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Abstract

We address a fundamental issue in the nonparametric inference for systems of interacting particles:
he identifiability of the interaction functions. We prove that the interaction functions are identifiable for

class of first-order stochastic systems, including linear systems with general initial laws and nonlinear
ystems with stationary distributions. We show that a coercivity condition is sufficient for identifiability
nd becomes necessary when the number of particles approaches infinity. The coercivity is equivalent to
he strict positivity of related integral operators, which we prove by showing that their integral kernels
re strictly positive definite by using Müntz type theorems.
c 2020 Elsevier B.V. All rights reserved.
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Identifiability

1. Introduction

Dynamical systems of interacting particles or agents are widely used in many areas in
cience and engineering, such as physics [12], biology [3], social science [6,31]; we refer
o [7,36] for reviews. With the recent advancement of technology in data collection and
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computation, inference of such systems from data has attracted increasing attention [8,17,19].
In general, such systems are high-dimensional and there is no natural parametric form for the
interaction laws, so their inference tends to be statistically and computationally infeasible due
to the curse of dimensionality. When the particles interact according to a function that depends
only on pairwise distances, one only needs to estimate such interaction function, opening the
possibility of statistically and computationally efficient inference techniques [5,26,28]. How-
ever, a fundamental challenge arises: the interaction function may be non-identifiable, because
its values are under-determined from the observation data consisting of trajectories. To ensure
the identifiability of the interaction function, a coercivity condition is introduced in [5,26,28].
In this study, we show that the coercivity condition is sufficient for the identifiability, that it
becomes necessary when the number of particles goes to infinity, and that it holds true for
linear systems and for a class of three-particle nonlinear systems with a stationary distribution.

More precisely, we consider a first-order stochastic gradient system of interacting particles
n the form⎧⎪⎨⎪⎩

d X t
i =

1
N

∑
1⩽ j⩽N , j ̸=i

φ(|X t
j − X t

i |)
X t

j − X t
i

|X t
j − X t

i |
dt + σd Bt

i , for i = 1, . . . , N ,

X0
∼ µ0,

(1.1)

here X t
i ∈ Rd represents the position of particle i at time t , {Bt

i }
N
i=1 are independent Brownian

otions in Rd representing the random environment, | · | denotes the Euclidean norm, σ > 0
s the strength of the noise. Without loss of generality, we assume σ = 1 in (1.1). The function

: R+
= [0,∞) → R models the pairwise interaction between particles, which is referred

o as the interaction function. We assume that the initial condition X0 has an exchangeable
bsolutely continuous distribution µ0 on the state space Rd N , that is, the joint distribution
f (X0

i1
, . . . , X0

iN
) is µ0 for any ordering of the index set {i1, . . . , iN } = {1, . . . , N }. As a

onsequence, combining with the fact that the system is equivalent under permutations of the
ndices of the agents, the distribution of X t is exchangeable for any t ∈ [0, T ].

We consider the identifiability of the interaction function φ from many independent trajecto-
ies on a time interval [0, T ], denoted by {X [0,T ],m

}
M
m=1, in the likelihood-based nonparametric

nference setting. We focus on the case of infinitely many trajectories (i.e. M = ∞) for our
nalysis. Clearly, the function space for inference must depend on the information from the
rocess defined by the system (1.1), and in particular we can hope to estimate the interaction
unction only on the interval explored by pairwise distances. A natural choice is the space

L2(SρT ) (or a subspace thereof), where SρT is the average-in-time distribution of all the pairwise
istances {|X t

i − X t
j |, t ∈ [0, T ]}N

i, j=1. By the exchangeability of the distribution of X t , the
istribution ρt of |X t

i − X t
j | is the same for all (i, j) pairs (which is why we may abuse notation

nd avoid writing ρt,i, j ), thus SρT can be written as

SρT (dr ) :=
1
T

∫ T

0
ρt (dr )dt, with ρt (dr ) := E[δ(|X t

i − X t
j | ∈ dr )], (1.2)

n other words, SρT is the average of the measures {ρt , t ∈ [0, T ]}. Note that SρT depends on
oth the initial distribution and the interaction function φ.

We define the identifiability of the interaction function as follows.

efinition 1.1 (Identifiability). The interaction function φ of the system (1.1), which defines
he process X [0,T ], is said to be identifiable in a linear subspace H of L2(SρT ), if it is the unique

aximizer of the expectation of the log-likelihood ratio of the process (see EE (·) in (2.5)).
X[0,T ]
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In practice, the above identifiability requires a unique global maximizer for the expectation
f the log-likelihood ratio (a functional on the high- or infinite-dimensional subspace H,

see Section 2.1 for details), which is difficult to verify. The following coercivity condition,
introduced in [5,26–28], provides an appealing alternative because it can be numerically verified
from data. It ensures the uniqueness of the maximizer of the empirical likelihood ratio on finite
dimensional hypothesis spaces by ensuring the Hessian to be strictly negative definite.

Definition 1.2 (Coercivity Condition on a Time Interval). The system (1.1) on [0, T ] is said
to satisfy a coercivity condition on a finite-dimensional linear subspace H ⊂ L2(ρ̄T ) with ρ̄T
defined in (1.2) if

cH,T := inf
h∈H, ∥h∥L2(SρT )=1

1
T

∫ T

0
E[h(|r t

12|)h(|r t
13|)

⟨r t
12, r t

13⟩

|r t
12||r

t
13|

]dt > 0, (1.3)

here r t
i j = X t

i − X t
j . When H ⊆ L2(SρT ) is infinite-dimensional, we say that the system

atisfies a coercivity condition on H if the coercivity condition holds on each finite dimensional
inear subspace of H.

The coercivity condition on H defined here is slightly different than the previous one in
26–28], which requires cH,T +

1
N−2 > 0 and ensures the uniform concavity of the expectation

f the log-likelihood ratio. This new definition has the advantage of being independent of N ,
nd requires a positive coercivity constant cH,T only on each finite-dimensional hypothesis
pace H, rather than on any compact set of L2(ρ̄T ), making it suitable for studying the
ean-field limit when N → ∞. This new definition also highlights the dependence on the

oint distribution of (r t
12, r t

12) only, and the connection with positive integral operators (see
ection 2.2). A drawback is that it can be slightly more restrictive than the previous one for
nite N , with such difference vanishing as N → ∞ (see Remark 2.3 for details).

We show that the coercivity condition is sufficient for the identifiability, and it holds for
ertain classes of interaction functions, including φ(r ) = r2β−1 with β ∈ [ 1

2 , 1]:

heorem 1.3. Consider the system (1.1) on [0, T ] with interaction function φ, and the average
istribution of the pairwise distances between particles SρT as in (1.2).

(a). The interaction function φ is identifiable in a linear subspace H of L2(SρT ) if the coercivity
condition holds on H.

(b). The coercivity condition holds on L2(SρT ) if φ(r ) = θr , i.e. when the system is linear, and
the initial distribution µ0 of X0 is a non-degenerate exchangeable Gaussian.

(c). The coercivity condition holds on L2(SρT ) for nonlinear systems with three particles and
with the following interaction functions and initial distribution:

1. the interaction function φ is of the form

φ(r ) = Φ ′(r ), where Φ(r ) := ar2β
+ Φ0(r ), a > 0, β ∈ [

1
2
, 1], (1.4)

where Φ0 ∈ C2(R+,R) satisfies that f (u, v) := Φ0(|u − v|) : Rd
× Rd

→ R is a
negative definite function and that limr→∞ Φ(r ) = +∞;

2. the joint probability density of (X0
1 − X0

2, X0
1 − X0

3) is (with Z being a normalizing
constant)

p(u, v) =
1
Z

e−
1
3 [Φ(|u|)+Φ(|v|)+Φ(|u−v|)], (1.5)

i.e., an invariant density of the process (X t
− X t , X t

− X t ).
1 2 1 3
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Part (a) of Theorem 1.3 is proved in Proposition 2.1. In addition to being sufficient for
dentifiability, the coercivity condition also becomes necessary when N , the number of particles
n the system, is infinity. In particular, the coercivity constant cH,T in (1.3) is independent of
N and it depends only on the distribution of the process (X t

1 − X t
2, X t

1 − X t
3). We prove Part (b)

n Theorem 3.6 and Part (c) in Theorem 4.1.
We show that the coercivity condition is equivalent to the strict positivity of an integral

perator arising from the expectation in (1.3) (see Section 2.2). Then, to prove the strict
ositivity of the operator, we show that its integral kernel is strictly positive-definite, by
ntroducing a series representation of the integral kernel and resorting to Müntz-type theorems
or the completeness of polynomials in L2(SρT ) (see Section 3). In particular, in the treatment
f nonlinear systems, we develop a “comparison to a Gaussian kernel” technique (Sections
.2–4.3) to prove the strictly positive-definiteness of integral kernels.

This study serves as a starting point towards understanding the identifiability of the
nteraction function for particle or agent systems. While providing a full characterization for
inear systems, i.e., the coercivity condition holds for general initial distributions, Theorem 1.3
rovides limited results for nonlinear systems, covering only stationary initial distribution
or systems with N = 3 particles and with polynomial dominated interaction functions.
he constraint N = 3 arises because our series representation of the integral kernel is
ased on the explicit expression of the joint distribution of (r t

12, r t
13), which is currently

nknown to us when N > 3, albeit we are hopeful to eventually be able to remove this
onstraint in future work. The constraint of stationary initial distribution may be removable
y perturbation-type arguments. Future directions of research include, to name just a few,
rst-order nonlinear systems with more general interaction functions that are regular [19,28]
r singular [24,25], second-order systems and systems with multiple types of particles or
gents [26], and mean-field equations [10,20,30].

Positive-definite integral kernels play an increasingly prominent role in many applications
n science, in particular in statistical learning theory and in reproducing kernel Hilbert space
RKHS) representations [11,13,35]. As a by-product, our results lead to a new class of positive-
efinite integral kernels from particle systems, and our technique of comparison to a Gaussian
ernel may be of broader interest, for example in establishing identifiability of statistical
earning problems.

The organization of the paper is as follows: we summarize in Table 1 the frequently used
otations. In Section 2, we introduce the coercivity conditions in inference, and establish the
onnections between identifiability, the coercivity condition and positive integral operators. In
ection 3 we prove the coercivity condition for linear systems and Section 4 is devoted to a
lass of three-particle nonlinear systems with stationary distributions. We list in the Appendix
he preliminaries, such as properties of positive-definite kernels, a Müntz-type theorem on the
alf-line, and a stationary measure for gradient systems.

