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Abstract

The aim of this paper is to establish the uniform convergence of the densities of a sequence of random
variables, which are functionals of an underlying Gaussian process, to a normal density. Precise estimates
for the uniform distance are derived by using the techniques of Malliavin calculus, combined with Stein’s
method for normal approximation. We need to assume some non-degeneracy conditions. First, the study
is focused on random variables in a fixed Wiener chaos, and later, the results are extended to the uniform
convergence of the derivatives of the densities and to the case of random vectors in some fixed chaos, which
are uniformly non-degenerate in the sense of Malliavin calculus. Explicit upper bounds for the uniform
norm are obtained for random variables in the second Wiener chaos, and an application to the convergence of
densities of the least square estimator for the drift parameter in Ornstein–Uhlenbeck processes is discussed.
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1. Introduction

There has been a recent interest in studying normal approximations for sequences of multiple
stochastic integrals. Consider a sequence of multiple stochastic integrals of order q � 2, Fn =
Iq(fn), with variance σ 2 > 0, with respect to an isonormal Gaussian process X = {X(h),h ∈H}
associated with a Hilbert space H. It was proved by Nualart and Peccati [24] and Nualart and
Ortiz-Latorre [23] that Fn converges in distribution to the normal law N(0, σ 2) as n → ∞ if and
only if one of the following three equivalent conditions holds:

(i) limn→∞ E[F 4
n ] = 3σ 4 (convergence of the fourth moments).

(ii) For all 1 � r � q − 1, fn ⊗r fn converges to zero, where ⊗r denotes the contraction of
order r (see Eq. (2.5)).

(iii) ‖DFn‖2
H

(see definition in Section 2) converges to qσ 2 in L2(Ω) as n tends to infinity.

A new methodology to study normal approximations and to derive quantitative results com-
bining Stein’s method with Malliavin calculus was introduced by Nourdin and Peccati [15] (see
also Nourdin and Peccati [16]). As an illustration of the power of this method, let us mention
the following estimate for the total variation distance between the law L(F ) of F = Iq(f ) and
distribution γ = N(0, σ 2), where σ 2 = E[F 2]:

dT V

(
L(F ), γ

)
� 2

2

√
Var

(‖DF‖2
H

)
� 2

√
q − 1

2
√

√
E
[
F 4

]− 3σ 4. (1.1)

qσ σ 3q
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This inequality can be used to show the above equivalence (i)–(iii). A recent result of Nourdin
and Poly [21] says that the convergence in law for a sequence of multiple stochastic integrals of
order q � 2 is equivalent to the convergence in total variation if the limit is not constant. As a
consequence, for a sequence Fn of nonzero multiple stochastic integrals of order q � 2, the limit
in law to is equivalent to the limit of the densities in L1(R), provided the limit is not constant.
A multivariate extension of this result has been derived in [14].

The aim of this paper is to study the uniform convergence of the densities of a sequence of
random vectors Fn to the normal density using the techniques of Malliavin calculus, combined
with Stein’s method for normal approximation. It is well known that to guarantee that each Fn

has a density we need to assume that the norm of the Malliavin derivative of Fn has negative
moments. Thus, a natural assumption to obtain uniform convergence of densities is to assume
uniform boundedness of the negative moments of the corresponding Malliavin derivatives. Our
first result (Theorem 4.1) says that if F is a multiple stochastic integral of order q � 2 such that
E[F 2] = σ 2 and M := E(‖DF‖−6

H
) < ∞, we have

sup
x∈R

∣∣fF (x) − φ(x)
∣∣� C

√
E
[
F 4

]− 3σ 4, (1.2)

where fF is the density of F , φ is the density of the normal law N(0, σ 2) and the constant C

depends on q , σ and M . We can also replace the expression in the right-hand side of (1.2) by√
Var(‖DF‖2

H
). The main idea to prove this result is to express the density of F using Malliavin

calculus:

fF (x) = E
[
1{F>x}q‖DF‖−2

H
F
]− E

[
1{F>x}

〈
DF,D

(‖DF‖−2
H

)〉
H

]
.

Then, one can find an estimate of the form (1.2) for the terms E[|〈DF,D(‖DF‖−2
H

)〉H|] and

E[|q‖DF‖−2
H

− σ−2|]. On the other hand, taking into account that

φ(x) = σ−2E[1{N>x}N ],
it suffices to estimate the difference

E[1{F>x}F ] − E[1{N>x}N ],
which can be done by Stein’s method. The estimate (1.2) leads to the uniform conver-
gence of the densities in the above equivalence of conditions (i) to (iii) if we assume that
supn E(‖DFn‖−6

H
) < ∞.

This methodology is extended in the paper in several directions. We consider the uniform
approximation of the mth derivative of the density of F by the corresponding densities φ(m),
in the case of random variables in a fixed chaos of order q � 2. In Theorem 4.4 we obtain an
inequality similar to (1.2) assuming that E(‖DF‖−β

H
) < ∞ for some β > 6m + 6(�m

2 � ∨ 1).
Again the proof is obtained by a combination of Malliavin calculus and the Stein’s method. Here
we need to consider Stein’s equation for functions of the form of h(x) = 1{x>a}p(x), where p is
a polynomial.

For a d dimensional random vector F = (F 1, . . . ,F d) whose components are multi-
ple stochastic integrals of orders q1, . . . , qd , qi � 2, we assume non-degeneracy condition
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E[detγ −p
F ] < ∞ for all p � 1, where γF = (〈DF, ,DF 〉)1�i,j�d denotes the Malliavin ma-

trix of F . Then, for any multi-index β = (β1, . . . , βk), 1 � βi � d , we obtain the estimate (see
Theorem 5.2)

sup
x∈Rd

∣∣∂βfF (x) − ∂βφ(x)
∣∣� C

(
|V − I | 1

2 +
d∑

j=1

√
E
[
F 4

j

]− 3
(
E
[
F 2

j

])2

)
, (1.3)

where V is the covariance matrix of F , φ is the standard d dimensional normal density, and

∂β = ∂k

∂xβ1 ···∂xβk
. As a consequence, we derive the uniform convergence of the densities and

their derivatives for a sequence of vectors of multiple stochastic integrals, under the assump-
tion supn E[detγ −p

Fn
] < ∞ for all p � 1. A multivariate extension of Stein’s method is required

for noncontinuous functions with polynomial growth (see Proposition 5.10). While univariate
Stein’s equations with non-smooth test functions have been extensively studied, relatively few
results are available for the multivariate case, see [5,4,12,19,26,27], so this result has its own
interest.

We also consider the case of random variables F such that E[F ] = 0 and E[F 2] = σ 2, belong-
ing to the Sobolev space D2,s for some s > 4. In this case, under a non-degeneracy assumption of
the form E[|〈DF,−DL−1F 〉H|−r |] < ∞ for some r > 2, we derive an estimate for the uniform
distance between the density of F and the density of the normal law N(0, σ 2).

In a recent paper [20], Nourdin, Peccati and Swan have obtained an upper bound on the
total variation distance between the law of a vector of multiple stochastic integrals and a normal
distribution, using a combination of entropy techniques and Malliavin calculus. Their main result
can be briefly stated as follows. Let F = (F 1, . . . ,F d) be a d dimensional random vector whose
components are multiple stochastic integrals of orders q1, . . . , qd , qi � 2, respectively. Suppose
the covariance of F is the identity matrix and it admits a density fF (x). Denote φ(x) the density
of N ∼ N(0, Id). Then the relative entropy D(F‖N) of F satisfies D(F‖N) := E[logfF (F ) −
logφ(F )] � C�|log�|, where C > 0 is a constant and � = E[|F |4 − |N |4]. This leads to the
bound

‖fF − φ‖L1(Rd ) �
√

2D(F‖N) � C
√

�|log�|.

This result refines some estimates obtained in [14]. In the case d = 1, it is finer than our estimate
(4.12) in the special case p = 1, where by taking α close to 1

2 we can only get �
1
4 −ε with ε > 0

arbitrarily small. However, the best such L1 estimate is still given by (1.1). It is worth mentioning
that we don’t assume the existence of density and our estimate (4.12) covers the Lp norm for all
p � 1.

