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Abstract

We introduce a nonparametric algorithm to learn interaction kernels of mean-field equations for 1st-order
systems of interacting particles. The data consist of discrete space-time observations of the solution. By least
squares with regularization, the algorithm learns the kernel efficiently on data-adaptive hypothesis spaces. A key
ingredient is a probabilistic error functional derived from the likelihood of the mean-field equation’s diffusion
process. The estimator converges in a weighted L2 space at a rate for the trade-off between the numerical error
and approximation error. We demonstrate our algorithm on three typical examples: the opinion dynamics with
a piecewise linear kernel, the granular media model with a quadratic kernel, and the aggregation-diffusion with
a repulsive-attractive kernel.
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1 Introduction

We study the inverse problem of estimating the radial interaction kernel φ of the mean-field equation

Btu “ ν∆u`∇¨ rupKφ ˚ uqs, x P Rd, t ą 0,

upx, tq ě 0,

ż

Rd
upx, tqdx “ 1, @x, t,

(1.1)

from observations of a solution discrete in space-time. For simplicity, we assume that Ω :“
Ť

tPr0,T s supppup¨, tqq Ď
Rd is bounded with smooth boundary. Then Btu|BΩ “ 0,∇xu|BΩ “ 0. Here ν is the viscosity constant and
Kφ : Rd Ñ Rd is the gradient of a radial interaction potential Φ, whose derivative φ is called the interaction
kernel,

Kφpxq “ ∇pΦp|x|qq “ φp
ˇ

ˇx
ˇ

ˇq
x
ˇ

ˇx
ˇ

ˇ

, with φprq “ Φ1prq.

We denote Kφ ˚ upx, tq “
ş

ΩKφpx´ yqupy, tqdy. Since only the derivative of Φ affects the equation, we assume,
without lost of generality, that the potential satisfies Φp0q “ 0.

Equation (1.1) is the mean-field of the 1st-order stochastic interacting particle system

d

dt
Xi
t “

1

N

N
ÿ

i1“1

φp|Xj
t ´X

i
t |q

Xj
t ´X

i
t

|Xj
t ´X

i
t |
`
?

2νdBi
t, for i “ 1, . . . , N (1.2)

when N Ñ8, where Xi
t represents the i-th particle’s position (or agent’s opinion), and Bi

t is a standard Brownian
motion. Such systems arise in many disciplines: particles or molecules in microscopic models in statistical physics
and quantum mechanics [12] and in granular media [26], cells [17, 11, 4] and neural networks [2] in biology,
opinions of agents in social science [27], and in Monte Carlo sampling [9], to name just a few, and we refer to
[27, 15] for the considerable literature.

Motivated by these applications, there has been increasing interests in the inverse problem of estimating the
interaction kernel (or the interaction potential) of the mean-field equation. However, except for ideal situations in
physics, little information on the interaction kernel is available, which may vary largely from smooth functions in
granular media [6] to piece-wise constant function in opinion dynamics [27] or singular kernel in the Keller-Segel
model [4]. Thus, it is crucial to develop new methods beyond parametric estimation (see e.g., [10]). Towards this
direction, recent efforts [3, 24, 22, 23, 32] estimate the kernel by nonparametric regression for systems with finitely
many particles from multiple trajectories. For large systems, data of trajectories of all particles are often unavail-
able, instead, it is practical to consider data consisting of a macroscopic concentration density of the particles, i.e.,
the solution of the mean-field equation.

We introduce a nonparametric learning algorithm (see Algorithm 1) to estimate the interaction kernel φ from
data with a performance guarantee. The algorithm learns φ on a data-adaptive hypothesis space by least squares
with regularization. A key ingredient is a probabilistic error functional derived from the likelihood of the diffusion
process whose Fokker-Planck equation is the mean-field equation (see Theorem 2.1). The error functional is
quadratic, thus we can compute its minimizer by least squares. Furthermore, it does not require spatial derivatives,
thus it is suitable for discrete data (see EM,L in (2.17)).

Our estimator converges as the space-time mesh size decreases, in a weighted L2 space, at a rate for the
trade-off between the numerical error and approximation error. More precisely, with space dimension d “ 1, we
consider data consisting of a solution observed on space-time mesh: tupxm, tlqu

M,L
m,l“1, where xm ´ xm´1 “ ∆x

and tl ´ tl´1 “ ∆t. We introduce a probability measure sρT (see (2.2)) for for the kernel’s variable, representing
the region and intensity of exploration by data. Denote H a hypothesis space with dimension n and denote pφn the
projection of φ on it in L2psρT q. Our estimator pφn,M,L in (2.21), based on Riemann sum approximation to integrals
in the error functional, converges as p∆x,∆tq decreases (see Theorem 3.5),

}pφn,M,L ´
pφn}L2psρT q ď Cp∆xα `∆tq,
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Table 1 Notations

Notation Description
φ and Φ true interaction kernel and potential, φ “ Φ1

ψ and Ψ1 a generic interaction kernel and potential, ψ “ Ψ1

Kψpxq “ ψp|x|q x
|x| interaction function with kernel ψ

x ¨ y the inner product between vector x, y
} ¨ }8 and } ¨ }k,8 the L8 norm and W k,8 norm, k ě 1
L2psρT q L2 space with sρT in (2.2)
HRT

the RKHS with reproducing kernel RT in (2.8)
H “ span tφiu

n
i“1 hypothesis space with basis functions φi

EM,Lpψq error functional in (2.17), from data tupxm, tlqu
M,L
m,l“0

pφn,M,L estimator: minimizer of EM,L onH with dimension n

assuming suitable identifiability conditions and regularity on the solution. Here, α is the order of the numerical
integrator and we have α “ 1 for the Riemann sum integrator. We further consider the rate of convergence as
∆x Ñ 0 when ∆t “ 0, assuming that we can enlarge the hypothesis space H to control the approximation error
by }pφn ´ φ}L2psρT q Æ n´s with s ě 1. With a data-adaptive n for the trade-off between the numerical error and
the approximation error, we have

}pφn,M,8 ´ φ}L2psρT q ď }
pφn,M,8 ´

pφn}L2psρT q
looooooooooomooooooooooon

numerical error

`}pφn ´ φ}L2psρT q
looooooomooooooon

approximation error

Æ p∆xqαs{ps`1q, (1.3)

(see Theorem 3.7). That is, we achieve a rate of convergence αs
s`1 , optimal in the sense that it approaches the

numerical integrator’s order α when the kernel becomes smooth (sÑ8).
We demonstrate the efficiency of the algorithm on three typical examples: the granular media model with a

quadratic kernel (Section 4.2), the opinion dynamics with a piecewise linear kernel (Section 4.3), and the repulsion-
attraction system with a singular kernel (Section 4.4). In each example, our algorithm leads to accurate estimators
that can reproduce highly accurate solutions and free energy. For the smooth quadratic kernel, our estimator
achieves the theoretical rate of convergence. For non-smooth piecewise linear kernel and the singular repulsive-
attractive kernel, our estimator converges at lower rates.

The remainder of the paper is organized as follows. We present the learning algorithm in Section 2, where we
introduce the error functional and the estimator, discuss the choice of basis functions for the hypothesis space, pro-
vide practical guidance on regularization and dimension selection. Section 3 studies the rate of convergence of the
estimator when the space mesh refines, with the technical proofs postponed in Appendix A. Numerical examples
in Sections 4 demonstrate the efficiency of our algorithm on the three examples. We discuss the limitations of this
study and directions for future research in Section 5.

Notation We will use the notations in Table 1. We denote by } ¨ }8 and } ¨ }k,8 the L8 norm and the W k,8

norm, respectively, on the corresponding domains. For example, }u}8 and }u}1,8 denote the L8pΩˆ r0, T sq and
W 1,8pΩˆ r0, T sq norms,

}u}8 “ sup
xPΩ,tPr0,T s

|upx, tq|, }u}1,8 “ }∇x,tu}8 ` }u}8 .

Similarly, }φ}8 and }φ}k,8 denote the L8 and W k,8q norms on supppsρT q, respectively.

2 Inference of the interaction kernel

We introduce an efficient algorithm estimating the interaction kernel by least squares in a nonparametric fashion.
The key is a probabilistic error functional, which is the expectation of the negative likelihood ratio of the diffusion
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process whose Fokker-Planck equation is the mean-field equation. Our estimator, the minimizer of the error func-
tional, is then an extension of the maximal likelihood estimator. Remarkably, we can compute the estimator and the
error functional without using any spatial derivative of the solution, allowing us to recover the interaction kernel
from discrete data. We also discuss the function space of learning, the choice of basis functions and selection of
dimension for the hypothesis space, and regularization.

2.1 The error functional and estimator

Suppose first that the data is a continuous space-time solution u on r0, T s, we derive an error functional from the
likelihood of the diffusion process p sXt, t P r0, T sq described by the mean-field equation. More precisely, Eq.(1.1)
is the Fokker-Planck equation (or the Kolmogorov forward equation) of the nonlinear stochastic differential equa-
tion (see e.g.[26])

#

d sXt “´Kφ ˚ up sXt, tqdt`
?