. The coercivity conditions and strictly positive integral operators

In the context of likelihood-based nonparametric inference of the interaction function, we
how that the coercivity condition is sufficient for identifiability, and it is equivalent to the
trict positive-definiteness of an integral operator. Also, we introduce a coercivity condition
t a single time, which suggests that the interaction function can be identifiable from many
amples at a single time.

In vector format, we can write the system (1.1) as

d X t
= −∇ J (X t )dt + d Bt (2.1)
φ
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Table 1
Notations.

Notation Description

φ and ϕ The true and, respectively, a generic interaction function
Φ The true interaction potential, such that Φ′(r ) = φ(r ) as in (1.4)
X t

i and X [0,T ] Position of the i th particle at time t and, resp., trajectory on [0, T ]
r t

i j = X t
i − X t

j Position difference from particle j to particle i at time t
ρt and SρT Probability distribution of |r t

12| and, resp., its average on [0, T ] in (1.2)
L2(ρt ) and L2(SρT ) The function spaces L2(R+, ρt ) and L2(R+,SρT )
pt (u, v) and p(u, v) The joint density of (r t

12, r t
13) and, resp., the stationary density, as in (1.5)

where X t
:= (X t

i )
N
i=1 ∈ RNd , and the potential function Jφ : RNd

→ R is

Jφ(x) =
1

2N

N∑
i, j=1, j ̸=i

Φ(|xi − x j |), x ∈ RNd , with Φ(r ) =

∫ r

0
φ(s)ds. (2.2)

Note that the constant Φ(0) does not affect the gradient system, and it can be arbitrary. We
assume for simplicity that Φ(0) = 0.

Since the pairwise potential Φ in (1.4) is C2(R+) and limr→∞ Φ(r ) = ∞, the drift term
n (2.1) is locally Lipschitz and the total potential Jφ is a Lyapunov function for the system.
hus, a global solution exists (see e.g. [22, Theorem 1.3]). For the existence and properties
f the solutions in systems with singular potentials, we refer to [1,24,25] and the reference
herein.

.1. Identifiability and the coercivity condition

Consider the likelihood-based inference of the interaction function φ from observation data
onsisting of many independent trajectories {X [0,T ],m

}
M
m=1. The maximum likelihood estimator

MLE) is a maximizer of the log-likelihood ratio of these trajectories over a hypothesis
pace H:

φ̂H,M := arg max
ϕ∈H

EM (ϕ), with EM (ϕ) :=
1
M

M∑
m=1

EX[0,T ],m (ϕ)

here EX[0,T ],m (ϕ) denotes the average log-likelihood ratio of the trajectory X [0,T ],m , which is
iven, by the Girsanov theorem (see e.g. [23, Section 1.1.4] and [21, Section 3.5]), by

EX[0,T ] (ϕ) = −
1

2T N

∫ T

0

(
|∇ Jϕ(X t )|2dt + 2⟨∇ Jϕ(X t ), d X t

⟩

)
. (2.3)

Note that EM (·) is a quadratic functional. When H is a finite dimensional linear space, EM (·)
becomes a quadratic function on H, and an estimator φ̂H,M can be obtained by solving a least
squares problem (which has multiple solutions if the matrix of the normal equations is singular.

A key assumption in the definition of MLE is the uniqueness of the maximizer of the
log-likelihood ratio EM (·). When M → ∞, by the Law of Large Numbers,

EE [0,T ] (ϕ) = lim EM (ϕ) a.s.,
X M→∞
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and the uniqueness assumption leads to the identifiability in Definition 1.1: the interaction
function is identifiable if it is the unique maximizer of the expectation of the log-likelihood
ratio.

The coercivity condition in Definition 1.2 can be readily verified from data on any finite
imensional space H and it provides guidance on the choice of basis functions for H. In

fact, with the choice of an orthonormal basis for H ⊂ L2(SρT ), the coercivity constant cH,T
provides a lower bound for the smallest eigenvalue of the normal matrix [26,27], thus ensuring
the uniqueness of the estimator. More importantly, if the coercivity condition holds true, the
estimator is proved to be consistent and converge at a rate (in M) equal to the minimax rate of
nonparametric regression in 1 dimension (see [26, Theorem 5–6] and [27, Theorem 3.1–3.2]),
and the estimation errors can be, under possibly further assumptions, dimension independent
(see [26, Theorem 9]).

The next proposition shows that the coercivity condition is sufficient for the identifiability
and it also becomes necessary when the number of particles in the system goes to infinity. This
implies Theorem 1.3(a).

Proposition 2.1. Consider the system (1.1) on [0, T ] with interaction function φ. Let SρT be
as defined in (1.2). Then, the interaction function is identifiable on a subspace H ⊂ L2(SρT ) if
and only if

1
T

∫ T

0
E[h(|r t

12|)h(|r t
13|)

⟨r t
12, r t

13⟩

|r t
12||r

t
13|

](t)dt > −
1

N − 2
∥h∥

2
L2(SρT ), for all h ̸= 0 ∈ H.

(2.4)

hus, it is identifiable on a linear subspace H ⊂ L2(SρT ) if the coercivity condition holds on
H. Furthermore, when N → ∞, the interaction function is identifiable on L2(SρT ) if and only
if the coercivity condition holds on L2(SρT ).

Proof. Noting that d X t
= −∇ Jφ(X t )dt + d Bt and that Jϕ is linear in ϕ, we have∫ T

0
|∇ Jϕ(X t )|2dt + 2⟨∇ Jϕ(X t ), d X t

⟩

=

∫ T

0
|∇ Jϕ(X t )|2dt − 2⟨∇ Jϕ(X t ),∇ Jφ(X t )⟩dt + ⟨∇ Jϕ(X t ), d Bt

⟩

=

∫ T

0
|∇ Jϕ−φ(X t )|2dt − |∇ Jφ(X t )|2dt + ⟨∇ Jϕ(X t ), d Bt

⟩,

here the last inequality follows from completing the squares. Note first that from (2.3)
ith ϕ = φ we have EEX[0,T ] (φ) = −

1
T N

∫ T
0 |∇ Jφ(X t )|2dt . Then, the expectation of the

og-likelihood ratio in (2.3) is

EEX[0,T ] (ϕ) = −
1

2T N

∫ T

0
E|∇ Jϕ−φ(X t )|2dt − EEX[0,T ] (φ). (2.5)

hus, φ is the unique maximizer of EEX[0,T ] (·) on H, i.e., is identifiable on H, if and only if

1
T N

∫ T

0
E|∇ Jh(X t )|2dt > 0 (2.6)

whenever h = ϕ − φ ̸= 0 in H.
140



Z. Li, F. Lu, M. Maggioni et al. Stochastic Processes and their Applications 132 (2021) 135–163

c
k

T

f
h

R
p
o
H
e
t
s

R
p
d
i

f

Also, by exchangeability, with notation r t
j i = X t

j − X t
i , we have

1
N
E|∇ Jh(X t )|2 =

N∑
i=1

1
N 3

N∑
j,k=1,

j ̸=i,k ̸=i

E[h(|r t
j i |)h(|r t

ki |)
⟨r t

j i , r t
ki ⟩

|r t
j i ||r

t
ki |

]  
Ii jk (t)

=
(N − 1)[(N − 2)I123 + I122]

N 2 ,

where the equality follows from that Ii jk = I123 for all triplets {(i, j, k), j ̸= i, k ̸= i, j ̸= k},
ontributing N (N − 1)(N − 2) copies of I123; and that Ii jk = I122 for all triplets {(i, j, k), j =

̸= i}, contributing N (N − 1) copies of I122. Therefore,

1
T N

∫ T

0
E|∇ Jh(X t )|2dt =

(N − 1)(N − 2)
N 2

1
T

∫ T

0
I123(t)dt +

N − 1
N 2

1
T

∫ T

0
I122(t)dt.

(2.7)

hen, Eq. (2.4) is equivalent to Eq. (2.6) by noting that 1
T

∫ T
0 I122(t)dt =

1
T

∫ T
0 E[h(|r t

12|)
2]dt =

∥h∥
2
L2(SρT )

.

If the coercivity condition holds on H, i.e. 1
T

∫ T
0 E[h(|r t

12|)h(|r t
13|)

⟨r t
12,r

t
13⟩

|r t
12||r t

13|
](t)dt ⩾ cH,T

∥h∥
2
L2(SρT )

for all h ∈ H, so Eq. (2.4) holds and φ is identifiable on H.
When N → ∞, by (2.5), the maximizer is unique iff (together with (2.7))

lim
N→∞

1
T N

∫ T

0
E|∇ Jh(X t )|2dt =

1
T

∫ T

0
E[h(|r t

12|)h(|r t
13|)

⟨r t
12, r t

13⟩

|r t
12||r

t
13|

](t)dt > 0,

or each h ̸= 0 ∈ H. Hence, for any finite dimensional linear subspace H, Eq. (1.3)
olds. Thus, identifiability on L2(SρT ) is equivalent to the coercivity condition on L2(SρT ) when

N → ∞. ■

emark 2.2. When the related integral operator introduced below is compact and strictly
ositive (see Remark 2.6), the coercivity constant cH,T will converge to zero as the dimension
f H increases to infinity, because it is the smallest eigenvalue of the integral operator on

⊂ L2(SρT ). Thus, when performing nonparametric inference of the interaction function,
ven when the coercivity condition holds true on L2(SρT ), regularization becomes necessary
o control the condition number of the normal matrix when the dimension of the hypothesis
pace H becomes large [26–28].

emark 2.3. The coercivity in Definition 1.2 is sightly more restrictive than the one in the
revious studies [26–28], which is almost equivalent to the identifiability. More precisely, the
efinition in [27, Definition 3.1] says that the coercivity condition holds on a set H if there
s a positive constant cH such that

cH∥ϕ∥L2(SρT ) ⩽
1

2N T

∫ T

0

N∑
i=1

E|∇ Jϕ(X t )
⏐⏐2dt. (2.8)

or all ϕ ∈ H. This is almost the identifiability in (2.6), except requiring a uniform bound cH
over H. Definition 1.2 is more restrictive than the previous one in the sense that its coercivity
constant c in (1.3) may be zero while the constant c above is positive, as in (2.9). In fact,
H,T H
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by (2.7) with h replaced by ϕ and the fact that 1
T

∫ T
0 I122(t)dt = ∥ϕ∥

2
L2(SρT )

, we can write (2.8)
s

cH∥ϕ∥L2(SρT ) ⩽
(N − 1)(N − 2)

2N 2

1
T

∫ T

0
I123(t)dt +

N − 1
2N 2 ∥h∥

2
L2(SρT )

⇐⇒ (cH −
N − 1
2N 2 )∥ϕ∥L2(SρT ) ⩽

(N − 1)(N − 2)
2N 2

1
T

∫ T

0
I123(t)dt,

ombining with (1.3), we obtain

cH −
N − 1
2N 2 ⩽

(N − 1)(N − 2)
2N 2 cH,T . (2.9)

ence, we can have cH,T ⩽ 0 while having 0 < cH ⩽ (N−1)(N−2)
2N 2 cH,T +

N−1
2N 2 . When N → ∞,

e have cH ⩽ cH,T and the two definitions are equivalent. Definition 1.2 has the advantage
f providing a coercivity constant independent of N . Also, by requiring a positive coercivity
onstant cH,T only on each finite-dimensional hypothesis space H, it can hold on infinite
imensional spaces such as L2(SρT ) when N → ∞, while the previous definition cannot. Thus,
he new definition is suitable for studying the identifiability of the interaction function in the

ean-field equation.