Convergence of densities in uniform distance has also been studied using Fisher information
theory via Shimizu’s inequality (see for instance, [29,3,2,8])

sup
x∈R

∣∣fF (x) − φ(x)
∣∣� C

√
I (F‖N), (1.4)

where F is a random variable with density f ∈ C1(R), φ is the density of N ∼ N(0,1), and

I (F‖N) := ∫
R
(
f ′

F (x)

fF (x)
− φ′(x)

φ(x)
)2f (x)dx is the relative Fisher information. Recently, Bobkov,

Chistyakov and Götze [3] studied the rate of convergence to 0 of I (Fn‖N) for Fn = 1√ ∑n
Xi ,
n i=1
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where {Xi}i�a are i.i.d. random variables with mean 0 and variance 1, assuming that f ′
Fn0

∈
L1(R) for some n0. In general, when studying uniform convergence of densities, one is neces-
sarily led to introduce some stringent assumptions on the regularity of the laws of the underlying
random variables. Here we showed that these assumptions can be reduced to requirements about
the finiteness of the negative moments of Malliavin matrices.

The paper is organized as follows. Section 2 introduces some preliminary results of Gaussian
analysis, Malliavin calculus and Stein’s method for normal approximations. Section 3 is devoted
to density formulae with elementary estimates using Malliavin calculus. The density formulae
themselves are well-known results, but we present explicit formulae with useful estimates, such
as the Hölder continuity and boundedness estimates in Theorems 3.1 and 3.3. The boundedness
estimates enable us to prove the Lp convergence of the densities (see (4.12)). The Hölder con-
tinuity estimates can be used to provide a short proof for the convergence of densities based
on a compactness argument, assuming convergence in law (see Theorem 6.5). Section 4 proves
the convergence of densities of random variables in a fixed Wiener chaos, and Section 5 dis-
cusses convergence of densities for random vectors. In Section 6, the convergence of densities
for sequences of general centered square integrable random variables are studied.

The main difficulty in the application of the above results is to verify the existence of negative
moments for the determinant of the Malliavin matrix. We provide explicit sufficient conditions
for this condition for random variables in the second Wiener chaos in Section 7. As an appli-
cation we derive the uniform convergence of the densities and their derivatives to the normal
distribution, as time goes to infinity, for the least squares estimator of the parameter θ in the
Ornstein–Uhlenbeck process: dXt = −θXt dt + γ dBt , where B = {Bt , t � 0} is a standard
Brownian motion. Some technical results and proofs are included in Appendix A.

Along this paper, we denote by C (maybe with subindexes) a generic constant that might
depend on quantities such as the order of multiple stochastic integrals q , the order of the deriva-
tives m, the variance σ 2 or the negative moments of the Malliavin derivative. We denote by ‖ · ‖p

the norm in the space Lp(Ω).

2. Preliminaries

In the first two subsections, we introduce some basic elements of Gaussian analysis and Malli-
avin calculus, for which we refer to [22,16] for further details. In the last subsection, we shall
introduce some basic estimates from the univariate Stein’s method.

2.1. Isonormal Gaussian process and multiple integrals

Let H be a real separable Hilbert space (with its inner product and norm denoted by 〈·, ·〉H and
‖ · ‖H, respectively). For any integer q � 1, let H⊗q(H�q) be the qth tensor product (symmetric
tensor product) of H. Let X = {X(h), h ∈ H} be an isonormal Gaussian process associated with
the Hilbert space H, defined on a complete probability space (Ω,F,P ). That is, X is a centered
Gaussian family of random variables such that E[X(h)X(g)] = 〈h,g〉H for all h,g ∈ H. We
assume that the σ -field F is generated by X.

For every integer q � 0, the qth Wiener chaos (denoted by Hq ) of X is the closed linear
subspace of L2(Ω) generated by the random variables {Hq(X(h)): h ∈ H, ‖h‖H = 1}, where
Hq is the qth Hermite polynomial recursively defined by H0(x) = 1, H1(x) = x and

Hq+1(x) = xHq(x) − qHq−1(x), q � 1. (2.1)
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For every integer q � 1, the mapping Iq(h⊗q) = Hq(X(h)), where ‖h‖H = 1, can be extended
to a linear isometry between H�q (equipped with norm

√
q!‖ · ‖H⊗q ) and Hq (equipped with

L2(Ω) norm). For q = 0, H0 = R, and I0 is the identity map. The mapping Iq is called the
multiple stochastic integral of order q .

It is well known (Wiener chaos expansion) that L2(Ω) can be decomposed into the infinite
orthogonal sum of the spaces Hq . That is, any random variable F ∈ L2(Ω) has the following
chaos expansion:

F =
∞∑

q=0

Iq(fq), (2.2)

where f0 = E[F ], and fq ∈ H�q, q � 1, are uniquely determined by F . For every q � 0 we
denote by Jq the orthogonal projection on the qth Wiener chaos Hq , so Iq(fq) = JqF .

Let {en, n � 1} be a complete orthonormal basis of H. Given f ∈ H�q and g ∈ H�p , for
r = 0, . . . , p ∧ q the r th contraction of f and g is the element of H⊗(p+q−2r) defined by

f ⊗r g =
∞∑

i1,...,ir=1

〈f, ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r . (2.3)

Notice that f ⊗r g is not necessarily symmetric. We denote by f ⊗̃rg its symmetrization. More-
over, f ⊗0 g = f ⊗ g, and for p = q , f ⊗q g = 〈f,g〉H⊗q . For the product of two multiple
stochastic integrals we have the multiplication formula

Ip(f )Iq(g) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

)
Ip+q−2r (f ⊗r g). (2.4)

In the particular case H = L2(A,A,μ), where (A,A) is a measurable space and μ is a σ -finite
and nonatomic measure, one has that H⊗q = L2(Aq,A⊗q,μ⊗q) and H�q is the space of sym-
metric and square-integrable functions on Aq . Moreover, for every f ∈ H�q , Iq(f ) coincides
with the qth multiple Wiener–Itô integral of f with respect to X, and (2.3) can be written as

f ⊗r g(t1, . . . , tp+q−2r ) =
∫
Ar

f (t1, . . . , tq−r , s1, . . . , sr ) (2.5)

×g(t1+q−r , . . . , tp+q−r , s1, . . . , sr ) dμ(s1) . . . dμ(sr).

2.2. Malliavin operators

We introduce some basic facts on Malliavin calculus with respect to the Gaussian process X.
Let S denote the class of smooth random variables of the form F = f (X(h1), . . . ,X(hn)), where
h1, . . . , hn are in H, n � 1, and f ∈ C∞

p (Rn), the set of smooth functions f such that f itself
and all its partial derivatives have at most polynomial growth. Given F = f (X(h1), . . . ,X(hn))

in S , its Malliavin derivative DF is the H-valued random variable given by
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DF =
n∑

i=1

∂f

∂xi

(
X(h1), . . . ,X(hn)

)
hi.

The derivative operator D is a closable and unbounded operator on L2(Ω) taking values in
L2(Ω;H). By iteration one can define higher order derivatives DkF ∈ L2(Ω;H�k). For any
integer k � 0 and any p � 1 and we denote by Dk,p the closure of S with respect to the norm
‖ · ‖k,p given by:

‖F‖p
k,p =

k∑
i=0

E
(∥∥DiF

∥∥p

H⊗i

)
.

For k = 0 we simply write ‖F‖0,p = ‖F‖p . For any p � 1 and k � 0, we set D∞,p =⋂
k�0 D

k,p ,

Dk,∞ =⋂
p�1 D

k,p and D∞ =⋂
k�0 D

k,∞.
We denote by δ (the divergence operator) the adjoint operator of D, which is an unbounded

operator from a domain in L2(Ω;H) to L2(Ω). An element u ∈ L2(Ω;H) belongs to the domain
of δ if and only if it verifies

∣∣E[〈DF,u〉H
]∣∣� cu

√
E
[
F 2

]
for any F ∈ D1,2, where cu is a constant depending only on u. In particular, if u ∈ Dom δ, then
δ(u) is characterized by the following duality relationship

E
(
δ(u)F

)= E
(〈DF,u〉H

)
(2.6)

for any F ∈ D1,2. This formula extends to the multiple integral δq , that is, for u ∈ Dom δq and
F ∈Dq,2 we have

E
(
δq(u)F

)= E
(〈
DqF,u

〉
H⊗q

)
.

We can factor out a scalar random variable in the divergence in the following sense. Let
F ∈D1,2 and u ∈ Dom δ such that Fu ∈ L2(Ω;H). Then Fu ∈ Dom δ and

δ(Fu) = Fδ(u) − 〈DF,u〉H, (2.7)

provided the right-hand side is square integrable. The operators δ and D have the following
commutation relationship

Dδ(u) = u + δ(Du) (2.8)

for any u ∈ D2,2(H) (see [22, page 37]).
The following version of Meyer’s inequality (see [22, Proposition 1.5.7]) will be used fre-

quently in this paper. Let V be a real separable Hilbert space. We can also introduce Sobolev
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spaces Dk,p(V ) of V -valued random variables for p � 1 and integer k � 1. Then, for any p > 1
and k � 1, the operator δ is continuous from Dk,p(V ⊗H) into Dk−1,p(V ). That is,

∥∥δ(u)
∥∥

k−1,p
� Ck,p‖u‖k,p. (2.9)

The operator L defined on the Wiener chaos expansion as L =∑∞
q=0(−q)Jq is the infinites-

imal generator of the Ornstein–Uhlenbeck semigroup Tt = ∑∞
q=0 e−qtJq . Its domain in L2(Ω)

is

DomL =
{

F ∈ L2(Ω):
∞∑

q=1

q2‖JqF‖2
2 < ∞

}
=D2,2.