2νdBt,

Lp sXtq “up¨, tq,
(2.1)

for t ě 0. Here Lp sXtq denotes the probability density of sXt if u is a regular solution, or the probability measure
of sXt if u is a distribution solution, depending on the initial condition and the interaction kernel. In either case, we
can write the convolution as

Kφ ˚ up sXt, tq “ ErKφp sXt ´ sX 1tq |
sXts “ Erφp

ˇ

ˇ sXt ´ sX 1t
ˇ

ˇq
sXt ´ sX 1t

ˇ

ˇ sXt ´ sX 1t
ˇ

ˇ

| sXts,

where sX 1t is an independent copy of sXt.
We start from the ambient function space for the interaction kernel: L2psρT q, where sρT is the average-in-time

distribution of | sX 1t ´ sXt| (denoted by ρt) on r0, T s:

sρT pdrq :“
1

T

ż T

0
ρtpdrqdt, ρtpdrq :“ Erδp| sX 1t ´ sXt| P drqs. (2.2)

Note that sρT depends on the initial distribution up¨, 0q and the true interaction kernel φ. We point out that the
measure sρT is different from the empirical measure of pairwise distances in particle systems [24, 23, 21], because
sXt and sX 1t are independent copies and are no longer interacting particles. However, in view of inference, the high

probability region of sρT is where
ˇ

ˇ sXt ´ sX 1t
ˇ

ˇ explores the interaction kernel the most, as such, the natural function
space of learning is L2psρT q. Also, the space L2psρT q ensures that our error functional below is well-defined.

Theorem 2.1 (Error functional). Let u be a solution to (1.1) on [0,T] with interaction kernel φ. Let ψ P L2psρT q
with sρT in (2.2), Ψprq “

şr
0 ψpsqds and Kψpxq “ ∇Ψp|x|q. The error functional

Epψq :“
1

T

ż T

0

ż

Rd

”

ˇ

ˇKψ ˚ u
ˇ

ˇ

2
u` 2BtupΨ ˚ uq ` 2ν∇u ¨ pKψ ˚ uq

ı

dx dt (2.3)

is the expectation of the average-in time negative log-likelihood of the process sXt in (2.1). Furthermore, if ψ P
W 1,8, we can replace the integrand∇u ¨ pKψ ˚ uq by ´up∆Ψ ˚ uq.

Proof. We denote by Pφ the law of the process p sXtq on the path space with initial condition sX0 „ up¨, 0q, with
the convention that P0 denotes the Winner measure. Then, the negative log-likelihood ratio of a trajectory sXr0,T s
from Pψ relative to Pφ is (see e.g., [19, Section 1.1.4] or [16, Section 3.5])

E
sXr0,T s

pψq “ ´2 log
dPψ
dPφ

“
1

T

ż T

0

`

|Kψ ˚ up sXtq|
2dt` 2xKψ ˚ up sXtq, d sXty

˘

,

where dPψ
dPφ is the Radon-Nikodym derivative.
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Taking expectation and noting that d sXt “ ´Kφ ˚ up sXtqdt`
?

2νdBt, we obtain

EE
sXr0,T s

pψq “
1

T

ż T

0
E
“

|Kψ ˚ up sXtq|
2 ´ 2Kψ ˚ up sXtq ¨Kφ ˚ up sXtq

‰

dt.

“
1

T

ż T

0

ż

Rd

”

ˇ

ˇKψ ˚ u
ˇ

ˇ

2
u´ 2upKφ ˚ uq ¨ pKψ ˚ uq

ı

dx dt, (2.4)

where we used that the fact that for any ψ, φ P L2psρT q (recalling that up¨, tq is the law of sXt),

ErKψ ˚ up sXtq ¨Kφ ˚ up sXtqs “

ż

Rd
upKφ ˚ uq ¨ pKψ ˚ uq dx.

Noticing that Kψ ˚ u “ ∇Ψ ˚ u “ ∇pΨ ˚ uq for any ψ “ Ψ1 and using (1.1), we have

ż T

0

ż

Rd
upKφ ˚ uq ¨ pKψ ˚ uqdx dt “

ż T

0

ż

Rd
upKφ ˚ uq ¨ p∇Ψ ˚ uqdx dt

“´

ż T

0

ż

Rd
p∇ ¨ rupKφ ˚ uqsqΨ ˚ udx dt p by integration by parts (IbP)q

“ ´

ż T

0

ż

Rd
pBtu´ ν∆uqpΨ ˚ uqdx dt p by Equation (1.1)q

“ ´

ż T

0

ż

Rd
BtupΨ ˚ uqdx dt´ ν

ż T

0

ż

Rd
∇u ¨ pKψ ˚ uqdx dt, pby IbPq. (2.5)

Combining (2.4), (2.5) and (2.3), we obtain

EE
sXr0,T s

pψq “
1

T

ż T

0

ż

Rd

”

ˇ

ˇKψ ˚ u
ˇ

ˇ

2
u´ 2upKφ ˚ uq ¨ pKψ ˚ uq

ı

dx dt “ Epψq. (2.6)

At last, from integration by parts, we can replace the integrand∇u ¨ pKψ ˚uq by´up∆Ψ˚uq if ψ PW 1,8.

To simplify the notation, we introduce the following bilinear form: for any φ, ψ P H,

〈〈φ, ψ〉〉 :“
1

T

ż T

0

ż

Rd
pKφ ˚ uq ¨ pKψ ˚ uqupx, tqdx dt

“
1

T

ż T

0

ż

Rd

ż

Rd
Kφpyq ¨Kψpzq

ż

Rd
upx´ y, tqupx´ z, tqupx, tqdxdydz dt

“

ż

R`

ż

R`
φprqψpsq RT pr, sqsρT pdrqsρT pdsq, (2.7)

where the kernel RT pr, sq, obtained by a change of variables to polar coordinates, is

RT pr, sq “
prsqd´1

sρ1T prqsρ
1
T psqT

ż T

0

ż

Sd

ż

Sd

ż

Rd
ξ ¨ η upx´ rξ, tqupx´ sη, tqupx, tqdxdξdη dt. (2.8)

Here sρ1T denotes the probability density of the measure sρT and Sd denotes the unit sphere in Rd. The integral
kernel RT is a Mercer kernel on L2psρT q and it defines a reproducing kernel Hilbert space (RKHS), which is a
function space of learning and we denote it by HRT

(see Remark 2.4 for details).
Then, in view of (2.6), we can write the error functional as

Epψq “ 〈〈ψ,ψ〉〉´ 2 〈〈ψ, φ〉〉 “ 〈〈ψ ´ φ, ψ ´ φ〉〉´ 〈〈φ, φ〉〉 . (2.9)

Note that it is quadratic, so we can compute its minimizer on a finite-dimensional hypothesis space by least squares.
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Theorem 2.2 (Estimator from continuous data). For any spaceH “ span tφiu
n
i“1 Ď L2psρT q such that the normal

matrix A in (2.11) is invertible, the unique minimizer of the error functional E onH is given by

pφn “
n
ÿ

i“1

pciφi, with pc “ A´1b. (2.10)

where the normal matrix A and vector b are given by (with Φiprq “
şr
0 φipsqds)

Aij “ 〈〈φi, φj〉〉 “
1

T

ż T

0

ż

Rd
pKφi ˚ uq ¨ pKφj ˚ uqupx, tqdx dt, (2.11)

bi “ 〈〈φ, φi〉〉 “ ´
1

T

ż T

0

ż

Rd
rBtuΦi ˚ u´ ν∇u ¨ pKφi ˚ uqs dx dt. (2.12)

Again, we can replace ´∇u ¨ pKφi ˚ uq by upp∇¨Kφiq ˚ uq if φi PW 1,8.

Remark 2.3. We set Φip0q “ 0 for the anti-derivative of φi for simplicity. In general, the constant Φip0q does
not affect the integral

şT
0

ş

Rd BtuΦi ˚ udxdt in (2.12), because for any constant c, we have c ˚ u “ c and
şT
0

ş

Rd Btucdxdt “ c
ş

Rd upx, 0q ´ upx, T qdt “ c´ c “ 0.

Proof. Recall that with the bilinear form (2.7), the error functional can be written as (2.9). For each ψ “
řn
i“1 ciφi P H, we can write the error functional as,

Epψq “ Epcq “ cJAc´ 2bJc, (2.13)

where A is given by (2.11) and b are given by

bi “ 〈〈φ, φi〉〉 “
1

T

ż T

0

ż

Rd
pKφ ˚ uq ¨ pKφi ˚ uqupx, tqdx dt

“ ´
1

T

ż T

0

ż

Rd
pBtu´ ν∆uqpΦi ˚ uqdx dt

“ ´
1

T

ż T

0

ż

Rd
BtupΦi ˚ uqdx dt´ ν

1

T

ż T

0

ż

Rd
∇u ¨ pKφi ˚ uqdx dt,

where in the last equality, we used integration by parts to get rid of ν∆u. Applying integration by parts to
ş

Rd ∇u ¨
pKφi ˚ uq and note that∇pKφi ˚ uq “ p∇¨Kφiq ˚ u, we obtain (2.12).

Since the error functional is quadratic, the minimizer can be given explicitly by (2.10).