While numerically easy to verify, the above coercivity condition on a time interval is difficult
o analyze directly, because it involves the average-in-time distribution SρT which is complicated
n general, unless it is an invariant measure of the system, either when the system starts from
he invariant measure, or when we consider the large time limit. The following single-time
ersion of the coercivity condition can be analyzed directly, and involves only the single-time
istribution ρt .

efinition 2.4 (Coercivity Condition at Time t). The dynamical system (1.1) is said to satisfy
he coercivity condition at time t on a linear subspace H ⊂ L2(ρt ), where ρt is defined in
1.2), if

cH(t) := inf
h∈H, ∥h∥L2(ρt )=1

E[h(|r t
12|)h(|r t

13|)
⟨r t

12, r t
13⟩

|r t
12||r

t
13|

] > 0, (2.10)

here r t
i j = X t

i −X t
j . If the coercivity condition holds true on every finite dimensional subspace

⊂ L2(ρt ), we say the system satisfies the coercivity condition on L2(ρt ) at time t .

Similar to Proposition 2.1, if the coercivity condition holds on H at t0, then the interaction
unction can be identified on H from a large size of samples at time t0. This explains
he observation in [26–28] that the interaction function can be learned from multiple very
hort-time trajectories.

.2. Relation to strictly positive integral operators

We show in this subsection that the coercivity condition on an interval [0, T ] (or at single-
ime t) discussed above is equivalent to the strict positivity of related integral operators on
L2(SρT ) (or L2(ρt )).

Recall that a linear operator Q on a Hilbert space H is positive if ⟨Q f, f ⟩ ⩾ 0 for any
f ∈ H . It is said to be strictly positive if ⟨Q f, f ⟩ > 0 whenever f ̸= 0 ∈ H. Hereafter, by an
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integral operator Q with kernel K on L2(ρ), we mean the bounded linear operator defined by

[Qh](r ) =

∫
K (r, s)h(s)ρ(s)ds

or any h ∈ L2(ρ).

roposition 2.5. The system (1.1) on [0, T ] satisfies the coercivity condition on L2(SρT ) iff
he integral operator SQT on L2(SρT ) with the integral kernel

SKT (r, s) :=
1

SqT (r )SqT (s)
(rs)d−1 1

T

∫ T

0

∫
Sd−1

∫
Sd−1

⟨ξ, η⟩pt (rξ, sη)dξdηdt (2.11)

s strictly positive, where SqT (r ) denotes the density of the measure SρT and pt (u, v) denotes the
ensity function of the random vector (r t

12, r t
13).

roof. By definition, we have

[ SQT h](r ) =

∫
SKT (r, s)h(s)SρT (s)ds. (2.12)

ote first that for any h, g ∈ L2(SρT ), by a change of variable to the polar coordinates, we have

1
T

∫ T

0
E[h(|r t

12|)g(|r t
13|)

⟨r t
12, r t

13⟩

|r t
12||r

t
13|

]dt =
1
T

∫ T

0

∫
Rd

∫
Rd

h(u)g(v)
⟨u, v⟩
|u||v|

pt (u, v)dudvdt

=
1
T

∫ T

0

∫
R+

∫
R+

∫
Sd−1

∫
Sd−1

h(r )g(s)p(rξ, sη)⟨ξ, η⟩(rs)d−1dξdηdrdsdt

=

∫
R+

∫
R+

SKT (r, s)h(r )g(s)SρT (dr )SρT (ds) = ⟨SQT h, g⟩L2(SρT ). (2.13)

Then, to show the equivalence between the strictly positive-definiteness of SQT and the
oercivity condition on L2(SρT ), it suffices to note that by the above equality, the coercivity
onstant in (1.3) satisfies

cH,T = inf
h∈H, ∥h∥L2(SρT )=1

⟨SQT h, h⟩L2(SρT ) > 0,

or any finite dimensional linear subspace H ⊂ L2(SρT ). ■

emark 2.6. It follows from (2.13) that SQT is a symmetric bounded linear operator on
L2(SρT ):

⟨SQT h, g⟩L2(SρT ) ⩽
1
T

∫ T

0
E[h(|r t

12|)g(|r t
13|)]dt ⩽ ∥h∥L2(SρT )∥g∥L2(SρT ),

here the second inequality follows from the Cauchy–Schwarz inequality and the fact that
1
T

∫ T
0 E[h(|r t

12|)
2]dt = ∥h∥

2
L2(SρT )

. When the integral kernel SKT is in L2(SρT ⊗ SρT ), the operator
SQT is compact and its eigen-functions form an orthonormal basis of L2(SρT ). Then, for any
inear subspace H ∈ L2(SρT ), the coercivity constant cH,T is the smallest eigenvalue of SQT

n H.

Similarly, we have the following proposition for the coercivity condition at a single time.
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Proposition 2.7. The system (1.1) satisfies the coercivity conditions on L2(ρt ) at time t iff
he integral operator Qt with kernel

Kt (r, s) :=
1

qt (r )qt (s)
(rs)d−1

∫
Sd−1

∫
Sd−1

⟨ξ, η⟩pt (rξ, sη)dξdη. (2.14)

s strictly positive on L2(ρt ), where qt denotes the density of the measure ρt and pt (u, v)
enotes the density function of the random vector (r t

12, r t
13).

roof. Note that

E
[

h(|r t
12|)h(|r t

13|)
⟨r t

12, r t
13⟩

|r t
12||r

t
13|

]
=

∫
∞

0

∫
∞

0
h(r )h(s)Kt (r, s)ρt (dr )ρt (ds) = ⟨Qt h, h⟩L2(ρt ).

(2.15)

hen, cH(t) = infh∈H, ∥h∥L2(ρt )=1⟨Qt h, h⟩L2(ρt ). Hence, Qt is strictly positive iff cH(t) > 0 for
ny finite dimensional linear subspace H ⊂ L2(ρt ). ■

The positivity of Qt on L2(ρt ) will be proved in later sections by showing that its integral
ernel Kt is strictly positive-definite, using the special structure of pt (u, v) (the density function
f the random vector (r t

12, r t
13)). However, the positivity of SQT on L2(SρT ) cannot be proved in

he same way because the kernel SKT in (2.11) involves the average of pt (u, v). The following
roposition shows that, while Qt and SQT are defined on different spaces (unless ρt is the same
s SρT ), the strict positivity of Qt for all t ∈ [0, T ] implies the positivity of SQT .

roposition 2.8. The integral operator SQT on L2(SρT ) with kernel SKT in (2.11) is strictly
ositive on H if the family of operators Qt on L2(ρt ) with kernel Kt in (2.14) is strictly positive
or each t ∈ [0, T ].

roof. Note that a combination of (2.13) and (2.15) leads to

⟨SQT h, h⟩L2(SρT ) =
1
T

∫ T

0
⟨Qt h, h⟩L2(ρt )dt. (2.16)

or any h ̸= 0, we have ⟨Qt h, h⟩L2(ρt ) > 0 for all t because Qt is strictly positive. Thus,
SQT h, h⟩L2(SρT ) > 0. This implies that SQT is strictly positive on L2(SρT ). ■

Remark 2.9. If we let H ⊆ Cb(R+), then SQT is strictly positive on H if Qt is non-
egative for each t ∈ [0, T ] and strictly positive on H for some t0 ∈ [0, T ], because the

integrand g(t) = ⟨Qt h, h⟩L2(ρt ) in (2.16) is continuous in time t for each h ∈ H. Indeed,
ote that E[ f (X t )] is continuous in t for any f ∈ Cb(RNd ,R) because X t is a diffusion

process whose density satisfies the Kolmogorov forward equation. Thus, for any function
h ∈ CbR+, the function f (X t ) := h(|r t

12|)h(|r t
13|)

⟨r t
12,r

t
13⟩

|r t
12||r t

13|
is continuous and bounded, so

⟨Qt h, h⟩L2(ρt ) = E[ f (X t )] in (2.15) is continuous in t ∈ [0, T ].

3. The case of linear systems

We prove in this section that the coercivity condition holds true for linear systems with
general non-degenerate exchangeable Gaussian, covering Theorem 1.3(b). We start with a
macro–micro decomposition (with the average position of all particles X t

c being the macro-
tate and with Y t

= X t
− X t being the micro-state) to transform the system into a system of
c
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decentralized positions, which is ergodic. Then, we prove the coercivity condition when the
initial distribution has a special structure similar to the covariance of the invariant measure
(see Theorem 3.3), by using a series representation of the integral kernel and by a Müntz-type
heorem about polynomials with even degrees being dense in L2(R+, µ) for a proper µ. Lastly,
e prove the coercivity condition for general initial distributions by extending the arguments

o non-radial interaction kernels (see Theorem 3.6).

.1. A macro–micro decomposition

We first consider linear systems for which we have φ(r ) = θr with θ > 0 (i.e., Φ(r ) =
1
2θr2,

quadratic potential). The system (1.1) can be written as

d X t
= −θ AX t dt + d Bt , (3.1)

here the matrix A ∈ RNd×Nd is given by (with Id being the identity matrix on Rd )

A =
1
N

⎛⎜⎜⎜⎝
(N − 1)Id −Id · · · −Id

−Id (N − 1)Id · · · −Id
...

...
. . .

...