The relation between the operators D, δ and L is explained in the following formula (see [22,
Proposition 1.4.3]). For F ∈ L2(Ω), F ∈ DomL if and only if F ∈ Dom(δD) (i.e., F ∈D1,2 and
DF ∈ Dom δ), and in this case

δDF = −LF. (2.10)

For any F ∈ L2(Ω), we define L−1F = −∑∞
q=1 q−1Jq(F ). The operator L−1 is called the

pseudo-inverse of L. Indeed, for any F ∈ L2(Ω), we have that L−1F ∈ DomL, and

LL−1F = L−1LF = F − E[F ].

We list here some properties of multiple integrals which will be used in Section 4. Fix q � 1
and let f ∈ H�q . We have Iq(f ) = δq(f ) and DIq(f ) = qIq−1(f ), and hence Iq(f ) ∈ D∞,2.
The multiple stochastic integral Iq(f ) satisfies hypercontractivity property:

∥∥Iq(f )
∥∥

p
� Cq,p

∥∥Iq(f )
∥∥

2 for any p ∈ [2,∞). (2.11)

This easily implies that Iq(f ) ∈D∞ and for any 1 � k � q and p � 2,

∥∥Iq(f )
∥∥

k,p
� Cq,k,p

∥∥Iq(f )
∥∥

2.

As a consequence, for any F ∈ ⊕q

l=1Hl , we have

‖F‖k,p � Cq,k,p‖F‖2. (2.12)

For any random variable F in the chaos of order q � 2, we have (see [16], Eq. (5.2.7))

1
2

Var
(‖DF‖2

H

)
� q − 1(

E
[
F 4]− (

E
[
F 2])2)� (q − 1)Var

(‖DF‖2
H

)
. (2.13)
q 3q
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In the case where H is L2(A,A,μ), for an integrable random variable F = ∑∞
q=0 Iq(fq) ∈

D1,2, its derivative can be represented as an element in of L2(A × Ω) given by

DtF =
∞∑

q=1

qIq

(
fq(·, t)), t ∈ A.

2.3. Stein’s method of normal approximation

We shall now give a brief account of Stein’s method of univariate normal approximation and
its connection with Malliavin calculus. For a more detailed exposition we refer to [5,16,30].

Let F be an arbitrary random variable and let N be an N(0, σ 2) distributed random variable,
where σ 2 > 0. Consider the distance between the law of F and the law of N given by

dH(F,N) = sup
h∈H

∣∣E[
h(F ) − h(N)

]∣∣ (2.14)

for a class of functions H such that E[h(F )] and E[h(N)] are well-defined for h ∈ H. Notice first
the following fact (which is usually referred as Stein’s lemma): a random variable N is N(0, σ 2)

distributed if and only if E[σ 2f ′(N) − Nf (N)] = 0 for all absolutely continuous functions f

such that E[|f ′(N)|] < ∞. This suggests that the distance of E[σ 2f ′(F ) − Ff (F)] from zero
may quantify the distance between the law of F and the law of N . To see this, for each function
h such that E[|h(N)|] < ∞, Stein [30] introduced the Stein’s equation:

f ′(x) − x

σ 2
f (x) = h(x) − E

[
h(N)

]
(2.15)

for all x ∈ R. For a random variable F such that E[|h(F )|] < ∞, any solution fh to Eq. (2.15)
verifies

1

σ 2
E
[
σ 2f ′

h(F ) − Ffh(F )
]= E

[
h(F ) − h(N)

]
, (2.16)

and the distance defined in (2.14) can be written as

dH(F,N) = 1

σ 2
sup
h∈H

∣∣E[
σ 2f ′

h(F ) − Ffh(F )
]∣∣. (2.17)

The unique solution to (2.15) verifying limx→±∞ e−x2/(2σ 2)f (x) = 0 is

fh(x) = ex2/(2σ 2)

x∫
−∞

{
h(y) − E

[
h(N)

]}
e−y2/(2σ 2) dy. (2.18)

From (2.17) and (2.18), one can get bounds for probability distances like the total variation
distance, where we let H consist of all indicator functions of measurable sets, Kolmogorov dis-
tance, where we consider all the half-line indicator functions and Wasserstein distance, where we
take H to be the set of all Lipschitz-continuous functions with Lipschitz constant equal to 1.
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In the present paper, we shall consider the case when h: R→ R is given by h(x) =
1{x>z}Hk(x) for any integer k � 1 and z ∈R, where Hk(x) is the kth Hermite polynomial. More
generally, we have the following lemma whose proof can be found in Appendix A. It should
be pointed out that the univariate Stein’s equations have been extensively studied. For example,
we refer to [5, Section 2.2] and [18, Lemma 8.2] when the test functions have sub-polynomial
growth.

Lemma 2.1. Suppose |h(x)| � a|x|k + b for some integer k � 0 and some nonnegative numbers
a, b. Then, the solution fh to the Stein’s equation (2.15) given by (2.18) satisfies

∣∣f ′
h(x)

∣∣� aCk

k∑
i=0

σk−i |x|i + 4b

for all x ∈R, where Ck is a constant depending only on k.

Nourdin and Peccati [15,16] combined Stein’s method with Malliavin calculus to estimate
the distance between the distributions of regular functionals of an isonormal Gaussian process
and the normal distribution N(0, σ 2). The basic ingredient is the following integration by parts
formula. For F ∈ D1,2 with E[F ] = 0 and any function f ∈ C1 such that E[|f ′(F )|] < ∞, using
(2.10) and (2.6) we have

E
[
Ff (F)

]= E
[
LL−1Ff (F)

]= E
[−δDL−1Ff (F)

]
= E

[〈−DL−1F,Df (F)
〉]= E

[
f ′(F )

〈−DL−1F,DF
〉
H

]
.

Then, it follows that

E
[
σ 2f ′(F ) − Ff (F)

]= E
[
f ′(F )

(
σ 2 − 〈

DF,−DL−1F
〉
H

)]
. (2.19)

Combining Eq. (2.19) with (2.16) and Lemma 2.1 we obtain the following result.

Lemma 2.2. Suppose h : R→ R verifies |h(x)| � a|x|k + b for some a, b � 0 and some integer
k � 0. Let N ∼ N(0, σ 2) and let F ∈D1,2k with ‖F‖2k � cσ for some c > 0. Then there exists a
constant Ck,c depending only on k and c such that

∣∣E[
h(F ) − h(N)

]∣∣� σ−2[aCk,cσ
k + 4b

]∥∥σ 2 − 〈
DF,−DL−1F

〉
H

∥∥
2.

Proof. From (2.16), (2.19) and Lemma 2.1, it suffices to notice that ‖∑k
i=0 σk−i |F |i‖2 �∑k

i=0 ‖F‖i
2kσ

k−i � Ck,cσ
k . �

3. Density formulae

In this section, we present explicit formulae for the density of a random variable and its
derivatives, using the techniques of Malliavin calculus.
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3.1. Density formulae

We shall present two explicit formulae for the density of a random variable, with estimates of
its uniform and Hölder norms.

Theorem 3.1. Let F ∈ D2,s such that E[|F |2p] < ∞ and E[‖DF‖−2r
H

] < ∞ for p, r, s > 1

satisfying 1
p

+ 1
r

+ 1
s

= 1. Denote

w = ‖DF‖2
H, u = w−1DF.

Then u ∈D1,p′
with p′ = p

p−1 and F has a density given by

fF (x) = E
[
1{F>x}δ(u)

]
. (3.1)

Furthermore, fF (x) is bounded and Hölder continuous of order 1
p

, that is

fF (x) � Cp

∥∥w−1
∥∥

r
‖F‖2,s

(
1 ∧ (|x|−2‖F‖2

2p

))
, (3.2)∣∣fF (x) − fF (y)

∣∣� Cp

∥∥w−1
∥∥1+ 1

p

r
‖F‖1+ 1

p

2,s |x − y| 1
p (3.3)

for any x, y ∈R, where Cp is a constant depending only on p.

Proof. Note that

Du = w−1D2F − 2w−2(D2F ⊗1 DF
)⊗ DF.