Remark 2.4 (RKHS, identifiability and ill-posedness). The integral kernel RT is a Mercer kernel and it defines an
RKHSHRT

Ď L2psρT q, a function space on which the loss functional E has a unique minimizer. Roughly speaking,

the RKHS is the image of an operator, i.e., HRT
“ L1{2

RT
L2psρT q, where LRT is the integral operator

LRTϕ “
ż

R`
ϕprqRT pr, sqsρT pdrq, for ϕ P L2psρT q. (2.14)

Note that we have from the definition of the bilinear form (2.7):

〈〈ϕ,ψ〉〉 “ xϕ,LRTψyL2psρT q. (2.15)

Thus, the Frechét derivative of the loss functional on L2psρT q is E 1pϕq “ LRTϕ´ LRT φ, which has a unique zero
on HRT

. Thus, if the true φ is in HRT
, it is identifiable by the loss functional E as the unique minimizer of E

in HRT
. Meanwhile, note that we are actually solving pφ “ L´1

RT
rLRT φs with LRT φ estimated from data. This

inverse problem is ill-posed because LRT is a strictly positive compact operator and its inverse is unbounded. We
refer to [20] for more discussions on these issues.
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Remark 2.5. The normal matrix’s invertibility depends on the basis functions tφiu
n
i“1 ofH. Its smallest eigenvalue

is the smallest eigenvalue of the integral operator with kernel RT on H (see Proposition 3.4). Thus, to make the
normal matrix invertible, we need the coercivity condition in Definition 3.3.

Remark 2.6 (The PDE discrepancy error functional). Our error functional in (2.3) has two advantages over the
PDE discrepancy error functional

E0pψq “

ż T

0

ż

Rd

ˇ

ˇ∇.pupKψ ˚ uqq ´ g
ˇ

ˇ

2
dx dt.

where g “ Btu´ν∆u. First, it requires the derivatives∇u and ∆u, because the integration by parts does not apply.
Numerical errors from approximating these derivatives can prevent this approach from working, particularly when
the data is not a perfect solution to the PDE. This is because the inverse problem is ill-posed (see Remark 2.4,
equivalently, the regression matrix A tends to be ill-conditioned). In our numerical tests with solution generated
by SPCC (see Section 4.1), this approach fails to produce any acceptable estimator in various settings. Second,
since up¨, tq is a probability density, all component of our error functional can be written as expectations, allowing
for Monte Carlo approximations, which is essential in high-dimensional problems (see Remark 2.7).

Estimator from discrete data When data are discrete in space-time, we approximate the integrals in the estima-
tor and the error functional by numerical integrators. For simplicity, we consider only data on a regular mesh for
d “ 1 and use the Riemann sum. In practice, we could use higher-order numerical methods for the integration and
convolution, for instance, the trapezoid method for the integrals and Fourier transform for the convolution. Note
also that these integrations are expectations, so in general, particularly for high dimensional cases, the data can
also be independent samples of the distribution, and we approximate the integrations by the empirical mean.

Suppose that the data are tupxm, tlqu
M,L
m,l“1, with tl “ l∆t for L “ T {∆t and with txmuMm“1 being a uniform

mesh of Ω with length/area ∆x.
From these data, we approximate all the integrals by Riemann sum. We approximate sρT in (2.2) by its the

empirical measure:

ρML pdrq “
1

L

L
ÿ

l“1

M,M
ÿ

m,m1“1

upxm, tlqupxm1 , tlqδ|xm´xm1 |prqdr. (2.16)

With ψ “
řn
i“1 ciφi, we compute the error functional in (2.13) by

EM,Lpψq “ EM,Lpcq “ cJAM,Lc´ 2bJM,Lc, (2.17)

where the normal matrix AM,L and vector bM,L, approximating A and b in (2.11)-(2.12), are

Ai,jn,M,L :“
1

L

L
ÿ

l“1

M
ÿ

m“1

”´

P in,M,L ¨ P
j
n,M,L

¯

u
ı

pxm, tlq∆x, (2.18)

bin,M,L :“ ´
1

L

L
ÿ

l“1

M
ÿ

m“1

”

xBtu Q
i
n,M,L ` νuR

i
n,M,L

ı

pxm, tlq∆x. (2.19)

Here P in,M,L, Qin,M,L and Rin,M,L are Riemann sum approximations of Kφi ˚u, Φi ˚u and∇Kφi ˚u, respectively,
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and xBtu is the finite difference approximation of Btu

P in,M,Lpx, tq :“
M
ÿ

m“1

Kφipxmqupx´ xm, tq∆x,

Qin,M,Lpx, tq :“
M
ÿ

m“1

Φipxmqupx´ xm, tq∆x,

Rin,M,Lpx, tq :“
M
ÿ

m“1

∇¨Kφipxmqupx´ xm, tq∆x,

xBtupx, tq :“
1

∆t

L
ÿ

l“1

rupx, tlq ´ upx, tl´1qs1ptl´1,tlsptq.

(2.20)

A few remarks on the numerical aspects: (1) one can use high-order numerical integrators to increase the accuracy
of the spatial integrals; (2) we computed Rin,M,Lpx, tq assuming that the basis functions tφiu are in W 1,8. If tφiu
are not differentiable, we can use∇u as in (2.12); (3) in practice, we use zero padding for u by setting upxi, tq “ 0
if xi P BΩ; (4) also, we normalize the vector tupxm, tquMm“1 so that

řM
m“1 ∆xupxm, tq “ 1 for each t. This

ensures that
řM
m“1

”

xBtu Q
i
n,M,L

ı

pxm, tlq does not depend on the constant Φp0q, as discussed in Remark 2.3.
Correspondingly, the estimator is

pφn,M,L “

n
ÿ

i“1

pcin,M,Lφi, with pcn,M,L “ A´1
n,M,Lbn,M,L. (2.21)

2.2 Basis functions for the hypothesis space

We consider two classes of basis function for the hypothesis space H: the B-spline piecewise polynomials whose
knots are uniform partition of sρT ’s support; the RKHS basis consisting of eigenfunctions of the integral operator
with kernel RT in (2.8). The B-splines are universal local basis, while the RKHS basis functions are global basis
adaptive to data.

B-spline basis functions B-spline is a class of piecewise polynomials, and is capable of representing the local in-
formation of the interaction kernel. Here we review briefly the recurrence definition and properties of the balanced
B-splines, for more details we refer to [29, Chapter 2] and [25].

Given a nondecreasing sequence of real numbers tr0, r1, . . . , rmu (called knots), the B-spline basis functions
of degree p, denoted by tNi,pu

m´1
i“0 , is defined recursively as

Ni,0prq “

"

1, ri ď r ă ri`1,
0, otherwise,

Ni,pprq “
r ´ ri
ri`p ´ ri

Ni,p´1prq `
ri`p`1 ´ r

ri`p`1 ´ ri`1
Ni`1,p´1prq.

(2.22)

Each B-spline basis functionNi,p is a nonnegative piecewise polynomial of degree p, locally supported on rri, ri`p`1s,
and it is p´k times continuously differentiable at a knot, where k is the multiplicity of the knot. Hence, continuity
increases when the degree increases, and continuity decreases when knot multiplicity increases. Also, it satisfies
partition unity: for each r P rri, ri`1s,

ř

j Nj,pprq “
ři
j“i´pNj,pprq “ 1.

For f P W k,8, denote fH its projection to the linear space H of B-splines with degree p ě k ´ 1 and denote
Dpkqf the k-th order derivative. We have [25, p.45, Theorem 17]

}f ´ fH}8 ď Cph
k}Dpkqf}8, (2.23)

where Cp is a constant depending on p, and h “ maxi |ri ´ ri´1|.
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We set the knots to be uniform partition of the support of sρT , with augmented knots at the ends of the support
interval, say rRmin, Rmaxs,

Rmin “ r´p`1 “ ¨ ¨ ¨ “ r0 ď r1 ď ¨ ¨ ¨ ď rm “ ¨ ¨ ¨ “ rp`m´1 “ Rmin.

We set the basis functions of the hypothesisH, whose dimension is m` p, to be

φiprq “ Ni´p,pprq, r ą 0, i “ 1, . . . ,m` p.

Thus, the basis functions tφiu are degree-p piecewise polynomials with knots adaptive to sρT .

The RKHS basis The RKHS basis functions tφiu are the eigenfunctions of the integral operator with kernel
RT pr, sq (defined in (2.8)) on L2psρT q , that is,

LRT φipsq “
ż

R`
φiprqRT pr, sqsρT pdrq “ λiφipsq, in L2psρT q. (2.24)

Thus, we have 〈〈φi, φj〉〉 “ λixφi, φjyL2psρT q “ λiδi´j and it leads to a diagonal normal matrix A in (2.11). We
estimate these eigenfunctions from data. Hence, the RKHS basis is adaptive to data.

We compute these eigenfunctions by eigen-decomposition of the matrix pRT pri, rjqq on a mesh when its size
is manageable. When the mesh size is large, we can compute them using a linear transformation from a more
convenient basis. That is, we start from linearly independent functions tψiuni“1 (e.g., B-splines) and evaluate
Ã :“ 〈〈ψi, ψj〉〉 and P “ xφi, φjyL2psρT q, then we solve the generalized eigenvalue problem Ãα “ λPα for
eigenvectors tαk P Rnunk“1 such that αJk Pαl “ δk´l. Then, the eigenfunctions are given by φi “

řn
l“1 αi,lψl (we

refer to [20] for more details).

