive definite functions and reproducing kernel Hilbert spaces.20

We shall use the notations in Table 1.

TABLE 1. Notations.

Radial kernel Non-radial kernel
Interaction potential Ψp|x|q and ψ “ Ψ1; Ψpxq

Interaction kernel Kψpxq “ ψp|x|q x
|x|

Kψpxq “ ∇Ψpxq

Loss functional Epψq EpKψq

Density of exploration measure sρT , X “ supportpsρT q, in (2.9)
Function space of learning L2pX q and L2

sρT

Mercer kernel & RKHS in L2pX q GT in (2.11) and HG F T in (4.3) and HF

Mercer kernel & RKHS in L2
sρT

RT in (3.8) and HR QT in (4.3) and HQ

21

2. Main results. Consider the McKean-Vlasov mean-field equation (MFE) of interacting particles:22

Btu “ ν∆u` divrupK ˚ uqs, x P Rd, t P r0, T s

upx, tq ě 0,

ż

Rd

upx, tqdx “ 1 ,
(2.1)

where K ˚ u denotes the convolution23

pK ˚ uqpx, tq “

ż

Rd

Kpyqupx´ y, tqdy.

Here K “ ∇Φ : Rd Ñ Rd is called an interaction kernel and Φ is called the interaction potential. In particular,24

if Φ is radial, denoting Φpxq “ Φp|x|q with an abuse of notation, we have25

Kpxq “ ∇pΦp|x|qq “ ϕp
ˇ

ˇx
ˇ

ˇq
x
ˇ

ˇx
ˇ

ˇ

, with ϕprq “ Φ1prq. (2.2)

where ϕ is also called interaction kernel for simplicity.26
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The mean-field equation (also called aggregation-diffusion equation [5]) describes the macroscopic density1

for the systems of interacting particles when N Ñ 8:2

d

dt
Xi
t “ ´

1

N

N
ÿ

j“1

KpXj
t ´ Xi

tq `
?
2νdBi

t, for i “ 1, . . . , N, (2.3)

where Xi
t P Rd represents the position of agent i at time t. Denote by µpNqpdx, tq “ 1

N

řN
i“1 δpXi

t ´ xq3

the empirical measure of the particles. Under suitable conditions on Φ, it is well-known that µpNqpdx, tq Ñ4

upx, tqdx in relative entropy of the invariant measure as the number of particles N Ñ 8 (see e.g., [25, 24, 6,5

14]).6

Our goal is to study the identifiability of the interaction kernel K or ϕ from data consisting of a solution of7

the MFE. Throughout the paper, we assume that the data u is a bounded weak solution to the MFE:8

Assumption 2.1 (Smoothness of data). The data u is a bounded continuous weak solution to the MFE with9

bounded support, that is, suppx,tqPRdˆr0,T s |upx, tq| ď Cu for a positive constant Cu, and
Ť

tPr0,T s supppup¨, tqq10

is bounded, where supppup¨, tqq “ tx P Rd : upx, tq ą 0u.11

Such a solution exists when the interaction kernel is local Lipschitz with polynomial growth:12

|Kpxq ´Kpyq| ď Cp|x´ y| ^ 1qp1 ` |x|m ` |y|mq, @x, y P Rd

for a constant C ą 0 and an integer m ě 1. For further study on the forward problem of the MFE, we refer13

to [30] for Lipschitz kernels, [25, 24] for uniform convex kernels and the existence of an equilibrium, and14

the references in [6, 14, 15] for general (including singular) kernels. The assumptions on the solution being15

continuous with bounded support are technical, and we discuss possible extensions to measure-valued solutions16

with unbounded support in Remark 3.11.17

In the rest of this section, we present the main results only for radial kernels, and similar results hold for18

non-radial kernels (see Section 4).19

2.1. A loss functional in nonparametric regression. We consider nonparametric approaches in which one20

finds an estimator by minimizing a loss functional in a hypothesis space [4, 17, 10, 32]. Importantly, noticing21

that the MFE in (2.1) depends linearly on the kernel, we can estimate the kernel by nonparametric regression,22

in which we minimize a quadratic loss functionals efficiently by solving a least squares problem.23

We consider the probabilistic loss functional introduced in [17],24

Epψq “
1

T

ż T

0

ż

Rd

r
ˇ

ˇKψ ˚ u
ˇ

ˇ

2
u` 2BtupΨp| ¨ |q ˚ uq ´ 2νup∆Ψ ˚ uqsdxdt. (2.4)

where Kψpxq “ ∇Ψp|x|q “ ψp|x|q x
|x|

. It is the expectation of the log-likelihood of the McKean-Vlasov25

stochastic differential equation (to be introduced in (2.7)). It has two appealing features: (i) it is derivative-free26

(i.e., not using derivatives of the data u), which plays a key role in obtaining a robust estimator in [17]; and27

(ii) it applies to high-dimensional systems because the integrals in u can be written as expectations, which is28

important when u is approximated by the empirical measure of the particles.29

To focus on the identification of the kernel, we present an oracle version of the loss functional (see Lemma30

3.2 for its derivation).31

Definition 2.2 (Oracle loss functional). Let u be a solution of the mean-field equation (2.1) on [0,T], and32

denote Kψpxq “ ∇Ψp|x|q “ ψp|x|q x
|x|

, where Ψ : R` Ñ R is a radial interaction potential with derivative33

ψprq “ Ψ1prq. We consider the loss functional34

Epψq “ xxψ,ψyy ´ 2xxψ, ϕtrueyy, (2.5)

where the bilinear form xx¨, ¨yy is defined by35

xxφ,ψyy :“
1

T

ż T

0

ż

Rd

upKφ ˚ uq ¨ pKψ ˚ uq dx dt, (2.6)

assuming that the integrals are well-defined.36
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Since the loss functional is quadratic, its minimizer in a finite-dimensional hypothesis space H is computed1

by least squares in practice (with the term involving the true kernel approximated using data).2

Remark 2.3 (Least squares estimator). For any hypothesis space H “ span tϕ1, . . . , ϕnu such that3

Anpi, jq “ xxϕi, ϕjyy, bnpiq “ xxϕi, ϕtrueyy

are well-defined, a minimizer of the loss functional E in H is given by least squares4

pϕH “

n
ÿ

i“1

pciϕi, where pc “ argmin
cPRn

Epcq, Epcq “ cJAnc´ 2cJbn.

In particular, when An is invertible, we have pc “ A´1
n bn, and hence pϕH is the unique minimizer of E in H.5

WhenAn is singular,A´1
n denotes the Moore–Penrose pseudo inverse. Furthermore, whenAn is ill-conditioned6

and there are errors in the approximation of bn due to measurement noise or numerical error, regularization7

helps to avoid amplifying the errors in bn (see Section 5 for more discussions).8

In a parametric inference approach, the hypothesis space is determined by the parametric form of the kernel.9

In a nonparametric regression approach, one selects the optimal hypothesis space with proper smoothness and10

dimension.11

Two fundamental elements are crucial for both approaches: the function space of learning and identifiability.12

The function space of learning provides a proper metric on the accuracy of the estimator, and the identifiability13

reveals if the inverse problem is ill-posed and sheds insights on regularization. In the next two subsections, we14

first introduce data-adaptive function spaces of learning, and then define the identifiability.15

2.2. The data-adaptive function spaces of learning. We consider two data-adaptive function spaces of learn-16

ing: a weighted L2 space with a data-based measure and an unweighted L2 space on the support of the measure.17

We introduce first a exploration measure to quantify the exploration of the kernel by data, because we can18

only learn the kernel in the region where the data explores. This measure originates from a probabilistic repre-19

sentation of the mean-field equation. Recall that Equation (2.1) is the Fokker-Planck equation (also called the20

Kolmogorov forward equation) of the following McKean-Vlasov stochastic differential equation21
#

d sXt “ ´ rKtrue ˚ usp sXt, tqdt`
?
2νdBt,

Lp sXtq “upx, tqdx,
(2.7)

for all t ě 0. Here Lp sXtq denotes the law of sXt, whose probability density is up¨, tq. Let p sX 1
t, t ě 0q be an22

independent copy of p sXt, t ě 0q and denote rt “
ˇ

ˇ sXt ´ sX 1
t

ˇ

ˇ. We write the convolution Kψ ˚ u as23

rKψ ˚ usp sXt, tq “ ErKψp sXt ´ sX 1
tq | sXts “ Erψprtq

sXt ´ sX 1
t

rt
| sXts. (2.8)

This probabilistic representation of Kψ ˚ u indicates that the independent variable of ψ is explored by the24

process t| sXt ´ sX 1
t|, t P r0, T su (or t sXt ´ sX 1

t, t P r0, T su for non-radial kernels). Let sρT denote the average of25

probability densities of the processes:26

sρT prq “
1

T

ż T

0
ρtprqdt “

1

T

ż T

0

ż

Rd

ż

Sd
rd´1upy ´ rξ, tqupy, tqdξdydt, (2.9)

where ρt denotes the density of | sX 1
t ´ sXt| (or sX 1

t ´ sXt for the general case) for each t. Under Assumption 2.1,27

the probability density function sρT is C2. We denote the support of sρT by X :28

X :“ supppsρT q.