Applying Meyer’s inequality (2.9) and Hölder’s inequality we have∥∥δ(u)
∥∥

p′ � Cp‖u‖1,p′ � Cp

(‖u‖p′ + ‖Du‖p′
)

� Cp

(∥∥w−1‖DF‖H
∥∥

p′ + 3
∥∥w−1

∥∥D2F
∥∥
H⊗H

∥∥
p′
)

� 3Cp

∥∥w−1
∥∥

r

(‖DF‖s + ∥∥D2F
∥∥

s

)
. (3.4)

Then u ∈ D1,p′
and the density formula (3.1) holds (see, for instance, Nualart [22, Proposi-

tion 2.1.1]). From E[δ(u)] = 0 and Hölder’s inequality it follows that

∣∣E[
1{F>x}δ(u)

]∣∣� P
(|F | > |x|) 1

p
∥∥δ(u)

∥∥
p′ �

(
1 ∧ (|x|−2p‖F‖2p

2p

)) 1
p
∥∥δ(u)

∥∥
p′ . (3.5)

Then (3.2) follows from (3.5) and (3.4).
Finally, for x < y ∈R, noticing that 1{F>x} − 1{F>y} = 1{x<F�y}, we have

∣∣fF (x) − fF (y)
∣∣� (

E[1{x<F�y}]
) 1

p
∥∥δ(u)

∥∥
p′ .

Applying (3.2) and (3.4) with the fact that E[1{x<F�y}] = ∫ y
fF (z) dz one gets (3.3). �
x
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With the exact proof of [22, Propositions 2.1.1], one can prove the following slightly more
general result.

Proposition 3.2. Let F ∈ D1,p and h : Ω → H, and suppose that 〈DF,h〉H �= 0 a.s. and
h

〈DF,h〉H ∈ D1,q(H) for some p,q > 1. Then the law of F has a density given by

fF (x) = E

[
1{F>x}δ

(
h

〈DF,h〉H
)]

. (3.6)

Our next goal is to take h to be −DL−1F in formula (3.6) and get a result similar to Theo-

rem 3.1. First, to get a sufficient condition for −DL−1F

〈DF,−DL−1F 〉H ∈ D1,p′
for some p′ > 1, we need

some technical estimates on DL−1F and D2L−1F . Estimates of this type have been obtained
by Nourdin, Peccati and Reinert [17] (see also Nourdin and Peccati’s book [16, Lemma 5.3.8]),
when proving an infinite-dimensional Poincaré inequality. More precisely, by using Mehler’s
formula, they proved that for any p � 1, if F ∈D2,p , then

E
[∥∥DL−1F

∥∥p

H

]
�E

[‖DF‖p

H

]
. (3.7)

E
[∥∥D2L−1F

∥∥p

op

]
� 2−pE

[∥∥D2F
∥∥p

op

]
, (3.8)

where ‖D2F‖op denotes the operator norm of the Hilbert–Schmidt operator from H to H : f �→
f ⊗1 D2F . Furthermore, the operator norm ‖D2F‖op satisfies the following “random contrac-
tion inequality” ∥∥D2F

∥∥4
op

�
∥∥D2F ⊗1 D2F

∥∥2
H⊗2 �

∥∥D2F
∥∥4
H⊗2 . (3.9)

Sometimes in application, the use of L−1 in the integration by parts formula is useful. The
next proposition gives a density formula with estimates similar to Theorem 3.1 with the use of
L−1. Let

w̄ = 〈
DF,−DL−1F

〉
H

, ū = −w̄−1DL−1F.

Proposition 3.3. Let F ∈ D2,s , E[|F |2p] < ∞ and suppose that E[|w̄|−r ] < ∞, where p > 1,
r > 2, s > 3 satisfy 1

p
+ 2

r
+ 3

s
= 1. Then ū ∈ D1,p′

with p′ = p
p−1 and the law of F has a density

given by

fF (x) = E
[
1{F>x}δ(ū)

]
. (3.10)

Furthermore, fF (x) is bounded and Hölder continuous of order 1
p

, that is

fF (x) � K0
(
1 ∧ (|x|−2‖F‖2

2p

))
, (3.11)∣∣fF (x) − fF (y)

∣∣� K
1+ 1

p

0 |x − y| 1
p (3.12)

for any x, y ∈ R, where K0 = Cp‖w̄−1‖r‖F‖2,s(‖w̄−1‖r‖DF‖2
s + 1), and Cp depends only

on p.
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Proof. Note that Dw̄ = −D2F ⊗1 DL−1F − DF ⊗1 D2L−1F . Then, applying (3.7) and (3.8)
we obtain

‖Dw̄‖ s
2
�
(
1 + 2−s

)∥∥∥∥D2F
∥∥

op

∥∥
s
‖DF‖s . (3.13)

From ū = −w̄−1DL−1F we get Dū = −w̄−1D2L−1F + w−2Dw̄ ⊗ DL−1F . Then, using
(3.7)–(3.9) we have for t > 0 satisfying 1

p′ = 1
r

+ 1
t
,

‖ū‖p′ �
∥∥w̄−1

∥∥DL−1F
∥∥
H

∥∥
p′ �

∥∥w̄−1
∥∥

r
‖DF‖t ,

and

‖Dū‖p′ �
∥∥w̄−1

∥∥D2L−1F
∥∥
H⊗H

∥∥
p′ +

∥∥w̄−2‖Dw̄‖H
∥∥DL−1F

∥∥
H

∥∥
p′

�
∥∥w̄−1

∥∥
r

∥∥D2F
∥∥

t
+ ∥∥w̄−2

∥∥
r
‖Dw̄‖ s

2
‖DF‖s .

Noticing that ‖D2F‖t � ‖D2F‖s because t < s, and applying Meyer’s inequality (2.9) with
(3.13) and (3.9) we obtain ∥∥δ(ū)

∥∥
p′ � Cp‖ū‖1,p′ � K0. (3.14)

Then u ∈D1,p′
and the density formula (3.10) holds. As in the proof of Theorem 3.1, (3.11) and

(3.12) follow from (3.14) and

∣∣E[
1{F>x}δ(ū)

]∣∣� P
(|F | > |x|) 1

p
∥∥δ(ū)

∥∥
p′ �

(
1 ∧ (|x|−2‖F‖2

2p

))∥∥δ(ū)
∥∥

p′ ,

∣∣fF (x) − fF (y)
∣∣� (

E[1{x<F�y}]
) 1

p
∥∥δ(u)

∥∥
p′ . �

3.2. Derivatives of the density

Next we present a formula for the derivatives of the density function, under additional condi-
tions. A sequence of recursively defined random variables given by G0 = 1 and Gk+1 = δ(Gku)

where u is an H-valued process, plays an essential role in the formula. The following technical
lemma gives an explicit formula for the sequence Gk , relating it to Hermite polynomials. To
simplify the notation, for an H-valued random variable u, we denote

δu = δ(u), DuG = 〈DG,u〉H, Dk
uG = 〈

D
(
Dk−1

u G
)
, u
〉
H

. (3.15)

Recall Hk(x) denotes the kth Hermite polynomial. For λ > 0 and x ∈ R, we define the gener-
alized kth Hermite polynomial as

Hk(λ, x) = λ
k
2 Hk

(
x√

)
. (3.16)
λ
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From the property H ′
k(x) = kHk−1(x) it follows by induction that the kth Hermite polynomials

has the form Hk(x) = ∑
0�i��k/2� ck,ix

k−2i , where we denote by �k/2� the largest integer less
than or equal to k/2. Then (3.16) implies

Hk(λ, x) =
∑

0�i��k/2�
ck,ix

k−2iλi . (3.17)

Lemma 3.4. Fix an integer m � 1 and a number p > m. Suppose u ∈ Dm,p(H). We define
recursively a sequence {Gk}mk=0 by G0 = 1 and Gk+1 = δ(Gku). Then, these variables are well-

defined and for k = 1,2, . . . ,m, Gk ∈Dm−k,
p
k and

Gk = Hk(Duδu, δu) + Tk, (3.18)

where we denote by Tk the higher order derivative terms which can be defined recursively as
follows: T1 = T2 = 0 and for k � 2,

Tk+1 = δuTk − DuTk − ∂λHk(Duδu, δu)D
2
uδu. (3.19)

The following lemma is proved in Appendix A.

Lemma 3.5. From (3.19) we can deduce that for k � 3

Tk =
∑

(i0,...,ik−1)∈Jk

ai0,i1,...,ik−1δ
i0
u (Duδu)

i1
(
D2

uδu

)i2 · · · (Dk−1
u δu

)ik−1 , (3.20)

where the coefficients ai0,i1,...,ik−1 are real numbers and Jk is the set of multi-indices (i0, i1, . . . ,

ik−1) ∈ Nk satisfying the following three conditions

(a) i0 +
k−1∑
j=1

jij � k − 1; (b) i2 + · · · + ik−1 � 1; (c)
k−1∑
j=1

ij �
⌊

k − 1

2

⌋
.