2.3 Regularization

In practice, the approximate normal matrix An,M,L in (2.18) may be ill-conditioned or invertible, which is likely
to happen when the dimension ofH increases because of the vanishing eigenvalues of A and the numerical errors.
The ill-conditioned normal matrix may amplify the numerical error in bn,M,L in (2.19). To avoid such an issue, we
use the Tikhonov regularization (see, e.g.,[14]), which adds a norm-induced well-conditioned matrix to the normal
matrix.

More precisely, we impose a regularization norm |||¨||| (to be specified below) such that for any ψ “
řn
i“1 ciφi,

the matrix B in |||ψ|||2 “ cJBc is well-conditioned. We then minimize the regularized error functional (recall
(2.13))

Eλpψq “ Epψq ` λ|||ψ|||2 “ cJpA` λBqc´ 2bJc,

and the regularized estimator is

xφλ “
n
ÿ

i“1

ciλφi, cλ “ pA` λBq
´1b. (2.25)

Regularization norm We consider two regularization norms |||¨||| and many other options are possible. For the
RKHS basis, we useBij “ δij , which is the common choice [7]. This is equivalent to having a prior knowledge that
the coefficient c is small. For the spline basis, we choose |||f ||| “ }f}H1pΩq, and in this case Bij “ 〈〈φi, φj〉〉H1pΩq.
This is equivalent to the prior assumption that Kφ of the true interaction kernel has H1pΩq regularity.
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Regularization parameter by L-curve We select the parameter λ by the L-curve method [14]. Let l be a
parametrized curve in R2:

lpλq “ pxpλq, ypλqq :“ plogpEpxφλq, logp
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xφλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
qq.

Note that Epxφλq “ cJλAcλ´2bJcλ, and
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xφλ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
“ cJλBcλ. The optimal parameter is the maximizer of the curvature

of l. In practice, we restrict λ in the spectral range of A:

λ0 “ arg max
λminpAqďλďλmaxpAq

κplq “ arg max
λminpAqďλďλmaxpAq

x1y2 ´ x1y2

px1 2 ` y1 2q3{2
. (2.26)

This λ0 balances the error functional E and the regularization (see [14] for more details).

2.4 dimension of the hypothesis space

The dimension nmust neither be too small nor too large to avoid under-fitting or over-fitting. Theorem 3.7 suggests
that the dimension is n « p∆xq´α{ps`1q, where p∆xqα is the order of convergence of the numerical integrator in
the evaluation of the normal matrix and normal vector, and s is the order of decay for the distance between the
true kernel and the hypothesis space. For B-spline bases, the approximation error bound in (2.23) suggests that
s “ k for φ PW k,8 when we select the degree p ě k. This theoretical dimension provides only an estimate on the
magnitude. In practice, to find the dimension, we first select a range rN1, N2s for the dimension; then we choose
the n that minimizes the regularized error functional.

2.5 The algorithm

We summarize the method in this section in Algorithm 1.

Algorithm 1 Estimation of the interaction kernel

Input: Data tupxi, tlqu
M,L
m“1,l“1 on the space mesh txmu

M
m“1 with width/area ∆x and time mesh ttl “ l∆tu

T
l“0.

Output: Estimated pφ
1: Estimate the empirical density ρML in (2.16) and find its support rRmin, Rmaxs.
2: Select a basis type, RKHS or B-spline, and estimate a dimension range rN1, N2s, compute the basis functions as described

in Section 2.2.
3: for n “ N1 : N2 do
4: Compute the normal matrix and vector as in (2.18)–(2.20).
5: Determine the optimal regularization constant λ0 by (2.26).
6: Solve cn by (2.25) and record the regularized cost Cpnq “ Eλ0

p
řn
i“1 c

i
nφiq.

7: Select the dimension by n˚ “ arg max
nPtN1,N1`1,...,N2u

Cpnq.

8: Return the estimator pφ “
řn˚

i“1 c
i
n˚φi.

Computational complexity Given data tupxi, tlqu
M,L
m“0,l“0, where M is the space grid size (it is exponential in

the space dimension d) and L is the number of time steps. Let n be the number of basis functions in the hypothesis
space. The computational complexity of our algorithm is Oppn2 ` n` 1qM2Lq: the computation of the measure
sρT , An,M,Lpi, kq and bn,M,Lpiq each is OpM2Lq. The computational cost of the solution to the least squares and
regularization is negligible since n is orders of magnitudes smaller than M2L.

Scalability for data consisting of many solutions Our algorithm can efficiently deal with data consists of many
solutions tupkqpxm, tlq

M,L
m“0,l“0u

K
k“1 through paralleled computation. It can first compute the normal matrix and

vector for each solution in parallel, then assemble the matrices and vectors for least squares regression with regu-
larization.
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Remark 2.7 (High dimensional case by Monte Carlo). When the space variable x P Rd is high-dimensional (with
d ě 4), it becomes impractical to have data on mesh-grids since the data size increases exponentially in d. One
would consider the setting when data consists of samples from the probability densities up¨, tq. In this setting, our
algorithm applies directly because all the spatial integration related elements (sρT , the normal matrixA and vector
b) can be written as expectations, which can be approximated by Monte Carlo. The computational complexity will
remain the same as above with M being the sample size. We leave this as a future direction of exploration.

3 Convergence of the estimator in mesh size

We analyze the convergence of the discrete-data estimator (2.21) to the continuous-data estimator (2.10) as the
mesh refines.

We denote by |Ω| the Lebesgue measure of Ω and denote by RΩ its radius. Note that support of sρT is r0, RΩs

though Ω is in Rd. For simplicity, we consider only the case when Ω “ ra, bs P R1 and the generalization to a
higher dimension is immediate. We assume that the data are

Data: tupxm, tlqu
M,L
m,l“0, xm “ a`m∆x, tl “ l∆t (3.1)

with M “ pb´ aq{∆x and L “ T {∆t.
In this section, we make the following assumptions on u and the basis functions ofH.

Assumption 3.1 (Constraints on hypothesis space). Let the basis functions of H “ spantφiu
n
i“1 are uniformly

bounded in W 2,8pr0, RΩsq with notations

c8H :“ max
1ďiďn

}φi}8, c
1,8
H :“ max

1ďiďn
}φi}1,8, c

2,8
H :“ max

1ďiďn
}φi}2,8 ă 8. (3.2)

Assumption 3.2. Assume that solution u PW 2,8pΩˆ r0, T sq satisfies }u}2,8 ă 8.

We remark that the second order derivatives of the solution are necessary to control of the Riemann sum
approximation of the integrals. With stronger regularity on the solution and higher-order approximations of the
integrals than the Euler scheme, one can obtain higher order convergence in space and time. In the other direction,
since these integrals are expectations, they can be approximated Monte Carlo, we expect to remove these regularity
assumptions in forthcoming research.

To make the estimators in (2.21) and (2.10) well-defined, the normal matrices must be invertible. We introduce
the following coercivity condition to ensure it. It extends of the coercivity condition forN -particle systems defined
in [21, 23, 24].

Definition 3.3 (Coercivity condition). The system (1.1) on r0, T s satisfies a coercivity condition on a finite-
dimensional linear subspaceH Ď L2pρ̄T q with ρ̄T defined in (2.2) if

cH,T :“ inf
hPH, }h}L2psρT q

“1
〈〈h, h〉〉 ą 0, (3.3)

where 〈〈¨, ¨〉〉 is defined in (2.7). WhenH Ď L2psρT q is infinite-dimensional, we say coercivity condition holds onH
if it holds on each ofH’s finite dimensional linear subspace.

We show that the coercivity constant is the smallest generalized eigenvalue of the normal matrix A in (2.11).
The generalized eigenvalue problem appears because A is a representation of the integral operator in (2.24) on H
[20].

Proposition 3.4. Assume the coercivity condition holds on H “ span tφiu
n
i“1. Let A be the normal matrix in

(2.11), and let P “ xφi, φjyL2psρT q. Then, the smallest singular value of Ac “ λPc is λmin “ cH,T .
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Proof. Let ψ “
řn
i“1 ciφi P H with c satisfying Ac “ λminPc, that is, c is an eigenvector for λmin. Thus, by the

coercivity condition,

λmin}ψ}
2
L2psρT q

“ λminc
JPc “ cTAc “ 〈〈ψ,ψ〉〉 ě cH,T }ψ}

2
L2psρT q

.

Thus, λmin ě cH,T . Note that the space H here is finite dimensional, the infimum in the definition of coercivity
constant is attained by some ψ˚ “

řn
i“1 viφi. Since λmin is the minimal eigenvalue, we have cH,T }ψ˚}

2
L2psρT q

“

〈〈ψ˚, ψ˚〉〉 “ vJAv ě λminv
JPv “ λmin }ψ

˚}
2
L2psρT q

. Hence, we have λmin “ cH,T .

3.1 Error bounds for the estimator

We show that the estimator pφn,M,L in (2.21) converges as M Ñ8 and LÑ8.

Theorem 3.5 (Error bounds for the estimator). Suppose that the hypothesis space H “ spantφiu
n
i“1 satisfies

Assumption 3.1 and denote pφn the projection of φ on H Ď L2psρT q. Suppose that the coercivity condition in
Definition 3.3 holds onH with a constant cH,T ą 0. Then, the estimator pφn,M,L in (2.21) satisfies

}pφn,M,L ´
pφn}L2psρT q ď 2cH,T

´1σmax

´

cb
?
n` cAn }φ}L2psρT q

¯

p∆x`∆tq, (3.4)

where cA :“ 2|Ω|p1` |Ω|qpc1,8
H q2 }u}21,8, cb :“ 3|Ω|p1`RΩ` νqc

2,8
H p}u}21,8`}u}2,8q, and σmax is the square

root of the largest eigenvalue of P “ pxφi, φjyL2psρT qq.