Note that X is bounded since the set
Ť

tPr0,T s supppup¨, tqq is bounded.29

Two data-adaptive function spaces emerge: L2pX , sρT prqdrq (denoted by L2
sρT

hereafter) and the unweighted30

space L2pX q with the Lebesgue measure on X . Both spaces are viable choices because the loss functional in31

(2.5) is well-defined in either of them (see Lemma 3.1). However, we will show by numerical examples that the32

latter extracts more information from data and leads to more accurate regularized estimators (see Section 5).33
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2.3. Definition of identifiability. We define identifiability as the uniqueness of the minimizer of a quadratic1

loss functional in a linear hypothesis space. This definition applies to general quadratic loss functionals. This2

study focuses on the loss functional in (2.5).3

Definition 2.4 (Identifiability). Given data consisting of a solution pupx, tq, x P Rd, t P r0, T sq to the mean-4

field equation (2.1) and a quadratic loss functional E , we say that the interaction kernel is identifiable by E in5

a linear subspace H of L2pX q or L2
sρT

if the true kernel is the unique minimizer of the loss functional in H. We6

call the largest such linear subspace the function space of identifiability (FSOI).7

When H is a finite-dimensional (e.g., in parametric inference), Remark 2.3 suggests that identifiability holds8

in H if the normal matrix An is invertible, in other words, cJAnc ą 0 for all nonzero c P Rn. Similarly, when9

H is infinite-dimensional, the identifiability is equivalent to the non-degeneracy of the bilinear form xx¨, ¨yy, as10

the following lemma shows.11

Lemma 2.5. Identifiability holds in a linear space H for the loss functional E in (2.4) if the bilinear form xx¨, ¨yy12

in (2.6) is non-degenerate in H. That is, the true kernel is the unique minimizer of the loss functional E in (2.5)13

in H iff xxϕ, ϕyy ą 0 for all ϕ P H except ϕ “ 0.14

Proof. Denote the true kernel by ϕtrue. Note that15

Epψq “ xxψ ´ ϕtrue, ψ ´ ϕtrueyy ´ xxϕtrue, ϕtrueyy. (2.10)

Thus, ϕtrue P H is the unique minimizer of E iff xxϕ, ϕyy ą 0 for all nonzero ϕ P H.16

The bilinear form plays a key role in our study of identifiability. We can write it as (see (3.4) for its derivation)17

xxφ,ψyy “

ż

R`

ż

R`

φprqψpsq GT pr, sq dr ds “: xLGT
ϕ, ψyL2pX q,

where the integral kernel GT is a Mercer kernel (see Lemma 3.3) given by18

GT pr, sq “
1

T

ż T

0

ż

Sd

ż

Sd

ż

Rd

ξ ¨ η prsqd´1upz ´ rξ, tqupz ´ sη, tqupz, tqdzdξdη dt, (2.11)

where Sd denotes the unit sphere in Rd. Here LGT
denotes the integral operator with kernel GT (see its19

definition in (3.5)). It acts as the operator of inversion, and plays a key role in the connection between the20

function space of identifiability and the RKHS of GT .21

2.4. Main results. We characterize the data-dependent function spaces of identifiability (FSOI) of the loss22

functional (2.4) in both L2pX q and L2
sρT

, and compare them in computational practice.23

‚ In L2pX q, the FSOI is the closure of the RKHS HG with reproducing kernel GT in (2.11). The identifi-24

ability holds in any linear subspace of the FSOI. Importantly, the identifiability holds in L2pX q iff HG is25

dense in it, or equivalently, the integral operator LGT
in L2pX q with integral kernel GT is strictly positive26

(see Theorems 3.5– 3.6).27

‚ In L2
sρT

, the same results hold with GT replaced by RT pr, sq “
GT pr,sq

sρT prqsρT psq
(see Theorem 3.7).28

‚ Similar identifiability results hold for non-radial kernels (see Section 4).29

We point out that identifiability is weaker than well-posedness. Identifiability in a linear space H only30

ensures that the loss functional has a unique minimizer in H. It does not ensure the well-posedness of the31

inverse problem unless the bilinear form satisfies a coercivity condition in H (see Remark 3.8). When H32

is finite-dimensional, identifiability is equivalent to the invertibility of the normal matrix in regression (see33

Remark 2.3), and identifiability implies well-posedness. However, when H is infinite-dimensional, the inverse34

problem is ill-posed because the inverse of the integral operator LGT
is unbounded.35

The identifiability study has important implications for computational practice. The identifiability theory36

implies that the regression matrix will become ill-conditioned as the dimension of the hypothesis space increases37

(see Theorem 5.1). Thus, regularization becomes necessary. We compare two regularization norms, the norms38

of L2
sρT

and L2pX q, in the context of singular value decomposition (SVD) analysis and the truncated SVD39



6 QUANJUN LANG AND FEI LU

regularization. Numerical tests suggest that the inversion in L2
sρT

is less ill-conditioned and its regularization1

leads to more accurate estimators.2

3. Radial interaction kernels. Radial interaction kernels are of particular interest because of their simplicity3

and efficiency in representing symmetric interactions. We will first show that the loss functional is well-defined4

and prove its oracle version. Then, we discuss the identifiability in the ambient function spaces L2pX q and in5

L2
sρT

in Section 3.2-3.3, respectively.6

Throughout this section, we let ψ P L2
sρT

with sρT in (2.9). We let Ψ : R` Ñ R be Ψprq “
şr
0 ψpsqds and7

denote Kψpxq “ ψp|x|q x
|x|

.8

3.1. The loss functional. We show first that the oracle loss functional in (2.5) is well-defined and it is equiva-9

lent to the loss functional in practice.10

Lemma 3.1. For any φ,ψ P L2
sρT

, the bilinear form xxφ,ψyy in (2.6) satisfies11

xxφ,ψyy ď }ψ}L2
sρT

}φ}L2
sρT
. (3.1)

Also, for any ψ P L2
sρT

, the radial loss functional in (2.5) is bounded above by12

Epψq ď }ψ ´ ϕtrue}
2
L2

sρT

´ xxϕtrue, ϕtrueyy. (3.2)

Proof. Recall that up¨, tq is the law of sXt defined in (2.7). By definition in (2.6), we have13

xxφ,ψyy “
1

T

ż T

0

ż

Rd

pKφ ˚ uq ¨ pKψ ˚ uqupx, tqdx dt

“
1

T

ż T

0
ErKφ ˚ up sXt, tq ¨Kψ ˚ up sXt, tqsdt.

(3.3)

Let sX 1
t be an independent copy of sXt. The above integrand in time is controlled by14

ErKφ ˚ up sXt, tq ¨Kψ ˚ up sXt, tqs

ďEr|Kφ ˚ up sXt, tq|2s1{2Er|Kψ ˚ up sXt, tq|2s1{2 (Cauchy-Schwartz)

ďEr|ErKφp sXt ´ sX 1
tq| sXts|

2s1{2 Er|ErKψp sXt ´ sX 1
tq| sXts|

2s1{2 (by (2.8))

ďErEr|Kφp sXt ´ sX 1
tq|2| sXtss

1{2 ErEr|Kψp sXt ´ sX 1
tq|2| sXtss

1{2 (by Jensen’s inequality)

“Er|Kφp sXt ´ sX 1
tq|2s1{2 Er|Kψp sXt ´ sX 1

tq|2s1{2 “ }φ}L2pρtq}ψ}L2pρtq.