From (b) we see that every term in Tk contains at least one factor of the form D
j
uδu with some

j � 2. We shall show this type of factors will converge to zero. For this reason we call these terms
high order terms.

Proof of Lemma 3.4. First, we prove by induction on k that the above sequence Gk is well-
defined and Gk ∈ Dm−k,

p
k . Suppose first that k = 1. Then, Meyer’s inequality implies that

G1 = δu ∈ Dm−1,p . Assume now that for k � m−1, Gk ∈ Dm−k,
p
k . Then it follows from Meyer’s

and Hölder’s inequalities (see [22, Proposition 1.5.6]) that

‖Gk+1‖m−k−1,
p � Cm,p‖Gku‖m−k,

p � C′ ‖Gk‖m−k,
p ‖u‖m−k,p < ∞.
k+1 k+1 m,p
k



828 Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814–875
Let us now show, by induction, the decomposition (3.18). When k = 1 (3.18) is true because
G1 = δu and T1 = 0. Assume now (3.18) holds for k � m − 1. Noticing that ∂xHk(λ, x) =
kHk−1(λ, x) (since H ′

k(x) = kHk−1(x)), we get

DuHk(Duδu, δu) = kHk−1(Duδu, δu)Duδu + ∂λHk(Duδu, δu)D
2
uδu.

Hence, applying the operator Du to both sides of (3.18),

DuGk = kHk−1(Duδu, δu)Duδu + T̃k+1,

where

T̃k+1 = DuTk + ∂λHk(Duδu, δu)D
2
uδu. (3.21)

From the definition of Gk+1 and using (2.7) we obtain

Gk+1 = δ(uGk) = Gkδu − DuGk

= δuHk(Duδu, δu) + δuTk − kHk−1(Duδu, δu)Duδu − T̃k+1.

Note that Hk+1(x) = xHk(x) − kHk−1(x) implies xHk(λ, x) − kλHk−1(λ, x) = Hk+1(λ, x).
Hence,

Gk+1 = Hk+1(Duδu, δu) + δuTk − T̃k+1.

The term Tk+1 = δuTk − T̃k+1 has the form given in (3.19). This completes the proof. �
Now we are ready to present some formulae for the derivatives of the density function under

certain sufficient conditions on the random variable F . For a random variable F in D1,2 and for
any β � 1 we are going to use the notation

Mβ(F) = (
E
[‖DF‖−β

H

]) 1
β . (3.22)

Proposition 3.6. Fix an integer m � 1. Let F be a random variable in Dm+2,∞ such that
Mβ(F) < ∞ for some β > 3m + 3(�m

2 � ∨ 1). Denote w = ‖DF‖2
H

and u = DF
w

. Then,

u ∈ Dm+1,p(H) for some p > 1, and the random variables {Gk}m+1
k=0 introduced in Lemma 3.4

are well-defined. Under these assumptions, F has a density f of class Cm with derivatives given
by

f
(k)
F (x) = (−1)kE[1{F>x}Gk+1] (3.23)

for k = 1, . . . ,m.
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Proof. It is enough to show that {Gk}m+1
k=0 are well-defined, since it follows from [22, Exer-

cise 2.1.4] that the kth derivative of the density of F is given by (3.23). To do this we will show
that Gk defined in (3.18) are in L1(Ω) for all k = 1, . . . ,m + 1. From (3.18) we can write

E
[|Gk|

]
� E

[∣∣Hk(Duδu, δu)
∣∣]+ E

[|Tk|
]
.

Recall the explicit expression of Hk(λ, x) in (3.17). Since β > 3(m + 1), we can choose r0 <
β
3 , r1 <

β
6 such that

1 � k − 2i

r0
+ i

r1
>

3(k − 2i)

β
+ 6i

β
= 3k

β
,

for any 0 � i � �k/2� and 1 � k � m+1. Then, applying Hölder’s inequality with (3.17), (A.11)
and (A.12) we have

E
[∣∣Hk(Duδu, δu)

∣∣]� Ck

∑
0�i��k/2�

‖δu‖k−2i
r0

‖Duδu‖i
r1

< ∞.

To prove that E[|Tk|] < ∞, applying Hölder’s inequality to the expression (3.20) and choos-
ing rj > 0 for 0 � j � k − 1 such that

1 � i0

r0
+

k−1∑
j=1

ij

rj
>

3i0

β
+

k−1∑
j=1

(3j + 3)ij

β
,

we obtain that, (assuming k � 3, otherwise Tk = 0)

E
[|Tk|

]
� C

∑
(i0,...,ik)∈Jk

‖δu‖i0
r0

k−1∏
j=1

∥∥Dj
uδu

∥∥ij
rj

.

Due to (A.11) and (A.12), this expression is finite, provided rj <
β

3j+3 for 0 � j � k − 1. We

can choose (rj ,0 � j � k − 1) satisfying the above conditions because β > 3(k − 1) + 3� k−1
2 �

for all 1 � k � m + 1, and from properties (a) and (c) of Jk in Lemma 3.5 we have

3i0

β
+

k−1∑
j=1

(3j + 3)ij

β
�

3(k − 1) + 3� k−1
2 �

β
.

This completes the proof. �
Example 3.7. Consider a random variable in the first Wiener chaos N = I1(h), where ∈ H with
‖h‖H = σ . Then N has the normal distribution N ∼ N(0, σ 2) with density denoted by φ(x).
Clearly ‖DN‖H = σ , u = h

σ 2 , δu = N

σ 2 and Duδu = h

σ 2 . Then Gk = Hk(
1
σ 2 , N

σ 2 ) and from (3.23)
we obtain the formula

φ(k)(x) = (−1)kE

[
1{N>x}Hk+1

(
1

σ 2
,

N

σ 2

)]
, (3.24)

which can also be obtained by analytic arguments.
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Remark 3.8. Let g be a function differentiable of order m, and denote uj (g, x) =
sup|t |�x |g(j)(t) − g(j)(0)|. Let F be a random variable with E(F) = 0, E(F 2) = 1 and
E{|F |m+1um(g,F )} < ∞. It is proved in [1] that the following expansion holds:

E
(
Fg(F )

)− E
(
g′(F )

)=
m∑

j=2

γj+1

j ! Eg(j)(F ) + R,

where γj is the j th cumulant of X and |R| � CE{|F |m+1um(g,F )} for some constant C > 0.
For any function h, let f be the solution of the Stein’s equation (2.15) given by (2.18). Then

E
[
h(F )

]− E
[
h(N)

]= E
[
f ′(F )

]− E
[
Ff (F)

]
= −

m∑
j=2

γj+1

j ! E
[
f (j)(F )

]− R.

This is the so-called Edgeworth expansion (see also [28] and references therein). Eq. (3.23) can
also be used to compute E[f (j)(F )]. We have easily

E
[
h(F )

]− E
[
h(N)

]= −
m∑

j=2

γj+1

j ! E
[
f (F )Gk

]− R, (3.25)

where Gk is given in Lemma 3.4. Thus, it is possible to use Malliavin calculus to obtain the full
Edgeworth expansion without assuming the differentiability of f . However, we shall not pursue
this aspect in the present work.

Remark 3.9. The recursive algorithms used in Lemma 3.4 have some similarities with the recur-
sive formula developed by Privault in [25] to compute E(F [δ(u)]n).

4. Random variables in the qth Wiener chaos

In this section we establish our main results on uniform estimates and uniform convergence
of densities and their derivatives. We shall deal first with the convergence of densities and later
we consider their derivatives.

4.1. Uniform estimates of densities

Let F = Iq(f ) for some f ∈ H�q and q � 2. To simplify the notation, along this section we
denote

w = ‖DF‖2
H, u = w−1DF.

Note that LF = −qF and using (2.7) and (2.10) we can write

δu = δ(u) = qFw−1 − 〈
Dw−1,DF

〉
H

. (4.1)
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Theorem 4.1. Let F = Iq(f ), q � 2, for some f ∈H�q be a random variable in the qth Wiener
chaos with E[F 2] = σ 2. Assume that M6(F ) < ∞, where M6(F ) is defined in (3.22). Let φ(x)

be the density of N ∼ N(0, σ 2). Then F has a density fF (x) given by (3.1). Furthermore,

sup
x∈R

∣∣fF (x) − φ(x)
∣∣� C

√
E
[
F 4

]− 3σ 4, (4.2)

where the constant C has the form C = Cq(σ−1M6(F )2 +M6(F )3 +σ−3) and Cq depends only
on q .