Proof of Theorem 3.5. Notice that pφn,M,L and pφn are given by

pφn,M,L “

n
ÿ

i“1

pc in,M,Lφi,
pφn “

n
ÿ

i“1

pc iφi,

where pcn,M,L “ A´1
n,M,Lbn,M,L and pc “ A´1b, we have

}pφn,M,L ´
pφn}L2psρT q “

b

ppcn,M,L ´ pcqJP ppcn,M,L ´ pcq

ď σmax }pcn,M,L ´ pc} “
›

›

›
A´1
n,M,Lbn,M,L ´A

´1b
›

›

›
.

Also, by the formula A´1
n,M,L ´A

´1 “ A´1
n,M,LpA´An,M,LqA

´1, we have

›

›

›
A´1
n,M,Lbn,M,L ´A

´1b
›

›

›
“

›

›

›
A´1
n,M,Lpbn,M,L ´ bq ` pA

´1
n,M,L ´A

´1qb
›

›

›

ď

›

›

›
A´1
n,M,L

›

›

›

`

}bn,M,L ´ b} ` }An,M,L ´A} ¨
›

›A´1b
›

›

˘

.

By Proposition 3.8, for small enough ∆x and ∆t, we have }A´An,M,L} ď
cH,T

2 . Hence
›

›

›
A´1
n,M,L

›

›

›
ď 2cH,T

´1.

Note that
›

›A´1b
›

› “

›

›

›

pφn

›

›

›

L2psρT q
ď }φ}L2psρT q

is independent of the mesh size. Thus, we obtain (3.4) by (3.6) in

Proposition 3.8.

Remark 3.6 (High order numerical integrators). For a fixed n, the rate of convergence is the same as the order of
the numerical integrators in the computation of A and b. Hence, when the solution and the kernel are smooth, we
can achieve faster convergence by using a higher order numerical integrator.

The next theorem shows that as the spatial mesh refines, the estimator converges at a rate αs
s`1 , where α is the

order of the numerical integrator and s is the rate of decay of the approximation error by the hypothesis space
(thus, s is determined by the smoothness of the true kernel since we can tune the hypothesis space).
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Theorem 3.7 (Rate of convergence). Assume ∆t “ 0 and consider the estimator pφn,M,8 in (2.21) on H with
dimension n. Denote pφn the projection of φ on H Ď L2psρT q. Assume that as M “

ˇ

ˇΩ
ˇ

ˇ{p∆xq Ñ 8, we have
}pφn,M,8 ´

pφn}L2psρT q Æ np∆xqα, (for example, α “ 1 in Theorem 3.5), and assume

}pφn ´ φ}L2psρT q Æ n´s

with s ě 1 when n increases. Then, with a data-adaptive dimension n « p∆xq´α{ps`1q, we can achieve the rate

}pφn,M,8 ´ φ}L2psρT q Æ p∆xq
αs{ps`1q.

Proof. Note that the total error in the estimator consists of numerical error and approximation error:

}pφn,M,8 ´ φ}L2psρT q ď }
pφn,M,8 ´

pφn}L2psρT q ` }
pφn ´ φ}L2psρT q.

Then, the total error is of the order gpnq “ np∆xq´α ` n´s. Minimizing it by solving g1pzq “ p∆xq´α ´
sz´s´1 “ 0, we get the dimension n « s´1{ps`1qp∆xqα{ps`1q, and the corresponding rate of convergence is
p∆xq´αs{ps`1q.

The exponent s depends on both the smoothness of φ and the hypothesis space H “ spantφiu
n
i“1. When

φ PW s,8 and tφiu are B-splines with degree p ě s´1 and uniform knots on supppsρT q, we have }φ´pφn}8 Æ n´s

by (2.23) and hence }pφn ´ φ}L2psρT q Æ n´s. Note that when the smoothness of φ increases (s Ñ 8), the rate
αs
s`1 approaches α, the order of the numerical integrator. In high-dimensional case using Monte Carlo (see Remark
2.7), we conjecture the convergence rate to be s{p2s` 1q and leave it as future work.

3.2 Numerical error in the normal equation

In the proof of Theorem 3.5, the error in the estimator comes from numerical integrations in space and in time,
and the numerical errors are passed through An,M,L and bn,M,L. We outline the main proof for the numerical error
bounds and leave the technical results in Appendix A.

Note that for each t, the integrals in space are expectations with respect to up¨, tq and that

|Ω| }u}1,8 ě |Ω| }u}8 ě

ż

Ω
upx, tqdx “ 1. (3.5)

Proposition 3.8. The numeric error of An,M,L and bn,M,L in (2.18) and (2.19) are bounded by

}A´An,M,L} ď ncAp∆x`∆tq,

}b´ bn,M,L} ď
?
ncbp∆x`∆tq,

(3.6)

where the norm for matrix is in the Frobenius sense, and the constants cA :“ 2|Ω|p1 ` |Ω|qpc1,8
H q2 }u}21,8 and

cb :“ 3|Ω|p1`RΩ ` νqc
2,8
H p}u}21,8 ` }u}2,8q are given in Theorem 3.5.

Proof. Using the notation Dpfq in (A.1) with f “ pKφi ˚ uqpKφj ˚ uqu, we have
ˇ

ˇAi,j´A
i,j
n,M,L

ˇ

ˇ ď Dpfq ` IA1 , with

IA1 :“
1

L

L
ÿ

l“1

M
ÿ

m“1

ˇ

ˇ

”´

pKφi ˚ uq ¨ pKφj ˚ uq ´ P
i
n,M,L ¨ P

j
n,M,L

¯

u
ı

pxm, tlq
ˇ

ˇ∆x.

To apply (A.1) for Dpfq, we estimate first∇x,tf using (A.6) and (A.4):
›

›∇x,t
“

pKφi ˚ uqpKφj ˚ uqupx, tq
‰›

›

8

ď
›

›∇x,t
“

pKφi ˚ uqpKφj ˚ uq
‰›

›

8
}u}8 `

›

›

“

pKφi ˚ uqpKφj ˚ uq
‰›

›

8
}∇x,tu}8

ďp2|Ω| }u}8 ` 1q }u}1,8 pc
8
Hq

2.
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Note that p2|Ω| }u}8 ` 1q ď 3Ω| }u}8 by (3.5). Thus, we have

Dpfq ď 3|Ω|2 }u}21,8 pc
1,8
H q2p∆x`∆tq.

To estimate IA1 , note that by (A.3) and (A.4), we have
›

›P in,M,L

›

›

8
ď

›

›Kφi ˚ u´ P
i
n,M,L

›

›

8
` }Kφi ˚ u}8 ď c1,8

H |Ω| }u}1,8∆x` c8H.

Thus,
›

›

›
P in,M,L

›

›

›

8
` }Kφi ˚ u}8 ď 2c1,8

H when ∆x ď 2 mini }φ
1
i}8 {pc

1,8
H |Ω| }u}1,8q. Then,

IA1 ď |Ω| }u}8

›

›

›
pKφi ˚ uq ¨ pKφj ˚ uq ´ P

i
n,M,L ¨ P

j
n,M,L

›

›

›

8

ď |Ω| }u}8max
i

›

›

›
Kφj ˚ u´ P

j
n,M,L

›

›

›

8
max
i

´

›

›P in,M,L

›

›

8
` }Kφi ˚ u}8

¯

ď |Ω| }u}8 c
1,8
H }u}1,8

ˇ

ˇΩ
ˇ

ˇ∆x2c1,8
H ď 2|Ω|2 }u}21,8 pc

1,8
H q2∆x.

Combine the above estimates of Dpfq and IA1 , we have

ˇ

ˇAi,j ´A
i,j
n,M,L

ˇ

ˇ ď 5
ˇ

ˇΩ
ˇ

ˇ

2
}u}21,8 pc

1,8
H q2p∆x`∆tq.

and the bound for }An,M,L ´A} in (3.6) follows.
Next we analyze }bn,M,L ´ b}. Using Dpfq in (A.1) with f “ up∇¨Kφiq ˚ u, we have

ˇ

ˇbi ´ b
i
n,M,L

ˇ

ˇ ď Dpup∇¨Kφi ˚ uqq ` I
b
1 ` I

b
2, with

Ib1 :“
ˇ

ˇ

1

T

ż

Ω

ż T

0
BtuΦi ˚ u dxdt´

L
ÿ

l“1

M
ÿ

m“1

”

xBtuΦi ˚ u
ı

pxm, tlq∆x∆t
ˇ

ˇ,

Ib2 :“
1

L

L,M
ÿ

l,m“1

ˇ

ˇ

”

xBtuΦi ˚ u` νu p∇¨Kφi ˚ uq ´
xBtuQ

i
n,M,L ` νuR

i
n,M,L

ı

pxm, tlq
ˇ

ˇ∆x.