Then, we obtain (3.1).15

The upper bound in (3.2) follows from (3.1) and (2.10).16

Lemma 3.2. The loss functional in (2.4) can be written in the oracle version in (2.5) if u is a solution of the17

MFE (2.1) with kernel ϕtrue.18

Proof. The proof follows from the MFE and integration by parts. More specifically, note that u vanishes at the19

boundary of its support, we have
ş

Rd up∆Ψ ˚ uqdx “
ş

Rd ∆upΨ ˚ uq by integration by parts. Then, the MFE20

Btu´ ν∆u “ divrupKϕtrue ˚ uqs implies that21

1

T

ż T

0

ż

Rd

r2BtupΨp| ¨ |q ˚ uq ´ 2νup∆Ψ ˚ uqsdxdt

“
1

T

ż T

0

ż

Rd

2pBtu´ ∆uqpΨp| ¨ |q ˚ uqdxdt

“
1

T

ż T

0

ż

Rd

2divrupKϕtrue ˚ uqspΨp| ¨ |q ˚ uqdxdt

“ ´
1

T

ż T

0

ż

Rd

2upKϕtrue ˚ uq ¨ pKψ ˚ uqdxdt “ ´2xxψ, ϕtrueyy,
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where in the third equality, we used integration by parts along with the fact that Kψpxq “ ∇Ψp| ¨ |q.1

3.2. Identifiability in the unweighted L2 space. Now we show that the interaction kernel is identifiable by2

the loss functional (2.4) in the L2pX q-closure of the RKHS HG with reproducing kernel GT defined in (2.11).3

The key element is the integral operator of this reproducing kernel: it connects the RKHS with the space L2pX q4

and allows for a spectral characterization of identifiability.5

The reproducing kernel GT emerges from the bilinear form in the loss functional. Specifically, by a change6

of variable to polar coordinates with Kφpyq “ φp|y|q
y

|y|
“ φprqξ by setting r “ |y| and ξ “

y
|y|

P Sd, we can7

write the bilinear form as8

xxφ,ψyy “
1

T

ż T

0

ż

Rd

pKφ ˚ uq ¨ pKψ ˚ uqupx, tqdx dt

“
1

T

ż T

0

ż

Rd

ż

Rd

Kφpyq ¨Kψpzq

ż

Rd

upx´ y, tqupx´ z, tqupx, tqdxdydz dt

“

ż 8

0

ż 8

0
φprqψpsqGT pr, sq drds,

(3.4)

where the last equality follows from the definition of GT in (2.11),9

GT pr, sq “
1

T

ż T

0

ż

Sd

ż

Sd

ż

Rd

ξ ¨ η prsqd´1upx´ rξ, tqupx´ sη, tqupx, tqdxdξdηdt.

Lemma 3.3. Under Assumption 2.1, the kernel GT is a Mercer kernel, i.e., it is symmetric, continuous and10

positive definite.11

Proof. The symmetry is clear from its definition and the continuity follows from the continuity of u. To show12

that it is positive definite (see Definition A.1), for any tr1, ¨ ¨ ¨ , rku Ă R` and pc1, . . . , ckq P Rk, we have13

ÿ

i,j

cicjGT pri, rjq

“
1

T

ż T

0

ż

Rd

ÿ

ij

cicjprirjq
d´1

ż

Sd

ż

Sd
ξ ¨ ηupx´ riξ, tqupx´ rjη, tqdξdηupx, tqdxdt

“
1

T

ż T

0

ż

Rd

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

cir
d´1
i

ż

Sd
ξupx´ riξ, tqdξ

ˇ

ˇ

ˇ

ˇ

ˇ

2

upx, tq dxdt ě 0.

Thus, it is positive definite.14

Since GT is a Mercer kernel, it determines an RKHS HG with GT as reproducing kernel (see Appendix15

A.1). We show next that the identifiability holds on the closure of HG, by studying the integral operator with16

kernel GT :17

LGT
fprq “

ż

R`

GT pr, sqfpsqds. (3.5)

Note that by definition,18

xxφ,ψyy “ xφ,LGT
ψyL2pX q. (3.6)

We start with a lemma on the boundedness and integrability of GT .19

Lemma 3.4. Under Assumption 2.1, the kernel function GT in (2.11) satisfies:20

(a) For all r, s P R`,GT pr, sq ď CuCd|X |d´1mintsρT prq, sρT psqu, where |X | denotes the Lebesgue measure21

of X , and Cd “ |Sd| “ 2πd{2Γpn2 q.22

(b) GT is in L2pX ˆ X q and GT
sρT bsρT

P L2psρT b sρT q.23
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Proof. Recall that X is the support of sρT prq “ 1
T

şT
0

ş

Rd

ş

Sd r
d´1upy ´ rξ, tqupy, tqdξdydt defined in (2.9).1

Since u has bounded support, so the set X is bounded and s ď |X | for each s P X . Then, by the uniform2

boundedness of u, we have sd´1
ş

Sd upx´ sη, tqdη ď |X |d´1Cu for any s P R` and x P Rd. Hence, we have3

GT pr, sq “
1

T

ż T

0

ż

Sd

ż

Sd

ż

Rd

ξ ¨ η prsqd´1upx´ rξ, tqupx´ sη, tqupx, tqdxdξdηdt

ď |X |d´1CuCd
1

T

ż T

0

ż

Sd

ż

Rd

rd´1upx´ rξ, tqupx, tqdxdξdt

“ |X |d´1CuCdsρT prq,

for any s P X . Similarly, GT pr, sq ď |X |d´1CuCdsρT psq for any r. Then, (a) follows.4

For (b), we obtain GT is in L2pX ˆ X q by applying (a):5
ż

R`

ż

R`

|GT pr, sq|2drds ď |X |2d´2C2
uC

2
d

ż

R`

ż

R`

sρT prqsρT psqdrds “ |X |2d´2C2
uC

2
d .

Similarly, we obtain RT pr, sq “
GT

sρT bsρT
P L2psρT b sρT q by applying (a) to get that that RT pr, sq2sρT prqsρT psq “6

|GT pr,sq|2

sρT prqsρT psq
ď |X |2d´2C2

uC
2
d , and hence,7

ż

R`

ż

R`

RT pr, sq2sρT prqsρT psqdrds ď

ż

X

ż

X
|X |2d´2C2

uC
2
ddrds “ |X |2dC2

uC
2
d .

8

By Lemma 3.4 and Theorem A.3, LGT
is a positive compact self-adjoint operator in L2pX q, and it has count-9

ably many positive eigenvalues tλiu
8
i“1 with orthonormal eigenfunctions tφiu

8
i“1 (note that the eigenfunctions10

of the eigenvalue λ “ 0 is excluded). In particular, t
?
λiφiu

8
i“1 is an orthonormal basis of HG. The following11

theorem follows directly.12

Theorem 3.5. The function space of identifiability by E in (2.4) in L2pX q is the L2pX q-closure of HG, the13

RKHS with reproducing kernel GT in (2.11).14

Proof. By Lemma 2.5, it suffices to show that xxf, fyy2 ą 0 for any nonzero f in the L2pX q-closure of HG.15

Since t
?
λiφiu is an orthonormal basis of HG, its L2pX q-closure is the closure of the eigenspace spantφiu16

corresponding to nonzero eigenvalues. Thus, if f “
ř8
i“1 ciφi is nonzero, we have ⟨f, f⟩L2pX q “

ř8
i“1 c

2
i ą 0,17

which ensures that xxf, fyy2 “
ř8
i“1 c

2
iλi ą 0.18

The RKHS HG has the nice feature of being data-informed: its reproducing kernel GT depends solely on19

the data pupx, tq, x P Rd, t P r0, T sq. It provides a tool to investigate when the kernel is identifiable in L2pX q.20

Theorem 3.6 (Identifiability in L2pX q). For the loss functional E in (2.4), the following statements are equiv-21

alent.22

(a) Identifiability holds in L2pX q, i.e., xxh, hyy ą 0 for any nonzero h P L2pX q.23