−Id −Id · · · (N − 1)Id

⎞⎟⎟⎟⎠ . (3.2)

t is straightforward to see that A2
= A, and that the matrix A has eigenvalue 1 of multiplicity

N −1)d and eigenvalue 0 of multiplicity d (with a null space {x = c(v, v, . . . , v) : c ∈ R, v ∈
d
}).
By a macro–micro decomposition of the system as in [9,29], the next lemma shows that the

enter of the particles moves like a Brownian motion, and the particles concentrate around the
enter with a distribution close to Gaussian.

emma 3.1. (i) The solution X t of Eq. (3.1) can be explicitly written as

X t
= e−θ t AX0

+

∫ t

0
e−θ (t−s) Ad Bs

+ X t
c, (3.3)

here X t
c = (vt, vt, . . . , vt)′ with vt

:=
1
N

∑N
i=1 X t

i =
1
N

∑N
i=1(X0

i + Bt
i ).

(ii) Conditional on X0, the centralized process

Y t
= X t

− X t
c

s an Ornstein–Uhlenbeck process with distribution N
(
e−θ t AX0, 1

2θ (1 − e−θ t )A
)

for each t.
n particular, if X0 is Gaussian with variance Σ, then for each t, Y t has a distribution(

0, e−2θ t AΣA +
1

2θ (1 − e−θ t )A
)
.

roof. The fact that vt
:=

1
N

∑N
i=1 X t

i =
1
N

∑N
i=1(X0

i + Bt
i ) follows directly from the equation

dvt
=

1
N

N∑
i=1

d X t
i =

1
N

N∑
i=1

d Bt
i .

Next, note that Y t
= X t

− X t
c = AX t and

dY t
= Ad X t

= −θ A2 X t dt + Ad Bt
= −θY t dt + Ad Bt ,
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where we used A2
= A in the third equality. Therefore, (Y t ) is an Ornstein–Uhlenbeck process

Y t
= e−θ t Y 0

+

∫ t

0
e−θ (t−s) Ad Bs .

herefore, conditional on X0, with Y 0
= AX0 and A2

= A, we have that the distribution of
Y t is N

(
e−θ t AX0, 1

2θ (1 − e−θ t )A
)

and that X t
= X t

c + Y t can be written as in (3.3).
If the initial distribution X0 is exchangeable, then E[Y 0] = AE[X0] = 0 because E[X0

i ] =

[X0
j ] for any (i, j). Thus, if X0 is Gaussian and exchangeable, then Y t is Gaussian with mean

. The variance of Y t follows directly from the above integral representation. ■

.2. Coercivity condition for linear systems

We begin with a technical lemma for generic Gaussian random vectors. We denote by
ov(X, Y ) the covariance of X and Y , with the convention that cov(X ) = cov(X, X ).

emma 3.2. Let (X, Y, Z ) be a Gaussian vector in R3d with an exchangeable joint distribution
nd cov(X ) − cov(X, Y ) = λId for some λ > 0. Denote pλ(u, v) the joint distribution of
X − Y, X − Z ) and denote ρλ the distribution (and qλ(r ) the density function) of |X − Y |.
hen

(i) The function K λ(r, s) : R+
× R+

→ R defined by

K λ(r, s) :=
1

qλ(r )qλ(s)
(rs)d−1

∫
Sd−1

∫
Sd−1

⟨ξ, η⟩pλ(rξ, sη)dξdη (3.4)

is uniformly bounded and is in L2(ρλ ⊗ ρλ).
(ii) The integral operator Qλ with kernel K λ is strictly positive on L2(ρλ), i.e., for any

0 ̸= h ∈ L2(ρλ),

⟨Qλh, h⟩L2(ρλ) = E
[

h(|X − Y |)h(|X − Z |)
⟨X − Y, X − Z⟩

|X − Y ||X − Z |

]
> 0. (3.5)

roof. We start with explicit expressions for pλ(u, v), ρλ(r ) and K λ(r, s). By exchangeability,

he random vector (X −Y, X − Z ) is centered Gaussian with covariance matrix λ
(

2Id Id

Id 2Id

)
,

hose inverse is 1
3λ

(
2Id −Id

−Id 2Id

)
. Thus, the joint distribution is

pλ(u, v) = (2
√

3πλ)−de−cλ(|u|
2
+|v|2−⟨u,v⟩), with cλ =

1
3λ
,

nd a direct computation yields that the density of |X − Y | is

qλ(r ) =
1

Cλ

rd−1e−
r2
4λ 1r⩾0, with Cλ =

1
2

(4λ)
d
2 Γ (

d
2

),

here the constant Γ ( d
2 ) comes from the surface area of the unit sphere in Rd : |Sd−1

| =
2πd/2

Γ ( d
2 )

.
Then, the integral kernel in (3.4) can be written as

K λ(r, s) = Cde−
1

12λ (r2
+s2)

∫ ∫
⟨ξ, η⟩ecλrs⟨ξ,η⟩ dξdη

2 , with Cd = (

√
3

)−d .

Sd−1 Sd−1 |Sd−1| 2
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Here when d = 1, the above spherical measure on S0
= {−1, 1} is interpreted as P(ξ = 1) =

(ξ = −1) =
1
2 , or equivalently,

∫
Sd−1

∫
Sd−1⟨ξ, η⟩e

1
3λ (rs⟨ξ,η⟩) dξdη

|Sd−1|
2 =

1
2 (ecλrs

− e−cλrs).

To prove (i), note that ⟨ξ, η⟩ecλrs⟨ξ,η⟩ ⩽ ecλrs . Then,

K λ(r, s) ⩽ Cde−
1

12λ (r2
+s2)+cλrs,

nd it follows that K λ(r, s) is uniformly bounded above and is in L2(ρλ ⊗ ρλ).
To prove (ii), we first represent K λ(r, s) in terms a series of polynomials and then apply a

üntz-type theorem. Note that by Taylor expansion, ⟨ξ, η⟩ecλrs⟨ξ,η⟩
=
∑

∞

k=1
1

(k−1)!c
k−1
λ (rs)k−1

⟨ξ, η⟩k, and that

bk =

∫
Sd−1

∫
Sd−1

⟨ξ, η⟩k dξdη

|Sd−1|
2

{
= 0, for odd k,
∈ (0, 1), for even k,

ue to symmetry. We have

K λ(r, s) = Cde−
1

12λ (r2
+s2)

∞∑
k=0

1
k!

ck
λbk+1(rs)k

= Cde−
1

12λ (r2
+s2)

∞∑
k=1,k odd

1
k!

ck
λbk+1(rs)k−1.

hen, for any h ∈ L2(ρλ), we have

⟨Qλh, h⟩L2(ρλ) =

∫
∞

0
h(r )h(s)K λ(r, s)ρλ(r )ρλ(s)drds

= Cd

∞∑
k=1,k odd

1
k!

ck
λbk+1

(∫
∞

0
h(r )r k−1e−

1
12λ r2

ρλ(r )dr
)2

⩾ 0.

ote that∫
∞

0
h(r )r k−1e−

1
12λ r2

ρλ(r )dr = C−1
λ

∫
∞

0
h(r )r k+d−2e−

1
3λ r2

dr.

y Lemma A.9, a variation of the Müntz Theorem, the space span{1, r2, r4, r6, . . .} is dense in
L2(rd−1e−

1
3λ r2

). Thus, ⟨Qλh, h⟩L2(ρλ) = 0 only if h ≡ 0, and Qλ is strictly positive. Eq. (3.5)
ollows as in Eq. (2.13). ■

The next theorem implies Theorem 1.3(b) under the additional assumption that the initial dis-
ribution of X0 is exchangeable Gaussian with a covariance satisfying cov(X0

i )−cov(X0
i , X0

j ) =

0 Id for any 1 ⩽ i < j ⩽ N . Intuitively, we may decompose each component of X0 as the
um of a common variable and an independent variable, i.e., X0

i = Z i + W , where {Z i }
N
i=1

re i.i.d. N (0, λ0 Id ) and W is a common Gaussian random variable, and this implies that the
articles are initially scattered randomly around a random position.

heorem 3.3. Suppose the linear system (3.1) starts from X0 whose distribution is exchange-
ble Gaussian with covariance satisfying cov(X0

1) − cov(X0
1, X0

2) = λ0 Id for some λ0 > 0.
hen, (i) the coercivity condition holds on L2(ρt ) at each time t ∈ [0, T ] as in Definition 2.4;
ii) the coercivity condition holds on L2(SρT ) on [0, T ] as in Definition 1.2.

roof. Let Y t
= X t

− X t
c. Note that

r t
i j = X t

i − X t
j = Y t

i − Y t
j .

t t
hus, the coercivity conditions for the process (X ) is equivalent to those for the process (Y ).
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With M := cov(X0
i , X0

j ), the covariance of X0 can be written as

Σ =

⎛⎜⎜⎜⎝
M + λ0 Id M · · · M

M M + λ0 Id · · · M
...

...
. . .

...

M M · · · M + λ0 Id

⎞⎟⎟⎟⎠ .
direct computation shows that AΣA = λ0 A for A defined in (3.2). By Lemma 3.1(ii), this

pecial covariance implies that the centralized process Y t
= X t

− X t
c has a covariance λ(t)A

ith λ(t) =
[
e−2θ tλ0 +

1
2θ (1 − e−θ t )

]
. Then, (Y t

1, . . . ,Y t
N ) is exchangeable Gaussian with

covariance satisfying cov(Y t
i ) − cov(Y t

i ,Y t
j ) = λ(t)Id , particularly for the vector (Y t

1,Y t
2,Y t

3).
hen, applying Lemma 3.2 to the vector (Y t

1,Y t
2,Y t

3), we obtain that the integral operator Qλ(t)

ith kernel K λ(t) defined in (3.4) is strictly positive on L2(ρt ) for each t . In the notation of
roposition 2.7, this implies that integral operator Qt = Qλ(t) with kernel Kt = K λ(t) is strictly
ositive on L2(ρt ). Part (i) then follows.

Since Qt is strictly positive on L2(ρt ) for each t ∈ [0, T ], so is SQT on L2(SρT ) by
roposition 2.8. Then, the coercivity condition holds on L2(SρT ) by Proposition 2.5. ■

emark 3.4. When the system is deterministic, i.e. there is no stochastic force, the coercivity
onditions hold true on L2(SρT ) when the initial distribution is exchangeable Gaussian with
ov(X0

i ) − cov(X0
i , X0

j ) = λ0 Id . In fact, we have X t
= e−θ t AX0

+ X t
c and Y t

= e−θ t AX0.
hen the vector (Y t

1,Y t
2,Y t

3) is exchangeable Gaussian with cov(Y t
i )−cov(Y t

i ,Y t
j ) = e−2θ tλ0 Id .

he coercivity condition follows again from Lemma 3.2 and Proposition 2.5. In particular, it
olds when the initial distribution is standard Gaussian, i.e., the initial position of the particles
re i.i.d. Gaussian.