(3.7)

By (A.1) and the gradient estimate (A.7), we have

Dpup∇¨Kφi ˚ uqq ď |Ω| }u}1,8 c
1,8
H p1` }u}8qp∆x`∆tq.

To estimate Ib2, note that xBtu in (2.20) satisfies
›

›

›

xBtu
›

›

›

8
ď }u}1,8. Then, by (A.3), we have

}xBtu pΦi˚ uq ´ xBtuQ
i
n,M,L}8 ď }u}1,8

ˇ

ˇΦi˚ u´ Qin,M,L

ˇ

ˇ ď |Ω|p1`RΩqc
8
H }u}

2
1,8∆x,

›

›u p∇¨Kφi˚ uq ´ uR
i
n,M,L

›

›

8
ď }u}8

ˇ

ˇ∇¨Kφi˚ u´R
i
n,M,L

ˇ

ˇ ď
ˇ

ˇΩ
ˇ

ˇc2,8
H }u}21,8∆x.

Hence
Ib2 ď |Ω|p1`RΩ ` νqc

2,8
H }u}21,8∆x.

Together with the estimates of Ib1 in Lemma A.4, we have
ˇ

ˇbi ´ b
i
n,M,L

ˇ

ˇ ď3c2,8
H |Ω|p1`RΩ ` νqp}u}

2
1,8 ` }u}2,8qp∆x`∆tq,

The estimate for }b´ bn,M,L} in (3.6) follows.
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4 Numerical examples

We demonstrate the effectiveness of our algorithm using synthetic data for examples with three typical types of
interaction kernels: the granular media model with a smooth kernel (Section 4.2), the opinion dynamics with
a piecewise linear kernel (Section 4.3), and the aggregation-diffusion with a singular repulsive-attractive kernel
(Section 4.4). In each of these examples, our algorithm leads to accurate estimators that can reproduce solutions
and free energy almost perfectly. Our estimator achieves the theoretical rate of convergence for the granular media
model, and obtains rates lower than the theoretical rates for the opinion dynamics and the singular repulsive-
attractive potential. 1

4.1 Numerical settings

We first specify the numerical settings: the numerical scheme for data generation, the choice of parameters in the
learning algorithm, and the assessment of the estimators.
Settings for data generation. We solve the mean-field equation by the semi-implicit Structure Preserving scheme
of Chang-Cooper (SPCC) scheme for nonlinear Fokker-Planck equations introduced in Pareschi and Zenella [28].
The SPCC is second order accurate, preserves the steady state and the density properties of the solution u such as
non-negativity. In particular, for the explicit SPCC scheme, we need dt ď dx2

2pCdx`νq , where C “ supΩˆr0,T s |∇Φ˚

u|; for semi-implicit scheme, we need dt ď dx
2C .

In all the three examples, the data are discrete observations from the “true” solution on Ω ˆ r0, T s with a fine
space-time mesh with dt “ 0.001 and dx “ b´a

3000 , where T “ 1 and Ω “ ra, bs with a “ ´10 and b “ 10. This
setting preserves the steady state and the non-negativity of the solution u. The data are observed at every 10 space
mesh, i.e. ∆x “ 10dx (or equivalently, M “ 300). To compute the rate of convergence, we down-sample the
data further to have a sequence of ∆x “ kdx with k P t10, 12, 15, 20, 24, 30, 50, 60, 75, 100u, correspondingly,
we have M P t300, 250, 200, 150, 120, 100, 60, 50, 40, 30u).

We summarize these settings in Table 2.
Table 2 Numerical settings in data generation and inference for all examples.

Notation Description
r0, T s “ r0, 1s and Ω “ r´10, 10s time interval and space domain
dt “ 0.001 and dx “ 20{3000 time step and space mesh size of true solution

∆t “ dt and ∆x “ kdx
time step and space mesh size of data
with k P t10, 12, 15, 20, 24, 30, 50, 60, 75, 100u

r0 “ 0, rm “ 10 knots for B-spline
W pu, puq the Wasserstein distance, defined in (4.1)
Eru, φsptq free energy flow, defined in (4.2)

Settings for inference algorithm. We estimate the interaction kennel φ by Algorithm 1. We test both spline
basis and RKHS basis. For the spline basis in (2.22), we use r0 “ 0 and rm “ 10. The range of knot number is
m P r3, 40s for all three examples. We set the degree of the spline to be in t0, 1, 2, 3u according to the smoothness
of each example. We obtain the RKHS basis functions by solving the eigenvalue problem (2.24) as described in
Section 2.2, and we set the dimension range to be r2, 50s for all examples.

We select the dimension of the hypothesis space under an adaptive regularization. That is, we find first the
optimal regularization constant for each given dimension of hypothesis space as in Section 2.3, then we select the
dimension as in Section 2.4. Figure 1 demonstrates this process for the opinion dynamics (the plots are similar for
other examples).
Results assessment in a typical estimation. In a typical estimation from data with ∆x “ 10dx (or equivalently
M “ 300), we assess the estimators in three plots: comparison of the estimators with the truth, the Wasserstein

1The MATLAB code for this project is available at https://github.com/QuanjunLang/
Learning-Interaction-Kernel-From-Mean-Field-Equation.
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Figure 1: Regularization and selection of dimension for the opinion dynamics (see Section 4.3) using degree 1 spline basis with knot
number 30. (a) the use of L-curve to find the optimal regularization constant and (b) shows the selection of dimension for the hypothesis
space.

distance between the estimated and true solutions, and the estimated and true free energy flows.

• Estimated and true kernels We compare the true and estimated kernels by plotting them side-by-side, together
with the density sρT . The estimated kernels are from either B-spline basis functions or RKHS basis functions,
with dimension provided in the context. We also give the relative RKHS error and relative L2psρT q error.

• Wasserstein Distance The solutions from the true and estimated kernels can not be distinguished by eyes. To
compare them, we compute the 2-Wasserstein distance between them. We consider two sets of solutions, starting
from either the original or a new initial condition ru0. We set ũ0 to be the average of the density functions of
N p2, 1q andN p´2, 1q, whose major mass is in the support of sρT . Recall that the Wasserstein distance W2pf, gq
of two probability densities f and g over Ω with second order moments is given by

W2pf, gq :“

ˆ

inf
γPΓpf,gq

ż

ΩˆΩ
|x´ y|2dγpx, yq

˙1{2

, (4.1)

where Γpf, gq denotes the set of all measures on Ω ˆ Ω with f and g as marginals (see e.g.,[1]). We use the
numerical method for Wasserstein distance as in [18]. This method is based on an observation in [5]. More
precisely, suppose F is the probability distribution induced by the density f and define its pseudo inverse by
setting, for α P p0, 1q, F´1pαq “ inftx : F pxq ą αu. Similarly we have G and G´1. Then the L2 distance of

the pseudo inverse functions d2pf, gq “
´

ş1
0rF

´1pαq ´G´1pαqs2dα
¯1{2

is equal to the 2-Wasserstein distance
W2pf, gq.

• Free Energy We also compare the true and estimated free energy flows. The free energy, whose Wasserstein
gradient gives the mean-field equation [4], is defined by

Eru, φsptq “ ν

ż

Rd
u logpuqdx`

ż

Rd
upu ˚ Φqdx, with Φprq “

ż r

0
φpsqds. (4.2)

The true and estimated free energy flows are Eru, φsptq and Erpu, pφsptq, respectively.

Rate of convergence. We test the rate of convergence of the estimator in L2psρT q error and empirical error
functional EM,L in (2.17), as ∆x changes. We consider the downsampled data with ∆x “ kdx, where k P
t10, 12, 15, 20, 24, 30, 50, 60, 75, 100u. We use the spline basis, because the data-adaptive RKHS basis is not suit-
able for such a test.

For each estimator, we compute the }φ´ φ̂}L2psρT q by Riemann sum approximation. The measure sρT , defined
in (2.2), is approximated from data by ρML in (2.16), using the data with the finest mesh ∆x “ 10dx (equivalently,
M = 300).
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We also compute the decay rate of the loss functional so as to show it decays faster than the L2psρT q error.
From data, we obtain a sequence of values for the error functional EM,Lpφ̂n,M,Lq as in (2.17). We compute
its convergence rate β by optimization: suppose the error functional has the form Ek “ a∆xβk ´ γ with the
multiplicative constant a and γ “ 〈〈φ, φ〉〉 unknown, we compute β by

pβ, γ, aq “ arg min
β,c,a

ÿ

k

| logpEk ` γq ´ β log ∆xk ´ log a|2.

(a) The solution upx, tq
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Figure 2: Learning results of cubic potential. Subfigure (a) show the solution formulating a steady state. (d) shows the estimated kernels,
superimposed with the empirical density sρT . The relative errors are shown in Table 3. (b) shows that the Wasserstein distance between the
solutions are small. In particular, they all tend to the same steady state at large time. In (e) the free energy is well-learned. Subfigure (c)
and (f) show the rates of convergence of the L2

psρT q error and the error functional. The two rates are close to the rates in Theorem 3.7.

4.2 Cubic potential

The cubic potential Φpxq “ |x|3 (equivalently, φprq “ 3r2) is of special interest for modeling of granular media
[26, 6]. Since Φ is only non-uniformly convex on a single point, the equation (1.1) possess a unique steady state
[6] and thus the SDE (2.1) is ergodic. We set ν “ 1 and take u0pxq to be the average of the densities ofN p1, 0.25q
and N p´1, 0.25q.