(b) LGT
is strictly positive.24

(c) HG is dense in L2pX q.25

Moreover, for any ϕ “
řn
i“1 ciφi P H “ span tφ1, . . . , φnu with tφiu being orthonormal eigenfunctions of26

LGT
corresponding to positive eigenvalues tλiu, we have27

xxϕ, ϕyy “

n
ÿ

i“1

c2iλi, }ϕ}2HG
“

n
ÿ

i“1

c2iλ
´1
i , }ϕ}2L2pX q “

n
ÿ

i“1

c2i . (3.7)

In particular, the bilinear form xx¨, ¨yy satisfies the coercivity condition in H:28

xxϕ, ϕyy ě mint
a

λiu
n
i“1}ϕ}2L2pX q, @ϕ P H.
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Proof. (a) ñ (b). Suppose LGT
is not strictly positive, then there exists an eigenfunction ϕ P L2pX q corre-1

sponding to eigenvalue 0. But we would also have xxϕ, ϕyy “

〈
LGT

ϕ, ϕ
〉
L2pX q

“ 0.2

(b) ñ (a). If GT is strictly positive, then tφiu
8
i“1 would be an orthonormal basis for L2pX q and all eigenva-3

lues of LGT
are positive. Take ϕ “

ř8
j“1 cjφj . Then, xxϕ, ϕyy “ 0 implies4 〈

LGT
ϕ, ϕ

〉
L2pX q

“ x

8
ÿ

j“1

cjλjφj ,
8
ÿ

j“1

cjφjyL2pX q “

8
ÿ

j“1

c2jλj “ 0.

Hence ϕ “ 0 in L2pX q.5

(b) ô (c). Note that
␣?

λiφi
(8

i“1
is a basis of HG. Thus, HG is dense in L2pX q iff tφiu

8
i“1 is a basis of6

L2pX q, i.e. LGT
is strictly positive.7

At last, for any ϕ “
řn
j“1 cjφj P H “ span tφ1, . . . , φnu, we have8

xxϕ, ϕyy2 “

〈
LGT

ϕ, ϕ
〉
L2pX q

“

n
ÿ

j“1

c2jλj ě mintλiu
n
i“1}ϕ}2L2pX q.

Also, we have ϕ “
řn
j“1 cjλ

´1{2
j

a

λjφj P HG with }ϕ}2HG
“
řn
i“1 c

2
iλ

´1
i ;9

3.3. Identifiability in the weighted L2 space. In this section, we study the identifiability in L2
sρT

through the10

RKHS whose reproducing kernel is a weighted integral kernel. Since the results are mostly the same as those11

in L2pX q, so we only briefly state the main results, then focus on discussing their relations.12

We define the following kernel RT on the set X ˆ X :13

RT pr, sq “
GT pr, sq

sρT prqsρT psq
, pr, sq P X ˆ X . (3.8)

The function RT is a positive definite kernel, since GT is by Lemma 3.3. Additionally, by Lemma 3.4, the14

kernel RT P L2psρT b sρT q, so that LRT
. Thus, it defines a compact integral operator15

LRT
φpsq “

ż

R`

RT pr, sqφprqsρT prqdr, (3.9)

and it satisfies xxφ,ψyy “ xφ,LRT
ψyL2

sρT
.16

All the results for L2pX q extends to L2
sρT

. Importantly, LRT
is a positive compact self-adjoint operator in17

L2
sρT

, and it has countably many positive eigenvalues tγiu
8
i“1 with orthonormal eigenfunctions tψiu

8
i“1. In18

particular, t
?
γiψiu

8
i“1 is an orthonormal basis of HR. Similar to Theorem 3.5–Theorem 3.6, the identifiability19

holds in L2
sρT

if the RKHS HR is dense in it. The following theorem summarizes these results.20

Theorem 3.7 (Identifiability in L2
sρT

). The function space of identifiability in L2
sρT

is the L2
sρT

-closure of HR, the21

RKHS with reproducing kernel RT in (3.8). The following are equivalent.22

(a) Identifiability holds in L2
sρT

.23

(b) LRT
in (3.9) is strictly positive.24

(c) HR is dense in L2
sρT

.25

Moreover, for any ϕ “
řn
i“1 ciψi P H “ span tψ1, . . . , ψnu with tψiu being orthonormal eigenfunctions of26

LRT
corresponding to eigenvalues tγi ą 0u, we have27

xxϕ, ϕyy2 “

n
ÿ

i“1

c2i γi, }ϕ}2HR
“

n
ÿ

i“1

c2i γ
´1
i , }ϕ}2L2

sρT

“

n
ÿ

i“1

c2i . (3.10)

In particular, the bilinear form xx¨, ¨yy satisfies the coercivity condition in H:28

xxϕ, ϕyy ě mint
?
γiu

n
i“1}ϕ}2L2

sρT

, @ϕ P H.
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Remark 3.8 (Relation to the coercivity condition of the bilinear form). Recall that a bilinear form xx¨, ¨yy is1

said to be coercive on a subspace H Ă L2
sρT

if there exists a constant cH ą 0 such that xxψ,ψyy ě cH}ψ}2
L2

sρT

2

for all ψ P H. Such a coercivity condition has been introduced on subspaces of L2
sρT

in [4, 23, 21, 22, 19]3

for systems of finitely many particles. Theorem 3.7 shows that, for any finite-dimensional hypothesis space4

H “ span tψ1, . . . , ψnu, the coercivity condition holds with cH “ mintγiu
n
i“1, but the coercivity constant5

vanishes as the dimension of H increases to infinity.6

Now we have two RHKSs, HG and HR, whose closures in L2pX q and L2
sρT

are the function spaces of7

identifiability. They are the images L1{2

GT
pL2pX qq and L1{2

RT
pL2

sρT
q (see Appendix A.1). The following remarks8

discuss their relations.9

Remark 3.9 (The two integral operators). The integral operators LGT
and LRT

are derived from the same10

bilinear form: for any φ,ψ P L2pX q Ă L2
sρT

, we have11

xxφ,ψyy “ xLGT
φ,ψyL2pX q “ xLRT

φ,ψyL2psρT q.

Since L2pX q is dense in L2
sρT

, the second equality implies that the null-space of and LGT
is a subset of LRT

.12

However, there is no correspondence between their eigenfunctions of nonzero eigenvalues. To see this, let13

φi P L2pX q be an eigenfunction of LGT
with eigenvalue λi ą 0. Then, it follows from the second equality that14

xλiφi, ψyL2pX q “ xLGT
φi, ψyL2pX q “ xLRT

φ,ψyL2psρT q “ xsρTLRT
φi, ψyL2pX q

for any ψ P L2pX q. Thus, λiφi “ sρTLRT
φi in L2pX q. Then, neither sρTφi nor φi

sρT
is an eigenfunction of LRT

.15

Remark 3.10 (Metrics on HG and HR). We have three metrics on HG Ă L2pX q: the RKHS norm, the L2pX q16

norm and the norm induced by the bilinear form. By (3.7), these three metrics satisfy17

a

xxϕ, ϕyy ď max
i

t
a

λiu}ϕ}L2pX q ď max
i

tλiu}ϕ}HG

for any ϕ P HG. Similarly, there are three metrics on HR Ă L2
sρT

satisfying, for any ϕ P HR,18

a

xxϕ, ϕyy ď max
i

t
?
γiu}ϕ}L2

sρT
ď max

i
tγiu}ϕ}HR

.