.3. Coercivity condition for non-radial interaction functions

The covariance constraint cov(X0
i )−cov(X0

i , X0
j ) = λ0 Id in Theorem 3.3 is necessary for the

bove proof, due to the need of a series representation of the radial integral kernel Kt . Here we
emove this constraint by using a series representation of the corresponding non-radial integral
ernel. More importantly, we show that the coercivity condition holds true on L2 for interaction
unctions that are non-radial.

More precisely, consider the system with a non-radial interaction kernel φ : Rd
→ R,

d X t
i =

1
N

∑
1⩽ j⩽N , j ̸=i

φ(X t
j − X t

i )
X t

j − X t
i

|X t
j − X t

i |
dt + σd Bt

i , for i = 1, . . . , N , (3.6)

ith initial condition X0. We will extend the above coercivity condition to non-radial interac-
ion functions.

It is straightforward to see from Section 2.1 that for non-radial interaction functions, the
unction space of learning is L2(Rd ,SρT ) or L2(Rd , ρt ) with

SρT (du) =
1
T

∫ T

0
ρt (du)dt, with ρt (du) = E[δ(X t

i − X t
j ∈ du)]. (3.7)

Correspondingly, the coercivity condition is on L2(Rd ,SρT ) or L2(Rd , ρt ). For simplicity of
otation, we denote them by L2(SρT ) and L2(ρt ).
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Definition 3.5 (Coercivity Condition for Non-radial Functions). The dynamical system (3.6)
n [0, T ] with an initial condition X0 and an interaction function φ : Rd

→ R is said to satisfy
he coercivity condition on a finite dimensional linear subspace H ⊂ L2(SρT ), with ρ̄T defined
n (3.7), if

cH,T := inf
h∈H, ∥h∥L2(SρT )=1

1
T

∫ T

0
E[h(r t

12)h(r t
13)

⟨r t
12, r t

13⟩

|r t
12||r

t
13|

]dt > 0, (3.8)

here r t
i j = X t

i − X t
j . If the coercivity condition holds true on every finite dimensional linear

ubspace H ⊂ L2(SρT ), we say the system satisfies the coercivity condition. Similarly, we can
efine the coercivity condition at a single time t on L2(ρt ).

The next theorem shows that the coercivity condition holds true for the linear system when
he distribution of X0 is non-degenerate exchangeable Gaussian.

heorem 3.6. Suppose the linear system (3.1) starts with an initial condition (X0
1, . . . , X0

N )
hose distribution is non-degenerate exchangeable Gaussian. Then the coercivity condition
olds true at each time t ⩾ 0, as well as on [0, T ], in the sense of Definition 3.5.

As in the previous section, we prove the coercivity condition by showing that the corre-
ponding integral operator is strictly positive, based on a series representation of the non-radial
ntegral kernel. Propositions 2.5 and 2.7 can be directly generalized to a non-radial version. We
egin with the following lemma, which is a counterpart of the Müntz-type theorem, showing
hat polynomials are dense in weighted L2 spaces.

emma 3.7 ([33, Lemma 1.1]). Let µ be a measure on Rd satisfying∫
ec|x |dµ(x) < ∞

or some c > 0, where |x | =
∑d

j=1 |x j |. Then the polynomials are dense in L2(µ).

roposition 3.8. Let (X, Y, Z ) be a Gaussian vector in R3d with an exchangeable and non-
egenerate joint distribution. Denote by p(u, v) the non-degenerate joint density of (X −Y, X −

Z ) and by ρ the distribution (with a density q) of X − Y . Then, the integral operator Q with
ernel

K (u, v) :=
1

q(u)q(v)
⟨u, v⟩
|u||v|

p(u, v) (3.9)

s strictly positive on L2(ρ).

roof. For any h, g ∈ L2(ρ), from the definition of Q and the Cauchy–Schwarz inequality,
e have

|⟨Qh, g⟩L2(ρ)| =

⏐⏐⏐E[h(X − Z )g(X − Z )
⟨X − Y, X − Z⟩

|X − Y ||X − Z |
]
⏐⏐⏐ ⩽ ∥h∥L2(ρ)∥g∥L2(ρ).

hus, Q is a bounded operator on L2(ρ). We show that Q is strictly positive by

(i) ⟨Qh, h⟩ ⩾ 0 for any h ∈ L2(ρ), and
(ii) ⟨Qh, h⟩ = 0 ⇒ h = 0 in L2(ρ).
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To prove (i), note that

⟨Qh, h⟩L2(ρ) =

∫∫
h(u)h(v)K (u, v)ρ(u)ρ(v)dudv =

∫∫
h(u)h(v)

⟨u, v⟩
|u||v|

p(u, v)dudv.

(3.10)

hen, by Theorem A.2, it suffices to show p(u, v) is positive-definite.
Since the joint distribution of (X, Y, Z ) is exchangeable non-degenerate Gaussian, there exist

vector µ ∈ Rd and an invertible matrix Σ such that the distribution of each of X, Y, Z is
N (µ,Σ ). Decompose Σ−1

= L LT , and let X̃ = L(X−µ), Ỹ = L(Y −µ), Z̃ = L(Z−µ). Then,
he distribution of each of X̃ , Ỹ , Z̃ is N (0, Id ) and their joint distribution is exchangeable and

non-degenerate. It follows that cov(X̃ , Ỹ ) = cov(X̃ , Z̃ ) = cov(Ỹ , Z̃ ). Let Θ = cov(X̃ , Ỹ ) =

E[X̃ Ỹ T ]. Since Θ is real symmetric, it is diagonalizable and there is a real orthonormal
matrix P such that PΘPT

= diag(λ1, . . . , λd ), where {λ1, . . . , λd} are eigenvalues of Θ .
Note that −1 ⩽ λi < 1 because the joint distribution of (X̃ , Ỹ , Z̃ ) is non-degenerate and
cov(X̃ ) = cov(Ỹ ) = Id .

Let X ′
= P X̃ = L P(X − µ), Y ′

= PỸ = L P(Y − µ), Z ′
= P Z̃ = L P(Z − µ). By

Theorem A.2, to prove that p(u, v) is positive-definite, it suffices to show that the density
(u, v) of (X ′

− Y ′, X ′
− Z ′) is positive-definite. Note that the covariance matrix cov(X ′

−

Y ′, X ′
− Z ′) is invertible:

cov(X ′
− Y ′, X ′

− Z ′)−1
=

[
2I − 2Θ I − Θ

I − Θ 2I − 2Θ

]−1

=
1
3

[
2Λ −Λ
−Λ 2Λ

]
,

here Λ := diag(a1, . . . , ad ) with ai =
1

1−λi
⩾ 1

2 . Thus, with a normalizing constant Cd > 0,
we have

q(u, v) = Cd exp
(
−

1
2 (u, v)cov(X ′

− Y ′, X ′
− Z ′)−1(u, v)T )

= Cd exp

(
−

1
3

d∑
i=1

ai (u2
i + v2

i ) +
1
3

d∑
i=1

ai uivi

)
.

By Theorem A.2, q(u, v) is positive-definite.
To prove (ii), let h ∈ L2(ρ) satisfy ⟨Qh, h⟩ = 0. We need to prove that h = 0. Let

g j (u) : = exp

(
−

1
12

d∑
i=1

ai u2
i

)
h((P L)−1u)

((P L)−1u) j

|(P L)−1u|

q(u) : =

∫
q(u, v)dv = C ′

d exp

(
−

1
4

d∑
i=1

ai u2
i

)

f (u, v) : = exp

(
1
3

d∑
i=1

ai uivi

)
.

By the linear transform X ↦→ P L(X − µ), we can rewrite (3.10) as

⟨Qh, h⟩ = Cd (C ′

d )−2(det L)2
d∑∫∫

g j (u)q(u)g j (v)q(v) f (u, v)dudv.

j=1
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Note that the Taylor series of f (u, v) is

f (u, v) =

∞∑
k=0

1
k!3k

(
d∑

i=1

ai uivi )k
=

∞∑
k=0

∑
i1+···+id=k

Ck,i1,...,id (u1v1)i1 · · · (udvd )id ,

here all coefficients are positive. By Fubini’s theorem,

⟨Qh, h⟩ = Cd (det L)2
∑

j

∑
k,i1,...,id

Ck,i1,...,id

(∫
g j (u)ui1

1 · · · uid
d q(u)du

)2

. (3.11)

hus, ⟨Qh, h⟩ = 0 implies that each term must be zero∫
g j (u)ui1

1 · · · uin
n q(u)du = 0, for any integers i1, . . . , id ⩾ 0.

Note that the measure µ defined by dµ(u) := q(u)du satisfies the condition of Lemma 3.7.
hen the polynomials are dense in L2(Rd , q). Also, note that g j ∈ L2(Rd , q) because |g j (u)| ⩽

h((P L)−1u)| and∫
|h((P L)−1u)|

2
q(u)du = E[|h((P L)−1(X ′

− Y ′))|
2
] = E[|h(X − Y )|2]

= ∥h∥
2
L2(ρ) < ∞,

here in the first equality we used the fact that q(u) is the density of X ′
− Y ′. Hence, g j = 0

n L2(Rd , q) for all j , and we conclude that h = 0 in L2(ρ). ■

roof of Theorem 3.6. Similar to the proof of Theorem 3.3, we only need to consider the
rocess Y t

= X t
− X t

c because the proof only involves r t
i j = X t

i − X t
j = Y t

i − Y t
j .

By Lemma 3.1, (Y t
1, . . . ,Y t

N ) is exchangeable Gaussian. In particular, the vector (Y t
1,Y t

2,

Y t
3) is exchangeable Gaussian on R3d . Denote by pt (u, v) the joint distribution of (Y t

1−Y t
2,Y t

1−

Y t
3) and recall in (3.7), we denote by ρt the distribution (with qt denoting its density) of Y t

1−Y t
2

nd denote by SρT the average of ρt on [0, T ] (with SqT denoting its density).
By Proposition 3.8, the integral operator Qt with kernel

Kt (u, v) :=
1

qt (u)qt (v)
⟨u, v⟩
|u||v|

pt (u, v) (3.12)

s strictly positive on L2(ρt ). Then it follows from the non-radial version of Proposition 2.7
hat the coercivity condition holds true for each time t .