We use B-spline basis with degree 2, matching the degree of the true kernel.
Figure 2 presents the estimation results. Sub-figure (a) shows the solution upx, tq, which is dominated by the

diffusion. Subfigure (d) shows that the estimated kernels, either by B-spline or RKHS basis, are close to the true
kernel, with relative errors shown in Table 3.
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Table 3 Relative errors of estimators in Figure 2(d).

Relative error
Basis type dimension in L2psρT q (}φ} “ 3.85) in RKHS (

a

〈〈φ, φ〉〉 “ 2.57)
B-spline 12 2.18% 0.79%
RKHS 14 5.83% 0.79%

Subfigure (b) plots the Wasserstein distances between true and reproduced solutions, showing that the solution
with the original initial condition is accurately reproduced. For the new initial condition ru0, the Wasserstein
distance is relatively large at first and then decays to the same level as the original initial condition case. This is
because: (1) ru0, the mixture of N p2, 1q and N p´2, 1q, has a large probability mass outside of the “well-learned
region, the large-probability region of sρT ; (2) the system converge to a unique state state for different initial
conditions. Subfigure (e) shows that the free energy flow is almost perfectly reproduced. Subfigure (c) shows that
we nearly achieve the theoretical rate αs

s`1 “ 1.5 in Theorem 3.7, where s “ 3 because the B-spline has a degree 2
and α “ 2 is the order of trapezoidal integration. Subfigure (f) show that the error functional converges at the rate
p∆xq4.32, much faster than the L2psρT q error’s rate.

4.3 Opinion dynamics

Opinion dynamics (see [27] and the reference therein) describes the evolution of opinions of agents in social
networks. We consider the case when the system formulates clusters of opinions: the interaction function fp

ˇ

ˇx
ˇ

ˇq “

φp
ˇ

ˇx
ˇ

ˇq{
ˇ

ˇx
ˇ

ˇ is piecewise constant,

fprq “

$

&

%

´1, 0 ď r ď 3,
2, 3 ă r ď 4,
0, 4 ă r.

and hence φp
ˇ

ˇx
ˇ

ˇq “ fp
ˇ

ˇx
ˇ

ˇq
ˇ

ˇx
ˇ

ˇ is piecewise linear; the initial value u0pxq is density of the Gaussian mixture
1
3 rN p´2, 1q `N p´4, 0.52q `N p2, 1qs; the viscosity constant is ν “ 0.1.

We set the degree of spline basis to be 1, since φ is piecewise linear.
Table 4 Relative errors of estimators in Figure 3(d).

Relative error
Basis type dimension in L2psρT q (}φ} “ 2.71) in RKHS (

a

〈〈φ, φ〉〉 “ 0.65)
B-spline 29 36.67% 7.87%
RKHS 40 44.52% 8.17%

Figure 3 presents the estimation results. Subfigure (a) is the solution upx, tq, which shows three clusters
forming at time T “ 1. Subfigure (d) shows the estimated and true kernels, with relative errors shown in Table
4. Subfigure (b) is the Wasserstein distance between true and reproduced solutions, showing that the solutions
are accurately reproduced. The Wasserstein distance increases because of the formulating clusters, which lead to
singular measures. Subfigure (e) shows that the free energy flow is almost perfectly reproduced. Subfigure (c) and
(f) shows the rates of convergence of the estimator in L2psρT q and the error functional. Due to the lack of regularity
of φ, the rate 0.60 is smaller than the theoretical rate αs

s`1 “
4
3 in Theorem 3.7, where s “ 2 because the degree

of B-spline is 1 and α “ 2 is the order of trapezoidal integration. The error functional converges at the rate 3.00,
which is much larger than the L2psρT q error’s rate.

4.4 The repulsion-attraction potential

To model collision free particles, the repulsion attraction (RA) potential with singularity at 0 is widely used. We
consider the power law RA potential [4]:

Φpxq “
|x|p

p
´
|x|q

q
, 2 ě p ą q ą ´d.
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Figure 3: Learning results of opinion dynamics. The solution in (a) formulates clusters. Subfigure (d) shows the estimated kernels,
with relative errors shown in Table 4. The Wasserstein distance in (b) shows that the solution is accurately reproduced by the estimated
kernel with spline, for both the original and new initial conditions. Subfigure (e) show that the free energy is almost perfectly reproduced.
Subfigure (c) and (f) show the rates of convergence of the estimator L2

psρT q and the error functional. Due to the lack of regularity of the
true kernel, the rate in Theorem 3.7 does not apply.

When 0 ă q ă 1, 0 is a singular point of φ. When q ă 0, 0 is also a singular point of Φ. We take p “ 2 and
q “ ´0.5. To show the repulsion clearly, we use a small viscosity constant v “ 0.01. We take the initial value u0

being the mean of the densities of N p2, 0.25q and N p´3, 1q. We use B-spline basis with degree 1.
Figure 4 exhibits the estimation results. Sub-figure (a) shows the solution upx, tq, which demonstrate the

attraction and repulsion under the influence of diffusion. Subfigure (d) shows that the estimated kernels, either by
B-spline or RKHS basis, are close to the true kernel, with relative errors shown in Table 5. The large relative error

Table 5 Relative errors of estimators in Figure 4(d).

Relative error
Basis type dimension in L2psρT q (}φ} “ 10.72) in RKHS (

a

〈〈φ, φ〉〉 “ 1.60)
B-spline 27 48.83% 3.86%
RKHS 35 75.54% 4.07%

in L2psρT q is due to the singularity at the origin and that the measure sρT does not reflect the repulsion. Nevertheless,
Subfigure (b) shows that the estimated kernel can reproduce accurate solutions, suggesting that the L2psρT q norm
may not be suitable for the assessment of the estimator of singular kernels. The slightly oscillating Wasserstein
distances indicate that the error in the estimator does not propagate. Subfigure (e) shows that the free energy flow
is almost perfectly reproduced. Subfigure (c) and (f) shows relatively low rates of convergence of the estimator in
L2psρT q and the error functional. The rates 0.27 and 1.37 are low: due to the singularity of the kernel at the origin,
the theoretical rate in Theorem 3.7 ( αss`1 “

4
3 with α “ 2, s “ 2) does not apply.
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Figure 4: Learning results of a repulsion-attraction potential. Subfigure (a) demonstrates a repulsion-attraction effect. The two clusters tend
to get closer, but not merging because of the repulsion. Estimators in (d) show that our method tries to learn the singularity at the origin.
The relative errors are shown in Table 5. (b) shows that the Wasserstein distance between the solutions are small. The free energy estimate
in (e) is close. Subfigure (c) and (f) show the rate of convergence for the estimator in L2

psρT q and for the error functional. These rates are
relatively low due to the singularity of the true kernel (and the rate in Theorem 3.7 does not apply).

5 Conclusion and future work

We have introduced a nonparametric learning algorithm to estimate the interaction kernel from discrete data with
a performance guarantee. From the likelihood of the diffusion process whose Fokker-Planck equation is the mean-
field equation, we derive a probabilistic error functional. Then, the algorithm learns the kernel on a data-adaptive
hypothesis space by least squares with regularization. The algorithm does not require spatial derivatives of the
solution, so it is suitable for discrete data. We prove that, as the space-time mesh refines, the estimator converges
in a weighted L2 space under an identifiability condition, at a rate αs

s`1 , where α is the order of the numerical
integrator and s is the rate of decay of the approximation error by the hypothesis space.

We demonstrate our algorithm’s performance on three typical examples:

• the granular media model with a quadratic kernel;

• the opinion dynamics with a piecewise linear kernel;

• the repulsion-attraction with a singular kernel.

In all the examples, the estimator is accurate, and it can reproduce solutions with a small Wasserstein distance
to the truth and with almost perfect free energy. For the granular media with a quadratic kernel, our estimator
achieves the theoretical rate of convergence. For the opinion dynamics and the singular repulsion-attraction model,
our estimator converges at rates lower than the theoretical rates.

There are many directions to extend the present work. We mention a few here:

• Non-radial interaction kernels. Many applications involve non-radial kernels, such as the Biot-Savart kernel
[15] and the local time kernel for viscous Burgers equation [30]. The major issue is the curse of dimensionality
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in representing high-dimensional functions. We expect to represent the function using the data adaptive
reproducing kernel for the regression.

• High-dimensional space. It becomes impractical to have data on mesh-grids when the dimension d of the
space is large, because the size of mesh-grids increases exponentially in d. It is natural to consider data
consisting of samples of particles and approximate the error functional by Monte Carlo. Our algorithm
applies and the rate convergence would be s{p2s` 1q.

• Partial observations from large systems. When only partial agents of a large system are observed, it is an
ill-posed problem to estimate the position of other agents [31]. By the propagations of chaos, we may view
these particles as independent trajectories and estimate the interaction kernel from the SDE of the mean-field
equation.

A Appendix: errors bounds for the numerical integrators

We provide technical bounds on the error of the numerical integrator based on Riemann sum (the Euler scheme).
Let’s start with a reminder about the error of the Euler scheme.

Lemma A.1. Let xm “ m∆x and tl “ l∆t be the mesh given in (3.1). Suppose that Assumption 3.2 holds true.
Suppose f PW 1,8pΩˆ r0, T sq. Then the Euler scheme is of order

?
∆x2 `∆t2, i.e.