Remark 3.11 (Relaxing the assumption on data). It is possible to relax the technical assumptions that the19

solution u is continuous with bounded support and consider measure-valued solutions or unbounded support.20

These assumptions are used to prove the integrability of the integral kernel GT in Lemmas 3.3-3.4 so that the21

integrator LGT
is a bounded operator. But the LGT

can remain to be bounded when the data u is measure-22

valued or has unbounded support. Furthermore, the weighted space L2psρT q can be used to study the inference23

of singular kernels. We leave the more involving analysis as future work.24

4. Non-radial interaction kernels. Non-radial interaction kernels are important because they provide more25

flexibility for modeling than radial kernels. We extend the identifiability analysis to non-radial kernels, using26

the same arguments as for the radial case.27

Throughout this section, we consider the non-radial vector-valued kernels Kϕ “ ∇Φ : Rd Ñ Rd being28

a gradient of an interaction potential Φ, where the subscript ϕ emphasizes that the kernel is a gradient. We29

analyze the function space of identifiability by the loss functional in (2.4). The next theorem presents the main30

results.31

Theorem 4.1 (Identifiability of non-radial kernel). Given data pupx, tq : px, tq P Rd ˆ r0, T sq satisfying32

Assumption 2.1, consider the estimation of the kernel Ktrue : Rd Ñ Rd by minimizing the loss functional33

EpKψq :“
1

T

ż T

0

ż

Rd

”

ˇ

ˇKψ ˚ u
ˇ

ˇ

2
u` 2BtupΨ ˚ uq ` 2ν∇u ¨ pKψ ˚ uq

ı

dx dt, (4.1)
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where Kψpxq “ ∇Ψpxq in either L2pX q or L2
sρT

:“ tK : Rd Ñ Rd,
ş

Rd |Kpxq|2sρT pxqdx ă 8u, where34

X “ supppsρT q with sρT is defined by1

sρT pxq “
1

T

ż T

0
ρtpxqdt “

1

T

ż T

0

ż

Rd

upy ´ x, tqupy, tqdydt. (4.2)

Let Ftpx, yq :“
ş

Rd upz ´ y, tqupz ´ x, tqupz, tqdz and define F T and QT as2

F T px, yq “
1

T

ż T

0
Ftpx, yq dt, QT px, yq “

F T px, yq

sρT pxqsρT pyq
, px, yq P X ˆ X . (4.3)

Then, the function space of identifiability in L2
sρT

by the loss functional E is the L2
sρT

-closure of HQ, the RKHS3

with QT as the reproducing kernel. Additionally, the following are equivalent:4

(a) Identifiability holds in L2
sρT

.5

(b) The operator LQT
: L2psρT q Ñ L2psρT q in (4.4) is strictly positive:6

LQT
fpxq “

ż

Rd

QT py, xqfpyqsρT pyqdy (4.4)

(c) HQ is dense in L2
sρT

.7

Similarly, these claims hold in L2pX q by considering the L2pX q-closure of HF , the RKHS with F T as the8

reproducing kernel, and the corresponding integral operator LFT
.9

Proof. The proof is mostly the same as the proofs of Theorems 3.5– 3.6. It consists of three steps.10

‚ Show that QT and F T are square-integrable reproducing kernels, so their RKHSs are well-defined. Con-11

sequently, their integral operators LQT
and LFT

are semi-positive.12

‚ Extend Lemma 2.5 to vector-valued functions by showing that loss functional E has a unique minimizer13

in a linear space H if and only if xxK,Kyy ą 0 for any nonzero K P H. Here xxK1,K2yy is a bilinear form14

for vector-valued functions K1,K2 : Rd Ñ Rd, defined by15

xxK1,K2yy “
1

T

ż T

0

ż

Rd

pK1 ˚ uq ¨ pK2 ˚ uq upx, tqdx dt

“

ż

Rd

ż

Rd

K1pyq ¨K2pzqF T py, zqdydz “

d
ÿ

i“1

ż

Rd

ż

Rd

Ki
1pyqKi

2pzqF T py, zqdydz.

(4.5)

The extension is straightforward, because EpKψq “ xxKψ,Kψyy ´ 2xxKψ,Ktrueyy if Ktrue is the true16

kernel generating the data u.17

‚ Show the spectral characterization of the FSOI and the equivalence between (a)-(c), which follow from18

the same proofs for Theorems 3.5– 3.6.19

Thus, we only need to prove that F T andQT are square-integrable reproducing kernels, which we do in Lemma20

4.2 below.21

Lemma 4.2. Under Assumption 2.1, the functions F T , QT : Rd Ñ R in (4.3) are symmetric, positive definite,22

and satisfy the following properties:23

(a) For all x, y P Rd, F T px, yq ď CusρT pxq, where Cu “ supxPRd,tPr0,T s upx, tq.24

(b) The function F T is in L2pRd ˆ Rdq, and QT is in L2
sρT bsρT

.25

Proof. Both functions are symmetry by definition. They are positive definite similar to the proof of Lemma 3.3.26

Part (a) follows from (4.3) and that Cu “ supzPRd,tPr0,T s upz ´ x, tq for any x,27

F T px, yq “
1

T

ż T

0

ż

Rd

upz ´ y, tqupz ´ x, tqupz, tqdz dt

ď Cu
1

T

ż T

0

ż

Rd

upz ´ y, tqupz, tqdz dt “ CusρT pyq,
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where the last equality follows from the definition of sρT .28

For (b), note that by symmetry, we have F T px, yq ď CusρT pyq for any x, y P Rd. Then,1
ż

Rd

ż

Rd

pF T px, yqq2dxdy ď C2
u

ż

Rd

ż

Rd

sρT pxqsρT pyqdxdy “ C2
u.

To show that QT is square-integrable, we make use of the assumption that the data u has bounded support,2

which implies that the support of sρT , denoted by X “ supppsρT q, is bounded. Hence,3
ż

Rd

ż

Rd

QT
2
px, yqsρT pxqsρT pyqdxdy “

ż

X

ż

X

pF T px, yqq2

sρT pxqsρT pyq
dxdy ď C2

u|X |2,

where the inequality follows from (a).4

We note that the assumption on u having a bounded support is sufficient but not necessary forQT P L2
sρT bsρT

.5

When the support of u is unbounded, the function QT may not be square-integrable. The following two ex-6

amples show that QT is square-integrable when u is the probability density function of a stationary Gaussian7

process, but it is not when u is the density of a Cauchy distribution.8

Example 4.3 (Square-integrable QT ). We show that QT P L2
sρT bsρT

when d “ 1 and upx, 0q “ Upxq “9

1?
2πν

e´x2

2ν . First, we show that Upxq is a stationary solution to the mean-field equation (2.1) (equivalently,10

N p0, νq is an invariant density of the SDE (2.7)) with Kpxq “ x. In fact, noting that K ˚ Upxq “
ş

Rpx ´11

yqUpyqdy “ x, one can verify directly that νU2pxq ` rxUpxqs1 “ 0 (similarly, the SDE (2.7) becomes the12

Ornstein-Uhlenbeck process d sXt “ ´ sXtdt`
?
2νdBt and U is its invariant density). Second, we compute F T13

and sρT directly from their definitions. Since upx, tq “ Upxq for each t, by definition of F T in (4.5):14

F T px, yq “

ż

Rd

Upz ´ xqUpz ´ yqUpzqdz

“
1

2πν

ż

R

1
?
2πν

e´ 1
2ν

ppz´xq2`pz´yq2`z2qdz “

?
3

2πν
e´ 1

3ν
px2`y2´xyq .

Since sρT is the density of sXt ´ sX 1
t with sX 1

t being an independent copy of sXt, which has the stationary density15

U , we have sρT pxq “ 1
2

?
πν
e´x2

4ν . Hence, the kernel QT is square-integrable due to the fast decay of F T :16

}QT }2L2psρT bsρT q “

ż

R

ż

R

F T px, yq2

sρT pxqsρT pyq
dxdy “

ż

R

ż

R

3

πν
e´ 1

12ν2
r4px´yq2`x2`y2sdxdy ă 8.

Example 4.4 (Non-square-integrable QT ). We show that QT R L2
sρT bsρT

when d “ 1, ν “ 1 and upx, 0q “17

Upxq “ 1
π

1
1`x2

, which is the density of Cauchy distribution. Suppose that K has a Fourier transform satisfying18

pKpξqpUpξq “
ş

R
2x

1`x2
eiξxdx, in other words, rK ˚ U spxq “ 2x

1`x2
. First, note that U is a steady solution to19

(2.1) because20

νU2pxq “ ´
d

dx

„

2x

1 ` x2
Upxq

ȷ

“ ´
d

dx
rUpxqrK ˚ U spxqs .