Similar to the proof in Theorem 3.3, the coercivity on [0, T ] follows from the non-radial
ersion of Propositions 2.5 and 2.8. More precisely, we would like to show that the integral
perator Q̄T with kernel

K̄T (u, v) :=
1

SqT (u)SqT (v)
⟨u, v⟩
|u||v|

∫ T

0
pt (u, v)dt

s strictly positive on L2(ρ̄T ). Note that ⟨SQT h, h⟩L2(SρT ) =
1
T

∫ T
0 ⟨Qt h, h⟩L2(ρt )dt for any

h ∈ L2(SρT ), and we just showed above that ⟨Qt h, h⟩L2(ρt ) > 0 for each t ∈ [0, T ]. Thus,
SQT is strictly positive. ■

. Nonlinear systems with three particles

We consider the class of nonlinear systems with interaction functions in Theorem 1.3(c),
tarting from an invariant measure. Since the diffusion process (X t , t ∈ [0, T ]) has a stationary
151
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distribution, the coercivity condition on a time instance is the same as on the time interval
[0, T ], because ρT = ρt . Thus, we simply say that coercivity condition holds true without
pecifying it being at a single time or on a time interval when the process is stationary.

Global solutions exist for the gradient system (2.1) with a potential Φ(r ) in (1.4), because
he potential leads to a locally Lipschitz drift term and the total potential Jφ in (2.2) leads to
Lyapunov function for the system.
The following theorem covers Theorem 1.3(c).

heorem 4.1. The coercivity condition holds true for the system (2.1) with N = 3 starting
rom an initial condition X0 such that the joint density of (X0

1 − X0
2, X0

1 − X0
3) is p(u, v) in

1.5), and with Φ in (1.4).

Note that we only need the joint density of (X t
1 − X t

2, X t
1 − X t

3) to study the coercivity
ondition. We will show first that p(u, v) in (1.5) is an invariant density for (X t

1−X t
2, X t

1−X t
3)

hen N = 3 (see Section 4.1). Then based on the analytical expression of p(u, v), we
ntroduce a “comparison to Gaussian kernels” technique, which makes extensive use of positive-
efinite kernels. We will prove the theorem and develop the technique in two steps: first when
(r ) = r2β in Section 4.2 and then general Φ in Section 4.3. Due to the need of the above

nalytical form of p(u, v), our result is limited to the case when N = 3 and when the initial
istribution is the invariant measure (see Remark 4.4).

.1. Stationary distribution for pairwise differences

We show first that the process of pairwise differences (X t
1−X t

2, X t
1−X t

3) admits a stationary
istribution.

roposition 4.2. Suppose that Φ ∈ C2(R+,R) and Z =
∫
Rd

∫
Rd e−H (u,v)dudv < ∞ for

H (u, v) =
1
3

[Φ(|u|) + Φ(|v|) + Φ(|u − v|)].

Then the process (r t
12, r t

13) = (X t
1 − X t

2, X t
1 − X t

3) admits p(u, v) in (1.5) as an invariant
density.

Proof. Note that{
d r t

12 = F(r t
12, r t

13)dt + (d Bt
1 − d Bt

2),
d r t

13 = F(r t
13, r t

12)dt + (d Bt
1 − d Bt

3), (4.1)

where the function F : Rd
× Rd

→ Rd is given by

F(u, v) = −
1
3

[2φ(|u|)u + φ(|v|)v + φ(|u − v|)(u − v)],

where φ(r ) = Φ ′(r ).

The diffusion
(

d Bt
1 − d Bt

2
d Bt

1 − d Bt
3

)
has a non-degenerate covariance

(
2Id Id

Id 2Id

)
. One can then

verify directly that the distribution p(u, v) is a stationary solution to the Kolmogorov forward
equation of (4.1). Alternatively, for ease of computation, we show that the system (4.1) is a
linear transformation of a gradient system with homogeneous diffusion, which shares the same
152
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invariant measure. Let A =
√

2
(

Id 0
1/2Id

√
3/2Id

)
, which satisfies AAT

=

(
2Id Id

Id 2Id

)
. Then

he process(
Y t

1

Y t
2

)
= A−1

(
r t

12

r t
13

)
s a weak solution to the system

d

(
Y t

1

Y t
2

)
= A−1

(
F(Y t

1,
√

2
2 Y t

1 +

√
6

2 Y t
2)

F(
√

2
2 Y t

1 +

√
6

2 Y t
2,Y t

1)

)
dt +

(
d B̃t

1

d B̃t
2

)
, (4.2)

here (B̃t
1, B̃t

2) is a standard Brownian motion on R2d . Notice that H (u, v) = H (v, u) and

A−1

(
F(

√
2u,

√
2

2 u +

√
6

2 v)

F(
√

2
2 u +

√
6

2 v,
√

2u)

)
=

(
∇u[H (

√
2u,

√
2

2 u +

√
6

2 v)]

∇v[H (
√

2
2 u +

√
6

2 v,
√

2u)]

)
.

hen, it follows from Lemma A.10 that pY ( y1, y2) ∝ e−2H ( y1,
√

2
2 y1+

√
6

2 y2) is an invariant
ensity for the system (4.2). Therefore, the process (r t

12, r t
13) admits p(u, v) as an invariant

ensity. ■

emark 4.3. Similarly, one can prove that the process (X t
1 − X t

2, X t
1 − X t

3, . . . , X t
1 − X t

N )
dmits a stationary density on R(N−1)d . In essence, we decompose the system into a reference
article and the relative positions of other particle to the reference particle. This is similar to
he macro–micro decomposition of the system in [9,10,16,29]. But the above transformation
as the following advantage: it leads to a gradient system with an additive white noise, and
his simplifies the derivation of the stationary distribution.

emark 4.4. Our current proof for the coercivity condition makes use of the analytical
xpression of the invariant density p(u, v) of (X t

1 − X t
2, X t

1 − X t
3) and of the Müntz-type

heorem on R+. When N > 3, such an explicit form is no longer available due to the need of
arginalizing the joint distribution of (X t

1 − X t
2, X t

1 − X t
3, . . . , X t

1 − X t
N ):

p(u, v) =
1
Z

f (u, v)e−
2
N [Φ(|u|)+Φ(|v|)+Φ(|u−v|)],

where Z is a normalizing constant and

f (u, v) =

∫
Rd(N−3)

e−
2
N

[∑N
4⩽i< j Φ(|r1i −r1 j |)+

∑N
l=4[Φ(|r1l |)+Φ(|u−r1l |)+Φ(|v−r1l |)]

]
dr14 . . . r1N .

e expect to remove the constraint N = 3 in future research. Also, when the system starts
rom initial distributions other than the invariant measure, the density of (X t

1 − X t
2, X t

1 − X t
3)

ill no longer be p(u, v). Perturbation type arguments may help to address such cases.

.2. Interaction potentials in form of Φ(r ) = r2β

We develop in this section a “comparison to Gaussian kernels” technique to prove that
he coercivity condition holds true for systems with interaction potential Φ(r ) = r2β for
/2 ⩽ β ⩽ 1. We first prove that p(u, v) in (1.5) is positive-definite, then prove that the
ntegral kernel Kt is strictly positive-definite by comparing it with the Gaussian kernel.
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Lemma 4.5. Assume Φ(r ) = r2β . Let p(u, v) be the density function defined in (1.5).

(1) If 0 < β ⩽ 1, all the three kernels, Φ(|u − v|), e−Φ(|u−v|), and p(u, v), are positive-
definite.

(2) If β > 1, then p(u, v) is not positive-definite.

Proof. This is a generalization of Corollary 3.3.3 of [2] to the higher-dimensional case.
Note that p(u, v) is positive-definite iff e−Φ(|u−v|) is positive-definite. The kernel |u − v|2 for
, v ∈ Rd is a negative definite kernel, because for any c1, . . . , cn ∈ R, and

∑n
i=1 ci = 0,

n∑
i, j=1

ci c j |ui − u j |
2

=

[
n∑

i=1

ci

]⎡⎣ n∑
j=1

c j |u j |
2

⎤⎦+

⎡⎣ n∑
j=1

c j

⎤⎦[ n∑
i=1

c j |ui |
2

]
−

⏐⏐⏐⏐⏐
n∑

i=1

ci ui

⏐⏐⏐⏐⏐
2

= −

⏐⏐⏐⏐⏐
n∑

i=1

ci ui

⏐⏐⏐⏐⏐
2

⩽ 0.

y Theorem A.6, |u − v|2β is also a negative definite kernel for any 0 < β ⩽ 1. By
heorem A.5, we obtain that e−|u−v|2β is positive-definite, then Part (1) follows.

Now we prove Part (2). Suppose now that for some β > 1, p(u, v) is a positive-definite
ernel. Then for any t > 0, x1, . . . , xn ∈ Rd and c1, . . . , cn ∈ R, we have

n∑
j,k=1

c j cke−t |x j −xk |
2β

=

n∑
j,k=1

c j cke
−

⏐⏐⏐⏐⏐t 1
2β x j −t

1
2β xk

⏐⏐⏐⏐⏐
2β

⩾ 0

y Theorem A.5, the kernel |u − v|2β is negative definite, and by Theorem A.7, |u − v|β is a
etric on R. Let 0 = (0, . . . , 0) ∈ Rd , 1 = (1, . . . , 1) ∈ Rd and 2 = (2, . . . , 2) ∈ Rd . Note

hat

|0 − 1|
β

= d
β
2 , |0 − 2|

β
= 2βd

β
2 > 2|0 − 1|

β

hen β > 1. The contradiction to the triangle inequality implies Part (2). ■

Recall that the coercivity condition depends only on the distribution of the process (r t
12, r t

13).
hen the process (r t

12, r t
13) is stationary, the coercivity condition at a time instance in

efinition 2.4 is equivalent to that of Definition 1.2. Following Proposition 2.5, the coercivity
ondition is equivalent to the positivity of the integral operator Q on L2(ρ) with kernel