Dpfq :“
ˇ

ˇ

1

T

ż

Ω

ż T

0
fpx, tq dxdt´

L,M
ÿ

l,m“1

fpxm, tlq∆x∆t
ˇ

ˇ ď |Ω| }∇x,tf}8 p∆x`∆tq, (A.1)

Dtpfq :“
ˇ

ˇ

ż

Ω
fudx´

M
ÿ

m“1

fpxm, tqupxm, tq∆x
ˇ

ˇ ď p}∇f}8 ` |Ω| }f}8 }∇u}8q∆x. (A.2)

Proof. Note that for x P rxm, xm`1s, t P rtl, tl`1s, there exists pξm, ζlq such that

|fpxm, tlq ´ fpx, tq| “|∇x,tfpξm, ζlq ¨ px´ xm, t´ tlq| ď }∇x,tf}8
a

∆x2 `∆t2.

Note that
?

∆x2 `∆t2 ď ∆x`∆t. Then, (A.1) follows from

Dpfq ď 1

T

L
ÿ

l“1

M
ÿ

m“1

ż xm`1

xm

ż tl

tl´1

ˇ

ˇfpxm, tlq ´ fpx, tq
ˇ

ˇdxdt ď |Ω| }∇x,tf}8
a

∆x2 `∆t2.

Similarly, (A.2) follows from

Dtpfq ď
M
ÿ

m“1

ż xm`1

xm

“
ˇ

ˇfpx, tq ´ fpxmq
ˇ

ˇupx, tq `
ˇ

ˇfpxm, tq
ˇ

ˇ

ˇ

ˇupx, tq ´ upxm, tq
ˇ

ˇ

‰

dx

ď}∇f}8∆x` }f}8 }∇u}8 |Ω|∆x,

where the last inequality follows from that
řM
m“1

şxm`1

xm
upx, tqdx “

ş

Ω upx, tqdx “ 1.

Lemma A.2. Suppose that Assumption 3.1 holds true. The errors of P in,M,L, Qin,M,L and Rin,M,L in (2.20), which
approximate Kφi ˚ u, Φi ˚ u and ∇¨Kφi ˚ u, are bounded by

›

›P in,M,L ´Kφi ˚ u
›

›

8
ď |Ω|∆x }φi}1,8 }u}1,8 ď c1,8

H |Ω| }u}1,8∆x,
›

›Rin,M,L ´ p∇¨Kφiq ˚ u
›

›

8
ď |Ω|∆x

›

›φ1i
›

›

1,8
}u}1,8 ď c2,8

H |Ω| }u}1,8∆x,
›

›Qin,M,L ´ Φi ˚ u
›

›

8
ď |Ω|p1`RΩqc

8
H }u}1,8∆x.

(A.3)
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Proof. Using the notation Dtpfq in (A.2) with fp¨q “ Kφipx´ ¨q, we have,
›

›P in,M,L ´Kφi ˚ u
›

›

8
“ sup
px,tqPΩˆr0,T s

|DtpKφipx´ ¨qq|

ď sup
px,tqPΩˆr0,T s

`

}∇Kφipx´ ¨q}8 ` |Ω| }Kφipx´ ¨q}8 }∇u}8
˘

∆x.

Recall that we denote Kφipxq “ φip
ˇ

ˇx
ˇ

ˇq x
|x| . For x ‰ 0, we have d

dx |x| “
x
|x| and

d

dx
Kφipxq “

d

dx

ˆ

φip
ˇ

ˇx
ˇ

ˇq
x

|x|

˙

“ φ1ip|x|q ` φip|x|q
|x| ´ x x

|x|

|x|2
“ φ1ip|x|q.

Thus, }∇Kφipx´ ¨q}8 ď }φ
1
i}8 and }Kφipx´ ¨q}8 ď }φi}8. Together with (3.5), we have

›

›P in,M,L ´Kφi ˚ u
›

›

8
ď p

›

›φ1i
›

›

8
` |Ω| }φi}8 }∇u}8q∆x ď |Ω| }φi}1,8 }u}1,8∆x.

Note that∇¨Kφi “ φ1ip|x|q. Then, the same argument leads to the estimate for Rin,M,L.
Similarly, from the definition of Qin,M,L and the notation in (A.2), we have

›

›Qin,M,L ´ Φi ˚ u
›

›

8
ď sup
px,tqPΩˆr0,T s

|DtpΦip|x´ ¨|qq|

ď sup
xPΩ

r}∇Φip|x´ ¨|q}8 ` |Ω| }Φip|x´ ¨|q}8 }∇u}8s∆x

ďp1` |Ω|RΩ }∇u}8q }φi}8∆x ď |Ω|p1`RΩq }φi}8 }u}1,8∆x,

where the second last inequality follows from Φiprq “
şr
0 φipsqds and }Φi}8 ď }φi}8RΩ.

Lemma A.3. Suppose that Assumption 3.1 holds true. Then, for each i, j,

}Kφi ˚ u}8 ď }φi}8 ď c8H (A.4)

}∇x,t pKφi ˚ uq}8 ď |Ω| }∇x,tu}8 }φi}8 ď |Ω| }u}1,8 c
8
H, (A.5)

›

›∇x,t
“

pKφi ˚ uqpKφj ˚ uq
‰›

›

8
ď 2|Ω| }u}1,8 pc

8
Hq

2. (A.6)

}∇x,t pu∇¨Kφi ˚ uq}8 ď }u}1,8 c
1,8
H p1` }u}8q. (A.7)

Proof. Note that }up¨, tq}L1pΩq “ 1 for each t. Then equation (A.4) follows from that

}Kφi ˚ u}8 “ sup
tPr0,T s

}Kφi ˚ up¨, tq}8 ď }φi}8 }up¨, tq}L1pΩq “ }φi}8 ,

Equation (A.5) follows from that∇x,t pKφi ˚ uq “ Kφi ˚∇x,tu and
ˇ

ˇKφi

ˇ

ˇ ď }φi}8. Since

›

›∇x,t
“

pKφi ˚ uqpKφj ˚ uq
‰›

›

8
ď 2

ˆ

max
i“1,...,n

}∇x,t pKφi ˚ uq}8

˙ˆ

max
i“1,...,n

}Kφi ˚ u}8

˙

,

we obtain (A.6) from (A.4) –(A.5).
From }p∇¨Kφiq ˚ u}8 ď }φ

1
i}8 and }∇x,t p∇¨Kφi ˚ uq}8 ď }φ

1
i}8 }∇x,tu}8, we have

}∇x,t pu∇¨Kφi ˚ uq}8 ď }∇x,tu}8 }p∇¨Kφiq ˚ u}8 ` }u}8 }∇x,t p∇¨Kφi ˚ uq}8

ď
›

›φ1i
›

›

8
}∇x,tu}8 p1` }u}8q ď c1,8

H }u}1,8 p1` }u}8q.

This gives (A.7).

Lemma A.4. For Ib1 defined in (3.7), we have

Ib1 ď 2c8HRΩ

ˇ

ˇΩ
ˇ

ˇp}u}21,8 ` }u}2,8qp∆x`∆tq.
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Proof. Denote gpx, tq “ Φi ˚ upx, tq. Note that }Φi}8 ď }φi}8RΩ ď c8HRΩ. Then,

}g}8 ď }Φi}8 ď c8HRΩ; }∇x,tg}8 ď }Φi}8 }u}1,8 ď c8HRΩ }u}1,8 .

Note also that xBtupxm, tlq “
upxm,tlq´upxm,tl´1q

∆t “ Btupxm, t
˚q for some t˚ P rtl, tl`1s, we have

ˇ

ˇBtupx, tq ´
xBtupxm, tlq

ˇ

ˇ ď p}Bxtu}8 ` }Bttu}8qp∆x`∆tq. Thus,

sup
xPpxm,xm`1q,tPptl´1,tlq

ˇ

ˇgpx, tqBtupx, tq ´ xBtupxm, tlqgpxm, tlq
ˇ

ˇ

ď sup
xPpxm,xm`1q,tPptl´1,tlq

”

ˇ

ˇgpx, tq ´ gpxm, tlq
ˇ

ˇ }Btu}8 ` }g}8
ˇ

ˇBtupx, tq ´ xBtupxm, tlq
ˇ

ˇ

ı

ďp}∇x,tg}8 }Btu}8 ` }g}8 }u}2,8qp∆x`∆tq.

The, note that }∇x,tg}8 }Btu}8 ` }g}8 }u}2,8 ď 2c8HRΩp}u}
2
1,8 ` }u}2,8q, we have

Ib1 ď
1

T

L
ÿ

l“1

M
ÿ

m“1

ˇ

ˇ

ż xm`1

xm

ż tl

tl´1

gpx, tqBtupx, tq ´ xBtupxm, tlqgpxm, tlqdxdt
ˇ

ˇ

ď
1

T

L
ÿ

l“1

M
ÿ

m“1

∆x∆t sup
xPpxm,xm`1q,tPptl´1,tlq

ˇ

ˇgpx, tqBtupx, tq ´ xBtupxm, tlqgpxm, tlq
ˇ

ˇ

ď 2c8HRΩ

ˇ

ˇΩ
ˇ

ˇp}u}21,8 ` }u}2,8qp∆x`∆tq.
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