Second, direction computation (see Appendix A.2 for the details) yields21

F T px, yq “

ż

R
Upz ´ xqUpz ´ yqUpzqdz “

1

π3

ż

R

1

1 ` pz ´ xq2

1

1 ` pz ´ yq2

1

1 ` z2
dz

“
2

π2
px2 ´ xy ` y2 ` 12q

px2 ` 4qpy2 ` 4qpx2 ´ 2xy ` y2 ` 4q
.

Meanwhile, since sρT is the density of sXt ´ sX 1
t with sX 1

t being an independent copy of sXt, which has the22

stationary density U , we have sρT pxq “ pUp¨q ˚ Up´¨qqpxq “ 2
π

1
px2`4q

(see Appendix A.2 for the computation23

details). Lastly, QT is not square integrable because24

}QT }2L2psρT bsρT q “

ż

R

ż

R

F T px, yq2

sρT pxqsρT pyq
dxdy “

ż

R

ż

R

px2 ´ xy ` y2 ` 12q

2px2 ´ 2xy ` y2 ` 4q
dxdy “ 8.
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5. Identifiability in computational practice. In this section, we discuss the implications of the identifiability25

theory for computational practice. For simplicity, we consider only radial interaction kernels and d “ 1. We1

show that the regression matrix becomes ill-conditioned as the dimension of the hypothesis space increases2

(see Theorem 5.1). Thus, regularization becomes necessary to avoid amplification of the numerical errors.3

We compare L2pX q and L2
sρT

in the context of truncated singular value decomposition (SVD) regularization.4

Numerical tests in Section 5.3 suggest that the L2
sρT

norm leads to more accurate regularized estimators, and a5

better-conditioned inversion (see Figure 1– 3).6

5.1. Nonparametric regression in practice. In computational practice, the data is on discrete space mesh7

grids, and our goal is to find a minimizer of the loss functional by least squares as in Remark 2.3. We review8

only those fundamental elements, and we refer to [17] for more details.9

First, we select a set of data-adaptive basis functions in L2
sρT

or L2pX q to avoid a singular normal matrix.10

The starting point is to approximate empirically the measure sρT in (2.9) from data and to obtain its support11

X . Let triu
n
i“0 be a uniform partition of X and denote the width of each interval as ∆r. They provide the12

knots for the B-spline basis functions of H. Here we use piecewise constant basis functions to facilitate the rest13

discussions, that is, H “ spantϕ1, . . . , ϕnu, with ϕiprq “ 1rri´1,risprq. One may also use other partitions, for14

example, a partition with uniform probability for all intervals, as well as other basis functions, such as higher15

degree B-splines or weighted orthogonal polynomials.16

Second, as outlined in Remark 2.3, we compute the normal matrix An and vector bn from data. Since ϕtrue17

is unknown, the vector bn is computed from data, following the loss functional in (2.4):18

Anpijq “ xxϕi, ϕjyy “
1

T

ż T

0

ż

Rd

pKϕi ˚ uq ¨ pKϕj ˚ uqupx, tqdx dt,

bnpiq “ ´
1

T

ż T

0

ż

Rd

rBtu pΦi ˚ uq ` ν∇u ¨ pKϕi ˚ uqs dx dt,

(5.1)

where Φiprq “
şr
0 ϕipsqds is an anti-derivative of ϕi. The integrals in the entries ofAn and bn are approximated19

from data by the Riemann sum.20

Then, the minimizer of the loss functional in H is solved from the linear equation Anpc “ bn. When the21

normal matrix An is well-conditioned, we compute the minimizer by pc “ A´1
n bn. When An is ill-conditioned22

or singular, which happens often as n increases, the (pseudo-)inverse ofAn tends to amplify the numerical error23

in bn. Thus, we need regularization (see Section 5.3).24

5.2. Identifiability and ill-conditioned normal matrix. We show first that the eigenvalues of the integral25

operators are generalized eigenvalues of the normal matrix.26

Theorem 5.1. Let H “ spantϕiu
n
i“1 Ă L2pX q, where the basis functions are linearly independent in L2pX q27

and L2
sρT

. Recall the normal matrix An in (5.1), the operators LGT
: L2pX q Ñ L2pX q in (3.5) and LRT

:28

L2
sρT

Ñ L2
sρT

in (3.9). The following statements hold true.29

(a) If LGT
φ “ λφ for some φ “

řn
i“1 ciϕi P H, then λ is a generalized eigenvalue of An:30

Anc “ λBG
n c, with BG

n “ pxϕi, ϕjyL2pX qq1ďi,jďn. (5.2)

In particular, if tϕiu are piecewise constants on intervals with length ∆r in a uniform partition of X ,31

then, λ∆r is an eigenvalue of An.32

(b) Similarly, if LRT
φ “ λφ for some φ “

řn
i“1 ciϕi P H, then λ is generalize eigenvalue of An:33

Anc “ λBR
n c, with BR

n “ pxϕi, ϕjyL2
sρT

q1ďi,jďn. (5.3)

Proof. For Part (a), since LGT
φ “ λφ with φ “

řn
i“1 ciϕi, we have34

λpBG
n cqk “ xλφ, ϕkyL2pX q “ xLGT

φ, ϕkyL2pX q “

n
ÿ

i“1

cixLGT
ϕi, ϕkyL2pX q “ pAncqk,
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where the last equality follows from (3.6). Thus, λ is a generalized eigenvalue of pAn, B
G
n q. Note that BG

n “35

∆rIn if tϕiu are piecewise constants on intervals with length ∆r. Thus, by (5.2), λ∆r is an eigenvalue of An.1

Part (b) follows similarly.2

We summarize the notations in these two generalized eigenvalue problems in Table 2.

TABLE 2. Notation of variables in the eigenvalue problems on H.

in L2pX q in L2
sρT

integral kernel and operator xGT « GT , L
yGT

« LGT

xRT « RT , L
yRT

« LRT

eigenfunction and eigenvalue L
yGT

xφk “ pλkxφk L
yRT

xψk “ pγkxψk

eigenvector and eigenvalue AnÝÑφk “ pλkB
G
n

ÝÑφk An
ÝÑ
ψk “ pγkB

R
n

ÝÑ
ψk

3

Remark 5.2 (Ill-conditioned normal matrix). As the dimensions of H “ spantϕiu
n
i“1 increases, the normal4

matrix An becomes ill-conditioned. This is because An approximates the compact operators LGT
in L2pX q5

and LRT
in L2

sρT
, in the sense that6

Anpi, jq “ xxϕi, ϕjyy “ xLGT
ϕi, ϕjyL2pX q “ xLRT

ϕi, ϕjyL2
sρT
, @ϕi, ϕj P H.

Thus, Theorem 5.1 indicates that, as n increases, the generalized eigenvalues of An, with respect to BG
n and7

BR
n , converge to those of LGT

and LRT
, respectively. Then, the ratio λG,nmax{λG,nmin increases to infinity, where8

we let λG,nmax and λG,nmin be the maximal and minimal generalized eigenvalues of pAn, B
G
n q. Let λAn

max and λAn
min9

be the maximal and minimal eigenvalues of An, and similarly, λB
G
n

max and λB
G
n

min for BG
n . Note that10

λAn
max “ max

cPRn

cJAnc

cJBG
n c

cJBG
n c

cJc
ě max

cPRn

cJAnc

cJBG
n c

min
cPRn

cJBG
n c

cJc
“ λG,nmaxλ

BG
n

min,

λAn
min “ min

cPRn

cJAnc

cJBG
n c

cJBG
n c

cJc
ď min

cPRn

cJAnc

cJBG
n c

max
cPRn

cJBG
n c

cJc
“ λG,nminλ

BG
n

max.

Therefore, the conditional number of An is bounded below as11

λAn
max

λAn
min

ě
λG,nmax

λG,nmin

ˆ
λ
BG

n
min

λ
BG

n
max

.