We begin with a lemma giving an estimate for the contraction DkF ⊗1 DlF with k + l � 3.

Lemma 4.2. Let F = Iq(f ) be a random variable in the qth Wiener chaos with E[F 2] = σ 2.
Then for any integers k � l � 1 satisfying k + l � 3, there exists a constant Ck,l,q depending only
on k, l, q such that ∥∥DkF ⊗1 DlF

∥∥
2 � Ck,l,q

∥∥qσ 2 − ‖DF‖2
H

∥∥
2. (4.3)

Proof. Note that DkF = q(q − 1) · · · (q − k + 1)Iq−k(f ). Applying (2.4), we get

DkF ⊗1 DlF = q2(q − 1)2 · · · · · · (q − l + 1)2(q − l) · · · (q − k + 1)

×
q−k∑
r=0

r!
(

q − k

r

)(
q − l

r

)
I2q−k−l−2r (f ⊗̃r+1f ).

Taking into account the orthogonality of multiple integrals of different orders, we obtain

E
[∥∥DkF ⊗1 DlF

∥∥2
H⊗(k+l−2)

]
= (q!)4

(q − l)!2(q − k)!2

×
q−k∑
r=0

r!2
(

q − k

r

)2(
q − l

r

)2

(2q − k − l − 2r)!‖f ⊗̃r+1f ‖2
H⊗2q−2−2r . (4.4)

Applying (4.4) with k = l = 1, we obtain

E
[‖DF‖4

H

]= E
[|DF ⊗1 DF |2]

= q4
q−1∑
r=0

r!2
(

q − 1

r

)4

(2q − 2 − 2r)!‖f ⊗̃r+1f ‖2
H⊗2q−2−2r

= q4
q−2∑
r=0

r!2
(

q − 1

r

)4

(2q − 2 − 2r)!‖f ⊗̃r+1f ‖2
H⊗2q−2−2r

+ q2q!2‖f ‖4 ⊗q . (4.5)

H
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Taking into account that σ 2 = E[F 2] = q!‖f ‖2
H⊗q , we obtain that for any k + l � 3, there exists

a constant Ck,l,q such that

E
[∥∥DkF ⊗1 DlF

∥∥2
H⊗(k+l−2)

]
� C2

k,l,qE
[‖DF‖4

H − q2σ 4].
Meanwhile, it follows from E[‖DF‖2

H
] = q‖f ‖2

H⊗q = qσ 2 that

E
[‖DF‖4

H − q2σ 4]= E
[‖DF‖4

H − 2qσ 2‖DF‖2
H + q2σ 4]

= E
[(‖DF‖2

H − qσ 2)2]
. (4.6)

Combining (4.4), (4.5) and (4.6) we have

E
[∥∥DkF ⊗1 DlF

∥∥2
H⊗(k+l−2)

]
� C2

k,l,qE
[(‖DF‖2

H − qσ 2)2]
,

which completes the proof. �
Proof of Theorem 4.1. It follows from Theorem 3.1 that F admits a density fF (x) =
E[1{F>x}δ(u)]. By (3.24) with k = 1 we can write φ(x) = 1

σ 2 E[1{N>x}N ]. Then, using (4.1),
for all x ∈R we obtain

fF (x) − φ(x) = E
[
1{F>x}δ(u)

]− σ−2E[1{N>x}N ]

= E

[
1{F>x}

(
F

(
q

w
− σ−2

)
− 〈

Dw−1,DF
〉
H

)]
+ σ−2E[F1{F>x} − N1{N>x}]

= A1 + A2. (4.7)

For the first term A1, Hölder’s inequality implies

|A1| =
∣∣∣∣E[

1{F>x}
(

F

(
q

w
− σ−2

)
− 〈

Dw−1,DF
〉
H

)]∣∣∣∣
� σ−2E

[∣∣Fw−1(w − qσ 2)∣∣]+ 2E
[
w− 3

2
∥∥D2F ⊗1 DF

∥∥
H

]
� σ−2

∥∥w−1
∥∥

3‖F‖3
∥∥w − qσ 2

∥∥
3 + 2

∥∥w− 3
2
∥∥

2

∥∥∥∥D2F ⊗1 DF
∥∥
H

∥∥
2.

Note that (2.12) implies ∥∥w − qσ 2
∥∥

3 � C
∥∥w − qσ 2

∥∥
2

and ‖F‖3 � C‖F‖2 = Cσ . Combining these estimates with (4.3) we obtain

|A1|� C
(
σ−1

∥∥w−1
∥∥

3 + ∥∥w−1
∥∥ 3

2
3

)∥∥w − qσ 2
∥∥

2. (4.8)

For the second term A2, applying Lemma 2.2 to the function h(z) = z1{z>x}, which satisfies
|h(z)| � |z|, we have
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|A2| = σ−2
∣∣E[F1{F>x} − N1{N>x}]

∣∣
� Cσ−3

∥∥σ 2 − 〈
DF,−DL−1F

〉
H

∥∥
2 � Cσ−3

∥∥qσ 2 − w
∥∥

2. (4.9)

Combining (4.7) with (4.8)–(4.9) we obtain

sup
x∈R

∣∣fF (x) − φ(x)
∣∣� C

(
σ−1

∥∥w−1
∥∥

3 + ∥∥w−1
∥∥ 3

2
3 + σ−3)∥∥w − qσ 2

∥∥
2.

Then (4.2) follows from (2.13). This completes the proof. �
Using the estimates shown in Theorem 4.1 we can deduce the following uniform convergence

and convergence in Lp of densities for a sequence of random variables in a fixed qth Wiener
chaos.

Corollary 4.3. Let {Fn}n∈N be a sequence of random variables in the qth Wiener chaos
with q � 2. Set σ 2

n = E[F 2
n ] and assume that limn→∞ σ 2

n = σ 2, 0 < δ � σ 2
n � K for all n,

limn→∞ E[F 4
n ] = 3σ 4 and

M := sup
n

(
E
[‖DFn‖−6

H

])1/6
< ∞. (4.10)

Let φ(x) be the density of the law N(0, σ 2). Then, each Fn admits a density fFn ∈ C(R) and
there exists a constant C depending only on q,σ, δ and M such that

sup
x∈R

∣∣fFn(x) − φ(x)
∣∣� C

(∣∣E[
F 4

n

]− 3σ 4
n

∣∣ 1
2 + |σn − σ |). (4.11)

Furthermore, for any p � 1 and α ∈ ( 1
2 ,p),

‖fFn − φ‖Lp(R) � C
(∣∣E[

F 4
n

]− 3σ 4
n

∣∣ 1
2 + |σn − σ |) p−α

p , (4.12)

where C is a constant depending on q,σ,M,p,α and K .

Proof. Let φn(x) be the density of N(0, σ 2
n ). Then Theorem 4.1 implies that

sup
x∈R

∣∣fFn(x) − φn(x)
∣∣� C

∣∣E[
F 4

n

]− 3σ 4
n

∣∣ 1
2 .

On the other hand, if Nn ∼ N(0, σ 2
n ), it is easy to see that

sup
x∈R

∣∣φn(x) − φ(x)
∣∣� C|σn − σ |.

Then (4.11) follows from triangle inequality. To show (4.12), first notice that (3.2) implies

fFn(x) � C
(
1 ∧ |x|−2).
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Therefore, if α > 1
2 the function (fFn(x)+φ(x))α is integrable. Then, (4.12) follows from (4.11)

and the inequality

∣∣fFn(x) − φ(x)
∣∣p �

∣∣fFn(x) − φ(x)
∣∣p−α(

fFn(x) + φ(x)
)α

. �
4.2. Uniform estimates of derivatives of densities

In this subsection, we establish the uniform convergence for derivatives of densities of random
variables to a normal distribution. We begin with the following theorem which estimates the
uniform distance between the derivatives of the densities of a random variable F in the qth
Wiener chaos and the normal law N(0,E[F 2]).

Theorem 4.4. Let m � 1 be an integer. Let F be a random variable in the qth Wiener chaos,
q � 2, with E[F 2] = σ 2 and Mβ := Mβ(F) < ∞ for some β > 6m + 6(�m

2 � ∨ 1) (recall the
definition of Mβ(F) in (3.22)). Let φ(x) be the density of N ∼ N(0, σ 2). Then F has a density
fF (x) ∈ Cm(R) with derivatives given by (3.23). Moreover, for any k = 1, . . . ,m

sup
x∈R

∣∣f (k)
F (x) − φ(k)(x)

∣∣� σ−k−3C

√
E
[
F 4

]− 3σ 2,

where the constant C depends on q , β , m, σ and Mβ with polynomial growth in σ and Mβ .