K (r, s) : R+
× R+

→ R defined by

K (r, s) :=
1

q(r )q(s)
(rs)d−1

∫
Sd−1

∫
Sd−1

⟨ξ, η⟩p(rξ, sη)dξdη, (4.3)

here p(u, v) is the stationary density defined in (1.5), and ρ denotes the distribution of |r t
12|

ith q being its density. For the case β = 1 in the previous section, we witnessed that the
aussian distribution neatly ensures strict positivity of the integral operator through Taylor

xpansion of ⟨u, v⟩ec⟨u,v⟩. However, when β ̸= 1, such a “quadratic structure” of the Gaussian
ernel is no longer available. Using the positive-definiteness of −|u − v|2β , we uncover a
uadratic structure by bounding the kernel K by another positive-definite kernel from below
nd by a Gamma integral representation of the power function. We call this procedure a

comparison to a Gaussian kernel” technique.
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We start with two inequalities using positive-definiteness of integral kernels.

emma 4.6. Let Φi : Rd
× Rd

→ R be positive-definite kernels for i = 1, 2. Then,∫
Rd

∫
Rd

h(u)h(v)Φ1(u, v)eΦ2(u,v)dudv ⩾
∫
Rd

∫
Rd

h(u)h(v)Φ1(u, v)dudv,∫
Rd

∫
Rd

h(u)h(v)Φ1(u, v)eΦ2(u,v)dudv ⩾
∫
Rd

∫
Rd

h(u)h(v)Φ1(u, v)Φ2(u, v)dudv

or any h ̸= 0, as long as the integrals exist.

roof. By Theorem A.2, Φ2(u, v)nΦ1(u, v) is positive-definite for each integer n ⩾ 0, so
or any h ̸= 0 and n ⩾ 0, we have

∫
Rd

∫
Rd h(u)h(v)Φ1(u, v)Φ2(u, v)ndudv > 0. Then the

nequalities follow from the Taylor expansion of eΦ2(u,v), with the first inequality keeping only
he term with n = 0 and the second inequality keeping only the term with n = 1. ■

The following proposition is a counterpart of Proposition 3.8.

roposition 4.7. Let β ∈ (0, 1] and p(u, v) be a density function in (1.5) with Φ(r ) = r2β ,
.e., p(u, v) =

1
Z e−

2
3 (|u|

2β
+|v|2β+|u−v|2β ). Let ρ(r ) be the distribution of |U | with (U, V ) having

joint distribution p(u, v). Then, for any 0 ̸= h ∈ L2(ρ),

I =

∫
Rd

∫
Rd

h(|u|)h(|v|)
⟨u, v⟩
|u||v|

p(u, v)dudv > 0.

Proof. The factor 2
3 and the normalizing constant Z do not play a role in the above inequality,

o we omit them in the following proof. We only consider the case β < 1, since when β = 1,
he Gaussian distribution neatly ensures strict positivity of the integral operator through Taylor
xpansion of ⟨u, v⟩ec⟨u,v⟩. Note that

I =

∫
Rd

∫
Rd

h(|u|)e−2|u|
2β

h(|v|)e−2|v|2β ⟨u, v⟩
|u||v|

e|u|
2β

+|v|2β−|u−v|2βdudv

=

∫
Rd

∫
Rd

h̃(|u|)̃h(|v|)
⟨u, v⟩
|u||v|

eΦ2(u,v)dudv,

where h̃(r ) := h(r )e−2r2β
and

Φ2(u, v) := |u|
2β

+ |v|2β − |u − v|2β .

By Lemma 4.5, |u − v|2β is negative definite. Then, by Theorem A.4, Φ2(u, v) is positive-
definite. Thus, by Lemma 4.6 with Φ1(u, v) = ⟨u, v⟩ and Φ2(u, v) as above, we have

I ⩾
∫
Rd

∫
Rd

h̃(|u|)̃h(|v|)
⟨u, v⟩
|u||v|

(
|u|

2β
+ |v|2β − |u − v|2β

)
dudv

= −

∫
Rd

∫
Rd

h̃(|u|)̃h(|v|)
⟨u, v⟩
|u||v|

|u − v|2βdudv =: Ĩ , (4.4)

here in the equality we dropped the term |u|
β

+ |v|β , due to symmetry of ⟨u, v⟩,∫
Rd

∫
Rd

g1(|u|)g2(|v|)
⟨u, v⟩
|u||v|

= 0

or any g , g ∈ L2(ρ). We shall use this property several times in the following.
1 2
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Next, we use Gamma function to bound Ĩ in (4.4) from below by a Gaussian kernel as in
he previous section. Note that for any x > 0 and β < 1,

|u − v|2β =
β

Γ (1 − β)

∫
∞

0
(1 − e−λ|u−v|2 )

dλ
λβ+1 .

lugging this into the integral in (4.4), and using the symmetry of ⟨u, v⟩ again, we obtain

Ĩ =
β

Γ (1 − β)

∫
∞

0

∫
Rd

∫
Rd

h̃(|u|)̃h(|v|)
⟨u, v⟩
|u||v|

(e−λ|u−v|2
− 1)dudv

dλ
λβ+1

=
β

Γ (1 − β)

∫
∞

0

∫
Rd

∫
Rd

h̃(|u|)̃h(|v|)
⟨u, v⟩
|u||v|

e−λ|u−v|2dudv
dλ
λβ+1

=
β

Γ (1 − β)

∫
∞

0

∫
Rd

∫
Rd

h̃(|u|)̃h(|v|)e−λ(|u|
2
+|v|2) ⟨u, v⟩

|u||v|
e2λ⟨u,v⟩dudv

dλ
λβ+1 .

y the symmetry of ⟨u, v⟩ and Taylor expansion of e2λ⟨u,v⟩, we have

Ĩ =
β

Γ (1 − β)

∫
∞

0

∫
Rd

∫
Rd

h̃(|u|)̃h(|v|)e−λ(|u|
2
+|v|2) ⟨u, v⟩

|u||v|

×

∞∑
n=0

⟨u, v⟩2n+1

(2n + 1)!
dudv22n+1λ2n−βdλ

=

∞∑
n=0

β

Γ (1 − β)

∫
∞

0

∫
∞

0

∫
∞

0
h̃(r )̃h(s)e−λ(r2

+s2)(rs)d+2n+1Cndrdsλ2n−βdλ,

where we denote Cn :=
∫
ξ∈Sd−1

∫
η∈Sd−1

22n+1
⟨ξ,η⟩2n+2

(2n+1)! dξdη, which is positive. Thus,

Ĩ =

∞∑
n=0

Cnβ

Γ (1 − β)

∫
∞

0
λ2n−β

[∫
∞

0
h̃(r )e−λr2

rd+2n+1dr
]2

dλ

⩾
∞∑

n=0

Cnβ

Γ (1 − β)

∫ 2

1
λ2n−βdλ

[∫
∞

0
h̃(r )e−λr2

rd+2n+1dr
]2

.

ote that C̃n,β =
Cnβ

Γ (1−β)

∫ 2
1 λ

2n−βdλ > 0 for each n ⩾ 0. Combining all the above, we have

I ⩾
∞∑

n=0

C̃n,β

[∫
∞

0
h(r )e−2r2β

−2r2
rd+2n+1dr

]2

,

hich is positive if h ̸= 0 ∈ L2( f ) with f (r ) := rd+1e−2r2β
−2r2

, because by Lemma A.9, the
et of functions span{1, r2, r4, . . .} is complete in L2(R+, f ). Note that supp f = supp ρ = R+,
o h ̸= 0 ∈ L2( f ) when h ̸= 0 ∈ L2(ρ). ■

roof of Theorem 4.1 with Φ(r ) = r2β . Since β ∈ [1/2, 1] and the density of (r0
12, r0

13) is
p(u, v), it follows from Proposition 4.2 that the process (r t

12, r t
13) is stationary with distribution

p(u, v). Then, the coercivity condition is equivalent to that

I := E[h(|r t
12|)h(|r t

13|)
⟨r t

12, r t
13⟩

|r t
||r t

|
] > 0
12 13
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for any h ̸= 0 ∈ L2(ρ), where ρ is the stationary probability density of |r t
12|. Note that

I =
1
Z

∫
Rd

∫
Rd

h(|u|)h(|v|)
⟨u, v⟩
|u||v|

e−
2
3 (|u|

2β
+|v|2β+|u−v|2β )dudv.

hen we can conclude the theorem by Proposition 4.7. ■

emark 4.8. We point out that the requirement β ∈ (0, 1] is to ensure that the stationary
ensity p(u, v) is a positive-definite kernel. When β > 1, the above method does no longer

work, because p(u, v) is not positive-definite as shown in Lemma 4.5. The requirement β ⩾ 1
2

s to ensure that the drift term is continuous, so that a strong solution exists. When β < 1
2 , the

rift is moderately singular, the existence of a solution is open [1,34].

.3. General interaction potentials

The “comparison to a Gaussian kernel” technique in Lemma 4.6 and Proposition 4.7 can
e generalized to prove the coercivity condition for a large class of interaction functions. The
ollowing lemma provides the key element in such a generalization.

emma 4.9. Let Φ be a potential in (1.4) and let ρ(r ) be the distribution of |U | with (U, V )
aving a joint distribution p(u, v) =

1
Z e−

2
3 [Φ(|u|)+Φ(|v|)+Φ(|u−v|)]. Then,

I =

∫
Rd

∫
Rd

h(|u|)h(|v|)
⟨u, v⟩
|u||v|

e−[Φ(|u|)+Φ(|v|)+Φ(|u−v|)]dudv > 0

or any 0 ̸= h ∈ L2(ρ).

Proof. Rewrite the integral as

I =

∫
Rd

∫
Rd

[h(|u|)e−
2
3Φ(|u|)][h(|v|)e−

2
3Φ(|v|)]

⟨u, v⟩
|u||v|

e−
2
3 a|u−v|2β−

2
3Φ0(|u−v|)dudv

=

∫
Rd

∫
Rd

h̃(|u|)̃h(|v|)
⟨u, v⟩
|u||v|

e−
2
3 a|u−v|2β+

2
3 Φ̃(|u−v|)dudv,

where h̃(r ) = h(r )e−
2
3Φ(r )− 2

3Φ0(r ) and

Φ̃(u, v) := Φ0(|u|) + Φ0(|v|) − Φ0(|u − v|).

Since Φ0(|u − v|) is negative definite, by Theorem A.3, Φ̃(u, v) is positive-definite. Also, by
Lemma 4.5, ⟨u, v⟩e−

2
3 a|u−v|2β is positive-definite. Hence, by Lemma 4.6, we have

I ⩾
∫
Rd

∫
Rd

h̃(|u|)̃h(|v|)
⟨u, v⟩
|u||v|

e−
2
3 a|u−v|2βdudv.

hen the strictly positive-definiteness follows from Proposition 4.7. ■

We can now conclude the proof of Theorem 4.1.