Consequently, the matrix An becomes increasing ill-conditioned as H enlarges, since the ratio λB
G
n

min{λ
BG

n
max12

remains bounded for suitable basis functions.13

Remark 5.3 (Ill-posed inverse problem). The inverse problem is ill-posed in general: since An becomes ill-14

conditioned as n increases, a small perturbation in bn may lead to large errors in the estimator. More specifi-15

cally, we are solving the inverse problem pϕ “ L´1
RT

pLRT
ϕtrueq in L2

sρT
, where L´1

RT
is an unbounded operator.16

The normal matrix An approximates the operator LRT
, and bn approximates LRT

ϕtrue. The error in bn in the17

eigenspace of small eigenvalues will be amplified by the inversion, leading to an ill-posed inverse problem.18

5.3. Truncated SVD regularization in the L2 spaces. We compare the L2pX q and L2
sρT

in the context of19

truncated Singular value decomposition (SVD) regularization. We show by numerical examples that the space20

L2
sρT

leads to more accurate regularized estimators.21

Truncated SVD regularization. The truncated SVD regularization methods (see [12] and references therein)22

discard the smallest singular values of An and solve the normal equation in the remaining eigenspace. To23

take into account the function spaces of learning, we present here a generalized version using generalized24

eigenvalues of An. More precisely, let Bnpi, jq “ xϕi, ϕjy be a basis matrix, e.g., Bn “ BG
n or BR

n , which are25

extensions of Bn “ In in [12]. Write26
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An “

n
ÿ

i“1

σiuiu
J
i ,

where tσiu are the decreasingly-ordered generalized eigenvalues of pAn, Bnq and tuiu P Rn are the corre-27

sponding Bn-orthonormal eigenvectors (i.e., uJ
i Bnuj “ δij). The truncated SVD regularizer keeps only the1

n˚ largest eigenvalues above a proper threshold and leads to an estimator2

pϕ “

n
ÿ

j“1

pcjϕj , where pc “

n
ÿ̊

i“1

uJ
i b

σi
ui. (5.4)

This regularized estimator removes the error-prone contributions from uJ
i b
σi

ui when σi is small. Also, the3

estimator is regularized by expressing it as a linear combination of eigenfunctions corresponding to large ei-4

genvalues, which have a resemblance to low-frequency trigonometric functions.5

Truncated SVD estimators in L2pX q and L2
sρT

. To apply the truncated SVD regularization, we first compute6

the eigenvalues and eigenvectors corresponding to L2
sρT

and L2pX q. As suggested by Theorem 5.1, they are7

from the generalized eigenvalue problems:8

Unweighted SVD L2pX q : ΦDGΦJ “ An, with ΦJBG
nΦ “ I,

Weighted SVD L2
sρT

: ΨDRΨJ “ An, with ΨJBR
n Ψ “ I.

(5.5)

Here DG and DR are diagonal matrices consisting of the generalized eigenvalues of pAn, B
G
n q and pAn, B

R
n q.9

We compare the truncated SVD estimators in L2pX q and L2
sρT

for three examples:10

‚ cubic potential with ϕprq “ 3r2;11

‚ opinion dynamics with ϕ being piecewise linear;12

‚ the attraction-repulsion potential with ϕprq “ r ´ r´1.5.13

These examples are studied in [17], and our numerical settings and simulations are the same as those in [17,14

Section 4.1] (except for simplicity we consider v “ 0.001, ∆t “ 0.01 with T “ 0.1 and only M “ 400).15

We consider the basis functions being piecewise constants on a uniform partition of X . One can obtain better16

results by using spline basis functions with higher order regularity [17]. Here the piecewise constant basis17

functions can highlight the regularity of the eigenfunctions in L2
sρT

with L2pX q, making it easier to compare18

L2
sρT

with L2pX q in the truncated SVD regularization. The basis matrices become19

BG
n “ ∆rIn, BR

n “ diagppρT pr1q, . . . ,pρT prnqq∆r, (5.6)

where tpρT priqu is the average density on the interval rri´1, ris , i.e. pρT priq “ 1
∆r

şri
ri´1

sρT prqdr. Note that we20

can represent sρT by pρT “
řn
i“1

pρT priqϕi.21

Figure 1 shows the regularized estimators via truncated SVD in L2pX q and L2
sρT

for these examples. We22

pick a truncation level such that the sum of the largest n˚ singular values takes 99% of the total summation of23

the singular values. The corresponding eigenfunctions are presented in Figure 2. As can be seen, the weighted24

SVD leads to significantly more accurate estimators than the unweighted SVD.25

SVD analysis in L2pX q and L2
sρT

. SVD analysis helps to understand the truncated SVD regularization. The26

truncated SVD regularization aims to remove the error-prone terms uJ
i b
σi

ui, particularly when the eigenvalue27

σi is small. Thus, it is helpful to analyze the Picard ratio uJ
i b
σi

[12]. Clearly, when the ratio converges to zero,28

(called the discrete Picard condition), the term uJ
i b
σi

ui is error-immune; when the ratio increases largely, the29

inverse problem is ill-posed.30

Figure 3 shows the singular values and the Picard ratios for the weighted and unweighted SVD (5.5). Here31

the unweighted SVD is denoted by G, and “G: b-projection” refers to |uJ
i b| with ui being the columns of Φ.32

Similarly, R denote the weighted SVD, and “R: b-projection” refers to |uJ
i b| with ui being the columns of33

Ψ. In all these examples, the weighted SVD has larger eigenvalues than those of the unweighted SVD; and it34
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FIGURE 1. Regularized estimators via truncated SVD for the three examples, superimposed with the exploration measure
sρT . The weighted SVD (“HR Estimator”) has smaller errors than the unweighted SVD (“HG Estimator”), while both are
significantly more accurate than the un-regularized estimator (“all spline”).
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FIGURE 2. Eigenfunctions in the estimation via weighted and unweighted SVD in Figure 1. The weighted operator LR

has smoother eigenfunctions than the unweighted operator LG.

has smaller Picard ratios. Thus, the weighted SVD leads to less ill-conditioned inversions and more accurate35

estimators.1

Remark 5.4 (Tikhonov regularization with L-curve). The widely-used Tikhonov regularization [12] works well2

for this ill-posed inverse problem [17]. It minimizes Eλpψq “ Epψq ` λ|||ψ|||
2, where |||¨||| is a regularization3

norm. When the norm |||¨||| defines an inner product, it leads to a basis matrixBn for the basis functions tϕiu
n
i“1.4

The minimizer of Eλ in the hypothesis space H is pcλ “ pAn ` λBnq´1bn. There are two factors in the method,5

the regularization norm and the hyper-parameter. Given a regularization norm |||¨|||, an optimal parameter λ6

aims to balance the decrement of the loss functional E and the increment of the norm. Two groups of methods7

are successful. The L-curve method [13] selects λ at where the largest curvature occurs on a parametric curve8

of (logpEppcλqq, logp|||pcλ|||qq. The truncated SVD methods with the SVD analysis can also be used to select9

λ. However, the choice of regularization norm is problem-dependent and various norms have been explored,10

including the H1-norm in [17] and the RKHS norms (see [20] and the references therein).11

Appendix A. Appendix.12

A.1. Review of RKHS and positive definite functions. Positive definite functions. We review the definitions13

and properties of positive definite kernels. The following is a real-variable version of the definition in [3, p.67].14
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FIGURE 3. SVD analysis of the regression in three examples. Here R represents the weighted SVD and G represents the
unweighed SVD. In all three examples, the weighted SVD has larger eigenvalues than those of the unweighted SVD; and
it has slightly smaller ratios uJ

i b
σi

.