To prove Theorem 4.4, we need some technical results. Recall the notation we introduced in
(3.15), where we denote δu = δ(u), Duδu = 〈Dδu,u〉H.

Lemma 4.5. Let F be a random variable in the qth Wiener chaos with E[F 2] = σ 2. Let w =
‖DF‖2

H
and u = w−1DF .

(i) If Mβ(F) < ∞ for some β > 6, then for any 1 < r � 2β
β+6

∥∥δu − σ−2F
∥∥

r
� Cσ−1(M3

β ∨ 1
)∥∥qσ 2 − w

∥∥
2. (4.13)

(ii) If Mβ(F) < ∞ for some β > 12, then for any 1 < r <
2β

β+12

∥∥Duδu − σ−2
∥∥

r
� Cσ−2(M6

β ∨ 1
)∥∥qσ 2 − w

∥∥
2, (4.14)

where the constant C depends on σ .

Proof. Recall that δu = qFw−1 − DDF w−1. Using Hölder’s inequality and (A.3) we can write

∥∥δu − σ−2F
∥∥

r
�
∥∥σ−2Fw−1(qσ 2 − w

)∥∥
r
+ ∥∥DDF w−1

∥∥
r

� C
(
σ−2

∥∥Fw−1
∥∥ + (

M3 ∨ 1
))∥∥qσ 2 − w

∥∥ ,

s β 2
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provided 1
r

= 1
s
+ 1

2 . By the hypercontractivity property (2.11) ‖F‖γ � Cq,γ ‖F‖2 for any γ � 2.
Thus, by Hölder’s inequality, if 1

s
= 1

γ
+ 1

p∥∥Fw−1
∥∥

s
� ‖F‖γ

∥∥w−1
∥∥

p
� Cq,γ σM2

2p.

Choosing p such that 2p < β we get (4.13).
We can compute Duδu as

Duδu = qw−1 + qFw−1DDF w−1 − w−1D2
DF w−1 − w−1〈D2F,DF ⊗ Dw−1〉

H
.

Applying Hölder’s inequality we obtain∥∥Duδu − σ−2
∥∥

r
�
∥∥w−1[σ−2(qσ 2 − w

)+ qFDDF w−1 − D2
DF w−1]∥∥

r

� σ−2
∥∥w−1

∥∥ 2r
2−r

∥∥qσ 2 − w
∥∥

2 + Cσ

∥∥w−1
∥∥

p

(∥∥DDF w−1
∥∥

s
+ ∥∥D2

DF w−1
∥∥

s

)
,

if 1
r

> 1
p

+ 1
s
. Then, using (A.3) and (A.4) with k = 2 and assuming that s <

2β
β+8 and that 2p < β

we obtain (4.14). �
Proof of Theorem 4.4. Proposition 3.6 implies that fF (x) ∈ Cm−1(R) and for k = 0,1, . . . ,

m − 1,

f
(k)
F (x) = (−1)kE[1{F>x}Gk+1],

where G0 = 1 and Gk+1 = δ(Gku) = Gkδ(u) − 〈DGk,u〉H. From (3.24),

φ(k)(x) = (−1)kE
[
1{N>x}Hk+1

(
σ−2, σ−2N

)]
.

Then, the identity Gk+1 = Hk+1(Duδu, δu) + Tk+1 (see formula (3.18)), suggests the following
triangle inequality∣∣f (k)

F (x) − φ(k)(x)
∣∣= ∣∣E[

1{F>x}Gk+1 − 1{N>x}Hk+1
(
σ−2, σ−2N

)]∣∣
�
∣∣E[

1{F>x}Gk+1 − 1{F>x}Hk+1
(
σ−2, σ−2F

)]∣∣
+∣∣E[

1{F>x}Hk+1
(
σ−2, σ−2F

)− 1{N>x}Hk+1
(
σ−2, σ−2N

)]∣∣
= A1 + A2.

We first estimate the term A2. Note that ‖F‖2k+2 � Cq,k‖F‖2 = Cq,kσ by the hypercontrac-
tivity property (2.11). Applying Lemma 2.2 with h(z) = 1{z>x}Hk+1(σ

−2, σ−2z), which satisfies
|h(z)| � Ck(|z|k+1 + σ−k−1), we obtain

A2 = ∣∣E[
h(F ) − h(N)

]∣∣
� Cq,kσ

−2
∣∣σk + 4σ−k−1

∣∣∥∥σ 2 − 〈
DF,−DL−1F

〉
H

∥∥
2

� Cq,k,σ σ−k−3
∥∥qσ 2 − w

∥∥
2, (4.15)

where in the second inequality we used the fact that 〈DF,−DL−1F 〉H = w .

q
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For the term A1, Lemma 3.4 implies

A1 � E
[∣∣Hk+1(Duδu, δu) − Hk+1

(
σ−2, σ−2F

)∣∣]+ E
[|Tk+1|

]
. (4.16)

To proceed with the first term above, applying (3.17) we have∣∣Hk+1(Duδu, δu) − Hk+1
(
σ−2, σ−2F

)∣∣
�

∑
0�i��(k+1)/2�

|ck,i |
∣∣δk+1−2i

u (Duδu)
i − (

σ−2F
)k+1−2i

σ−2i
∣∣

�
∑

0�i��(k+1)/2�
|ck,i |

× [∣∣δk+1−2i
u − (

σ−2F
)k+1−2i∣∣|Duδu|i + ∣∣σ−2F

∣∣k+1−2i∣∣(Duδu)
i − σ−2i

∣∣]. (4.17)

Using the fact that |xk − yk| � Ck|x − y|∑0�j�k−1 |x|k−1−j |y|j and applying Hölder’s in-
equality and the hypercontractivity property (2.11) we obtain

E
[∣∣δk+1−2i

u − (
σ−2F

)k+1−2i∣∣|Duδu|i
]

� CkE

[∣∣δu − σ−2F
∣∣|Duδu|i

∑
0�j�k−2i

|δu|k−2i−j
∣∣σ−2F

∣∣j]
� Cq,k,σ

∥∥δu − σ−2F
∥∥

r
‖Duδu‖i

s

∑
0�j�k−2i

‖δu‖k−2i−j
p σ−j , (4.18)

provided 1 � 1
r

+ i
s
+ k−2i−j

p
, which is implied by 1 � 1

r
+ i

s
+ k−2i

p
. In order to apply the esti-

mates (4.13), (A.12) (with k = 1) and (A.11) we need 1
r

> 3
β

+ 1
2 , 1

s
> 6

β
and 1

p
> 3

β
, respectively.

These are possible because β > 6k + 6. Then we obtain an estimate of the form

E
[∣∣δk+1−2i

u − (
σ−2F

)k+1−2i∣∣|Duδu|i
]
� Cq,k,σ σ−k

(
M3k+3

β ∨ 1
)∥∥qσ 2 − w

∥∥
2. (4.19)

Similarly,

E
[∣∣σ−2F

∣∣k+1−2i∣∣(Duδu)
i − σ−2i

∣∣]
� Cq,k,σ E

[∣∣σ−2F
∣∣k+1−2i∣∣Duδu − σ−2

∣∣ ∑
0�j�i−1

|Duδu|j σ−2(i−1−j)

]
� Cq,k,σ σ−(k−1)

∥∥Duδu − σ−2
∥∥

r

∑
0�j�i−1

‖Duδu‖j
s , (4.20)

provided 1 > 1
r

+ j
s

. In order to apply the estimates (4.14) and (A.12) (with k = 1) we need
1
r

> 6
β

+ 1
2 and 1

s
> 6

β
, respectively. This implies

1 + j
>

6 + 6j + 1
.

r s β 2
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Notice that 6 + 6j � 6i � 3k + 3. So, we need 1 > 1
2 + 3k+3

β
. The above r, s and p exist because

β > 6k + 6. Thus, we obtain an estimate of the form

E
[∣∣σ−2F

∣∣k+1−2i∣∣(Duδu)
i − σ−2i

∣∣]� Cq,k,σ,βσ−(k−1)
(
M3k+3

β ∨ 1
)∥∥qσ 2 − w

∥∥
2. (4.21)

Combining (4.19) and (4.21) we have

E
[∣∣Hk+1(Duδu, δu) − Hk+1

(
σ−2, σ−2F

)∣∣]
� Cq,k,σ,βσ−k

(
M3k+3

β ∨ 1
)∥∥qσ 2 − w

∥∥
2. (4.22)

Applying Hölder’s inequality to the expression (3.20) we obtain (assuming k � 2, otherwise
Tk+1 = 0)

E
[|Tk+1|

]
� Cq,k,σ,β

∑
(i0,...,ik)∈Jk+1

‖δu‖i0
r0

k∏
j=1

∥∥Dj
uδu

∥∥ij
rj

,

where 1 = i0
r0

+∑k
j=1

ij
rj

. From property (b) in Lemma 3.5 there is at least one factor of the form

‖Dj
uδu‖sj with j � 2. We apply the estimate (A.13) to one of these factors, and the estimate

(A.12) to all the remaining factors. We also use the estimate (A.11) to control ‖δu‖r0 . Notice that

1 = i0

r0
+

k∑
j=1

ij

rj
>

3i0

β
+

k∑
j=1

ij (3j + 3)

β
+ 1

2
,

and, on the other hand, using properties (a) and (c) in Lemma 3.5

3i0

β
+

k∑
j=1

ij (3j + 3)

β
+ 1

2
�

3k + 3� k
2�

β
+ 1

2
.