Proof of Theorem 4.1. The case when Φ(r ) = r2β is proved in the previous section. For
eneral potential Φ, the proof is similar. In fact, since β ∈ [1/2, 1] and Φ0 is smooth, the
rocess (r t

12, r t
13) is stationary with invariant density p(u, v). Then, E[h(|r t

12|)h(|r t
13|)

⟨r t
12,r

t
13⟩

|r t
12||r t

13|
]

is the same as the integral I in Lemma 4.9, so the coercivity condition follows. We conclude
the proof. ■
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We provide a few examples of negative definite radial kernels and the related positive
ernels.

emma 4.10. For 0 < α ⩽ 2, 0 < γ ⩽ 1 and a ⩾ 0, the following kernels are negative
definite:

Φ1(|u − v|) = (a + |u − v|α)γ ;

Φ2(|u − v|) = log[1 + (a + |u − v|α)γ ].

For any c > 0 and any integer k ⩾ 1, the following kernels are positive-definite:

e−cΦ1(|u−v|), e−cΦ2(|u−v|), Φ2(|u − v|)−k .

Proof. By Lemma 4.5, if 0 ⩽ α ⩽ 2, then |u − v|α is a negative definite kernel. By definition of
a negative definite kernel a+|u − v|α is also negative definite for any a ∈ R. By Theorem A.6,
Φ1(|u − v|) = (a + |u − v|α)γ is also a negative definite kernel when 0 < γ ⩽ 1 and a ⩾ 0.

Since Φ1(|u − u|) = aγ ⩾ 0, by Theorem A.6, log(1 + Φ1(|u − v|)) = Φ2(|u − v|) is
negative definite.

The positive-definiteness of e−cΦ1(|u−v|) and e−cΦ2(|u−v|) follows directly from Theorem A.5.
The kernel Φ2(|u − v|)−k is positive-definite because∫

∞

0
e−sΦ2(|u−v|)ds =

1
Φ2(|u − v|)

and because that the product of positive-definite kernels are positive-definite. ■

Proposition 4.11. Assume that the series

Φ1(r ) = c0 +

∞∑
j=1

c j log
[
1 + (a j + rα j )γ j

]
−

−∞∑
j=−1

c j [log(1 + (a j + rα j )γ j )]−k j (4.5)

Φ2(r ) =

∞∑
i=1

c′

i [(a
′

i + rα
′
i )γ

′
i ] −

−∞∑
i=−1

c′

i [1 + (a′

i + rα
′
i )γ

′
i ]−βi (4.6)

onverge for every r ∈ R+, where the coefficients satisfy the following conditions

1. a j ⩾ 0, a′

i ⩾ 0, c j ⩾ 0, c′

i ⩾ 0 for i, j ̸= 0 and
2. 0 < γi ⩽ 1, α j , α

′

i ∈ [1, 2] for i, j ̸= 0, and
3. β j > 0 and k j ⩾ 1 is a positive integer for each j .

et K : R+
×R+

→ R be an integral kernel defined in (4.3) with p(u, v) defined in (1.5) and
with

Φ(r ) = Φ1(r ) + Φ2(r ). (4.7)

Then K (r, s) is a positive-definite kernel. Furthermore, if there exists i0 ⩾ 1, such that

a′

i0
= 0, γ ′

i0
= 1, and c′

i0
> 0, (4.8)

then the coercivity condition holds true on L2(ρ) for the system (2.1) with potential Φ in (4.7),
if it starts from (r0

12, r0
13) with a joint density p(u, v) in (1.5), where ρ is the distribution of

r0
|.
12
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c
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Proof. It follows directly from Lemma 4.10 that K is positive-definite. Note that with the above
onditions, the drift term is smooth and dominated by a term r2β with β = α′

i0
/2 ∈ [1/2, 1], so

the system leads to a stationary process (r t
12, r t

13). It follows from Lemma 4.9 that the coercivity
condition holds true. ■
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Appendix

A.1. Positive-definite integral kernels

In this section, we review the definitions of positive and negative definite kernels, as
well as their basic properties. The following definition is a real version of the definition in
[2, p. 67].

Definition A.1. Let X be a nonempty set. A function K : X × X → R is called a (real)
positive-definite kernel iff it is symmetric (i.e. K (x, y) = K (y, x)) and

n∑
j,k=1

c j ck K (x j , xk) ⩾ 0 (A.1)

for all n ∈ N, {x1, . . . , xn} ∈ X and {c1, . . . , cn} ∈ R. We call the function φ a (real) negative
definite kernel iff it is symmetric and

n∑
j,k=1

c j ck K (x j , xk) ⩽ 0 (A.2)

for all n ⩾ 2, {x1, . . . , xn} ∈ X and {c1, . . . , cn} ∈ R with
∑n

j=1 c j = 0.

Remark. In [2, p. 67], a function K : X × X → C is defined to be positive-definite iff
n∑

j,k=1

c j ck K (x j , xk) ⩾ 0 (A.3)

for all n ∈ N, {x1, . . . , xn} ∈ X and {c1, . . . , cn} ∈ C, where c denotes the complex
onjugate of a complex number c. It is straightforward to check that when φ is real-valued
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and symmetric, the definitions (A.1) and (A.3) are equivalent. Similarly, In the definition of
negative definiteness in [2, p. 67], a function K : X × X → C is negative definite iff it is

ermitian (i.e. K (x, y) = K (y, x)) and
n∑

j,k=1

c j ck K (x j , xk) ⩽ 0 (A.4)

for all n ⩾ 2, {x1, . . . , xn} ∈ X and {c1, . . . , cn} ∈ C with
∑n

j=1 c j = 0. We can again check
that when φ is real-valued, the definitions (A.2) and (A.4) are equivalent. In this paper, we
only consider real-valued, symmetric kernels.

Theorem A.2 (Properties of Positive-definite Kernels). Suppose that k, k1, k2 : X × X ⊂
d

× Rd
→ R are positive-definite kernels. Then

1. c1k1 + c2k2 is positive-definite, for c1, c2 ⩾ 0
2. k1k2 is positive-definite. ([2, p. 69])
3. exp(k) is positive-definite. ([2, p. 70])
4. k( f (u), f (v)) is positive-definite for any map f : Rd

→ Rd

5. Inner product ⟨u, v⟩ =
∑d

j=1 u jv j is positive-definite ([2, p. 73])
6. f (u) f (v) is positive-definite for any function f : X → R ([2, p. 69]).
7. If k(u, v) is measurable and integrable, then

∫∫
k(u, v)dudv ⩾ 0 ([32, p. 524])

heorem A.3 ([2, Theorem 3.1.17]). Let K : X × X → R be symmetric. Then K is
ositive-definite iff

det(K (x j , xk) j,k⩽n) ⩾ 0

or all n ∈ N and all {x1, . . . , xn} ⊆ X.

heorem A.4 ([2, Lemma 3.2.1]). Let X be a nonempty set, x0 ∈ X and let ψ : X × X → R
e a symmetric kernel. Put K (x, y) := ψ(x, x0) + ψ(y, x0) − ψ(x, y) − ψ(x0, x0). Then K is
ositive-definite iff ψ is negative definite.

heorem A.5. Let X be a nonempty set and let ψ : X × X → R be a kernel. Then ψ is
egative definite iff exp(−tψ) is positive-definite for all t > 0.

roof. The complex version of this theorem is proved in Theorem 3.2.2 of [2]. The real version
an be proved in a similar way. ■

heorem A.6. If ψ : X × X → R is negative definite and ψ(x, x) ⩾ 0, then so are ψα for
< α < 1 and log(1 + ψ).

roof. The complex version of this theorem is proved in Theorem 3.2.10 of [2]. The real
ersion can be proved in a similar way. ■

heorem A.7 ([2, Proposition 3.3.2]). Let X be nonempty and ψ : X × X → C be negative
efinite. Assume {(x, y) ∈ X × X, ψ(x, y) = 0} = {(x, x) : x ∈ X}, then

√
ψ is a metric

on X.
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A.2. Müntz-type theorems on half-line

We recall first the following theorem on the completeness of {tan } in weighted L2 space on
unbounded domain (see [4,14] and see [15,18] for recent developments).

Theorem A.8. Let ak be positive numbers, such that ak+1 − ak ⩾ d > 0, (k = 1, 2, . . .), and
et

logψ(r ) =

{
2
∑

ak<r
1

ak
, if r > a1

2
a1
, if r ⩽ a1.

Then {e−t tak } is complete in L2(0,∞) iff
∫

∞

1
ψ(r )

r dr = ∞.

emma A.9. The set of functions {r2k, k = 1, 2, . . .} is complete in L2([0,∞), ρ) for any
robability density ρ such that supr>0 ρ(r )e2r < ∞.

roof. Let ak = 2k for k = 1, 2, . . .. We define the function log(ψ(r )) = 2
∑

ak<r
1

ak
, if

> a1, and log(ψ(r )) =
2

a1
if r ⩽ a1. Note that 2

∑
ak<r

1
ak

=
∑⌊r/2⌋

k=1
1
k > ln(⌊r/2⌋). Then

(r ) ⩾ r and
∫

∞

1
ψ(r )
r2 = ∞. We conclude that {e−t t2k, k = 1, 2, . . .} is complete in L2(0,∞)

y Theorem A.8.
To show that {r2k, k = 1, 2, . . .} is complete in L2(ρ), assume that ⟨h(r ), r2k

⟩L2(ρ) = 0 for
ll k ⩾ 1. Then∫

∞

0
h(r )ρ(r )err2ke−r dr =

∫
∞

0
h(r )r2kρ(r )dr = 0

or all k. This implies that h(r )ρ(r )er
= 0 in L2[0,∞) (note that h(r )ρ(r )er

∈ L2[0,∞)
ecause supr>0 ρ(r )e2r < ∞). Hence h(r )ρ(r ) = 0 almost everywhere, and h = 0 in

L2([0,∞), ρ). ■

.3. Stationary measure for a gradient system

emma A.10. Suppose H : Rn
→ R is locally Lipschitz and lim|x |→∞ H (x) = +∞ so that

Z =
∫
Rn e−2H (x)dx < ∞. Then p(x) =

1
Z e−2H (x) is an invariant density to gradient system

d X t = −∇H (X t )dt + d Bt ,

here (Bt ) is an n-dimensional standard Brownian motion.

roof. It follows directly by showing that p(x) is a stationary solution to the Kolmogorov
orward equation,

1
2
∆p + ∇ · (p∇ H ) = 0. ■
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