Definition A.1 (Positive definite function). Let X be a nonempty set. A function G : X ˆ X Ñ R is positive15

definite if and only if it is symmetric (i.e. Gpx, yq “ Gpy, xq) and
řn
j,k“1 cjckGpxj , xkq ě 0 for all n P N,1

tx1, . . . , xnu Ă X and c “ pc1, . . . , cnq P Rn. The function ϕ is strictly positive definite if the equality holds2

only when c “ 0 P Rn.3

Theorem A.2 (Properties of positive definite kernels). The following statements hold true.4

(a) Suppose that k1, k2 : X ˆ X Ă Rd ˆ Rd Ñ R are positive definite kernels. Then, the product k1k2 is5

positive definite ([3, p.69]).6

(b) Inner product xu, vy “
řd
j“1 ujvj is positive definite ([3, p.73]).7

(c) fpuqfpvq is positive definite for any function f : X Ñ R ([3, p.69]).8

RKHS and positive integral operators.9

We review the definitions and properties of Mercer kernel, RKHS, and related integral operators on compact10

domains (see e.g., [8]) and non-compact domains (see e.g., [29]).11

Let pX, dq be a metric space and G : X ˆ X Ñ R be continuous and symmetric. We say that G is a12

Mercer kernel if it is positive definite (as in Definition A.1). The reproducing kernel Hilbert space (RKHS) HG13

associated with G is defined to be closure of spantGpx, ¨q : x P Xu with the inner product14

xf, gyHG
“

n,m
ÿ

i“1,j“1

cidjGpxi, yjq

for any f “
řn
i“1 ciGpxi, ¨q and g “

řm
j“1 djGpyj , ¨q. It is the unique Hilbert space such that spantGp¨, yq, y P15

Xu is dense in HG and having reproducing kernel property in the sense that for all f P HG and x P X ,16

fpxq “ xGpx, ¨q, fyHG
(see [8, Theorem 2.9]).17

By means of the Mercer Theorem, we can characterize the RKHS HG through the integral operator associ-18

ated with the kernel. Let µ be a non-degenerate Borel measure on pX, dq (that is, µpUq ą 0 for every open set19

U Ă X). Define the integral operator LG on L2pX,µq by20

LGfpxq “

ż

X
Gpx, yqfpyqdµpyq.

The RKHS has the operator characterization (see e.g., [8, Section 4.4] and [29]).21

Theorem A.3 (Operator characterization of RKHS). Assume that the G is a Mercer kernel and G P L2pX ˆ22

X,µb µq. Then23
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1. LG is a compact positive self-adjoint operator. It has countably many positive eigenvalues tλiu
8
i“1 and24

corresponding orthonormal eigenfunctions tϕiu
8
i“1.1

2. t
?
λiϕiu

8
i“1 is an orthonormal basis of the RKHS HG.2

3. The RKHS is the image of the square root of the integral operator, i.e., HG “ L1{2
G L2pX,µq.3

A.2. Computation details for Example 4.4. We provide here the computation details in evaluating convolu-4

tions to obtain sFT px, yq and sρT px, yq in Example 4.4.5

1. Computation of sFT px, yq. Recall that Upxq “ 1
π

1
1`x2

and6

F T px, yq “

ż

R
Upz ´ xqUpz ´ yqUpzqdz “

1

π3

ż

R

1

1 ` pz ´ xq2

1

1 ` pz ´ yq2

1

1 ` z2
dz.

Using a separation of rational functions, we can write7

1

1 ` pz ´ xq2

1

1 ` pz ´ yq2

1

1 ` z2
“

Az `B

1 ` pz ´ xq2
`

Cz `D

1 ` pz ´ yq2
`
Ez ` F

1 ` z2
, (A.1)

where each term can be integrated analytically. We first solve for the constants A,B,C,D,E and F from a8

system of linear equations that match the coefficients of the powers of zp with p P t0, 1, . . . , 5u. For example,9

we have A` C ` E “ 0 from the coefficient of z5. Using a symbolic numerical solver, we obtain10

A “
´2p2x´ yq

xpx2 ` 4qppx´ yq3 ` 4px´ yqq
, B “

5x2 ´ 3xy ´ 4

xpx2 ` 4qppx´ yq3 ` 4px´ yqq
,

C “
2px´ 2yq

ypy2 ` 4qppx´ yq3 ` 4px´ yqq
, D “

´5y2 ` 3xy ` 4

ypy2 ` 4qppx´ yq3 ` 4px´ yqq
,

F “
xy ´ 4

xypx2 ` 4qpy2 ` 4q
.

Meanwhile, notice that each of the three terms in (A.1) can be computed similarly and11
ż

R

Az `B

1 ` pz ´ xq2
dz “

ż

R

Apz ´ xq ` pAx`Bq

1 ` pz ´ xq2
dz “ A

ż

R

t

1 ` t2
dt` pAx`Bq

ż

R

1

1 ` t2
dt. (A.2)

The terms with
ş

R
t

1`t2
dt is canceled because A` C ` E “ 0. Also

ş

R
1

1`t2
dt “ π. Hence, we have12

sFT px, yq “
1

π2
rpAx`Bq ` pCy `Dq ` F s “

2

π2
px2 ´ xy ` y2 ` 12q

px2 ` 4qpy2 ` 4qpx2 ´ 2xy ` y2 ` 4q
.

2. Computation of sρT px, yq. The computation is similar to that of sFT px, yq. Notice that,13

sρT pxq “ pUp¨q ˚ Up´¨qqpxq “
1

π2

ż

R

1

1 ` pz ´ xq2

1

1 ` z2
dz.

Thus, using a separation of rational functions 1
1`pz´xq2

1
1`z2

“ Az`B
1`pz´xq2

Cz`D
1`z2

, Eq.(A.2), and the fact that14

A` C “ 0 from the coefficient of z3, we have15

sρT pxq “
1

π
pAx`B `Dq “

2

πpx2 ` 4q
.
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aggregation for nonlocal interaction equations. Duke Math. J., 156(2):229–271, 2011.5

[7] X. Chen. Maximum likelihood estimation of potential energy in interacting particle systems from single-trajectory data.6

ArXiv200711048 Math Stat, 2021.7

[8] F. Cucker and D. X. Zhou. Learning theory: an approximation theory viewpoint, volume 24. Cambridge University Press, 2007.8

[9] L. Della Maestra and M. Hoffmann. The LAN property for McKean-Vlasov models in a mean-field regime, 2022.9

[10] L. Della Maestra and M. Hoffmann. Nonparametric estimation for interacting particle systems: McKean–Vlasov models. Proba-10

bility Theory and Related Fields, 182(1):551–613, 2022.11

[11] J. Fan and Q. Yao. Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York, NY, 2003.12

[12] P. C. Hansen. REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems. Numer13

Algor, 6(1):1–35, 1994.14

[13] P. C. Hansen. The L-curve and its use in the numerical treatment of inverse problems. In in Computational Inverse Problems in15

Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering, pages 119–142. WIT Press, 2000.16

[14] P.-E. Jabin and Z. Wang. Mean Field Limit for Stochastic Particle Systems. In N. Bellomo, P. Degond, and E. Tadmor, editors,17

Active Particles, Volume 1, pages 379–402. Springer International Publishing, Cham, 2017.18

[15] P.-E. Jabin and Z. Wang. Quantitative estimates of propagation of chaos for stochastic systems with w´1,8 kernels. Invent. math.,19

214(1):523–591, 2018.20

[16] R. A. Kasonga. Maximum Likelihood Theory for Large Interacting Systems. SIAM J. Appl. Math., 50(3):865–875, 1990.21

[17] Q. Lang and F. Lu. Learning interaction kernels in mean-field equations of first-order systems of interacting particles. SIAM22

Journal on Scientific Computing, 44(1):A260–A285, 2022.23

[18] Z. Li and F. Lu. On the coercivity condition in the learning of interacting particle systems. arXiv preprint arXiv:2011.10480, 2020.24

[19] Z. Li, F. Lu, M. Maggioni, S. Tang, and C. Zhang. On the identifiability of interaction functions in systems of interacting particles.25

Stochastic Processes and their Applications, 132:135–163, 2021.26

[20] F. Lu, Q. Lang, and Q. An. Data adaptive RKHS Tikhonov regularization for learning kernels in operators. Proceedings of Math-27

ematical and Scientific Machine Learning, PMLR 190:158-172, 2022.28

[21] F. Lu, M. Maggioni, and S. Tang. Learning interaction kernels in heterogeneous systems of agents from multiple trajectories.29

Journal of Machine Learning Research, 22(32):1–67, 2021.30

[22] F. Lu, M. Maggioni, and S. Tang. Learning interaction kernels in stochastic systems of interacting particles from multiple trajec-31

tories. Foundations of Computational Mathematics, pages 1–55, 2021.32

[23] F. Lu, M. Zhong, S. Tang, and M. Maggioni. Nonparametric inference of interaction laws in systems of agents from trajectory33

data. Proceedings of the National Academy of Sciences of the United States of America, 116(29):14424–14433, 2019.34

[24] F. Malrieu. Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab., 13(2):540–560,35

2003.36
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