We can choose the rj ’s satisfying the above properties because β > 6k + 6� k
2�, and we obtain

E|Tk+1| � Cq,k,σ,β

(
M

3k+3� k
2 �

β ∨ 1
)∥∥qσ 2 − w

∥∥
2. (4.23)

Combining (4.22) and (4.23) we complete the proof. �
Corollary 4.6. Fix an integer m � 1. Let {Fn}n∈N be a sequence of random variables in the qth
Wiener chaos with q � 2 and E[F 2

n ] = σ 2
n . Assume limn→∞ σn = σ , 0 < δ � σ 2

n � K for all n,
limn→∞ E[F 4

n ] = 3σ 4 and

M := sup
(
E
[‖DFn‖−β

H

]) 1
β < ∞ (4.24)
n
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for some β > 6(m) + 6(�m
2 � ∨ 1). Let φ(x) be the density of N(0, σ 2). Then, each Fn admits

a probability density function fFn ∈ Cm(R) with derivatives given by (3.23) and for any k =
1, . . . ,m,

sup
x∈R

∣∣f (k)
Fn

(x) − φ(k)(x)
∣∣� C

(√
E
[
F 4

n

]− 3σ 4
n + |σn − σ |

)
,

where the constant C depends only on q,m,β,M,σ, δ and K .

Proof. Let φn(x) be the density of N(0, σ 2
n ). Then Theorem 4.4 implies that

sup
x∈R

∣∣f (k)
Fn

(x) − φ(k)
n (x)

∣∣� Cq,m,β,M,σ

√
E
[
F 4

n

]− 3σ 4
n .

On the other hand, by the mean value theorem we can write

∣∣φ(k)
n (x) − φ(k)(x)

∣∣� |σn − σ | sup
γ∈[ σ

2 ,2σ ]

∣∣∂γ φ(k)
γ (x)

∣∣= 1

2
|σn − σ | sup

γ∈[ σ
2 ,2σ ]

γ
∣∣φ(k+2)

γ (x)
∣∣,

where φγ (x) is the density of the law N(0, γ 2). Then, using the expression

φ(k+2)
γ (x) = E

[
1N>xHk+3

(
γ −2, γ −2Z

)]
,

where Z ∼ N(0, γ 2) and the explicit form of Hk+3(λ, x), we obtain

sup
γ∈[ σ

2 ,2σ ]
γ
∣∣φ(k+2)

γ (x)
∣∣� Ck,σ .

Therefore,

sup
x∈R

∣∣φ(k)
n (x) − φ(k)(x)

∣∣� Ck,σ |σn − σ |.

This completes the proof. �
5. Random vectors in Wiener chaos

5.1. Main result

In this section, we study the multidimensional counterpart of Theorem 4.6. We begin with a
density formula for a smooth random vector.

A random vector F = (F1, . . . ,Fd) in D∞ is called non-degenerate if its Malliavin matrix
γF = (〈DFi,DFj 〉H)1�i,j�d is invertible a.s. and (detγF )−1 ∈ ⋂

p�1 Lp(Ω). For any multi-
index

β = (β1, β2, . . . , βk) ∈ {1,2, . . . , d}k
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of length k � 1, the symbol ∂β stands for the partial derivative ∂k

∂xβ1 ...∂xβk
. For β of length 0 we

make the convention that ∂βf = f . We denote by S(Rd) the Schwartz space of rapidly decreas-
ing smooth functions, that is, the space of all infinitely differentiable functions f :Rd →R such
that supx∈Rd |x|m|∂βf (x)| < ∞ for any nonnegative integer m and for all multi-index β . The
following lemma (see Nualart [22, Proposition 2.1.5]) gives an explicit formula for the density
of F .

Lemma 5.1. Let F = (F1, . . . ,Fd) be a non-degenerate random vector. Then, F has a density
fF ∈ S(Rd), and fF and its partial derivative ∂βfF , for any multi-index β = (β1, β2, . . . , βk) of
length k � 0, are given by

fF (x) = E
[
1{F>x}H(1,2,...,d)(F )

]
, (5.1)

∂βfF (x) = (−1)kE
[
1{F>x}H(1,2,...,d,β1,β2,...,βk)(F )

]
, (5.2)

where 1{F>x} =∏d
i=1 1{Fi>xi } and the elements Hβ(F) are recursively defined by⎧⎪⎪⎨⎪⎪⎩

Hβ(F) = 1, if k = 0;

H(β1,β2,...,βk)(F ) =
d∑

j=1

δ
(
H(β1,β2,...,βk−1)(F )

(
γ −1
F

)β1jDFj

)
, if k � 1.

(5.3)

Fix d natural numbers 1 � q1 � · · · � qd . We will consider a random vector of multiple
stochastic integrals: F = (F1, . . . ,Fd) = (Iq1(f1), . . . , Iqd

(fd)), where fi ∈H�qi . Denote

V = (
E[FiFj ]

)
1�i,j�d

, Q = diag(q1, . . . , qd)

(diagonal matrix of elements q1, . . . , qd). (5.4)

Along this section, we denote by N = (N1, . . . ,Nd) a standard normal vector given by Ni =
I1(hi), where hi ∈ H are orthonormal. We denote by I the d dimensional identity matrix, and by
| · | the Hilbert–Schmidt norm of a matrix. The following is the main theorem of this section.

Theorem 5.2. Let F = (F1, . . . ,Fd) = (Iq1(f1), . . . , Iqd
(fd)) be non-degenerate and let φ be the

density of N . Then for any multi-index β of length k � 0, the density fF of F satisfies

sup
x∈Rd

∣∣∂βfF (x) − ∂βφ(x)
∣∣� C

(
|V − I | +

∑
1�j�d

√
E
[
F 4

j

]− 3
(
E
[
F 2

j

])2
)

, (5.5)

where the constant C depends on d,V,Q,k and ‖(detγF )−1‖(k+4)2k+3 .

Proof. Note that ∂βφ(x) = (−1)kE[1{N>x}H(1,2,...,d,β1,β2,...,βk)(N)]. Then, in order to estimate
the difference between ∂βfFn and ∂βφ, it suffices to estimate

E
[
1{F>x}Hβ(F)

]− E
[
1{N>x}Hβ(N)

]
for all multi-index β of length k for all k � d .
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Fix a multi-index β of length k for some k � d . For the above standard normal random
vector N , we have γN = I and δ(DNi) = Ni . We can deduce from the expression (5.3) that
Hβ(N) = gβ(N), where gβ(x) is a polynomial on Rd (see Remark 5.4). Then,∣∣E[

1{F>x}Hβ(F)
]− E

[
1{N>x}Hβ(N)

]∣∣
�
∣∣E[

1{F>x}gβ(F )
]− E

[
1{N>x}gβ(N)

]∣∣+ E
[∣∣Hβ(F) − gβ(F )

∣∣]
= A1 + A2. (5.6)

The term A1 = |E[1{F>x}gβ(F ) − 1{N>x}gβ(N)]| will be studied in Subsection 5.3 by using the
multivariate Stein’s method. Proposition 5.10 will imply that A1 is bounded by the right-hand
side of (5.5).

Consider the term A2 = E[|Hβ(F) − gβ(F )|]. We introduce an auxiliary term Kβ(F), which
is defined similar to Hβ(F) with γ −1

F replaced by (V Q)−1. That is, for any multi-index β =
(β1, β2, . . . , βk) of length k � 0, we define{

Kβ(F) = 1 if k = 0;
Kβ(F) = δ

(
K(β1,β2,...,βk−1)(F )

(
(V Q)−1DF

)
βk

)
if k � 1.

(5.7)

We have

A2 � E
[∣∣Hβ(F) − Kβ(F)

∣∣]+ E
[∣∣Kβ(F) − gβ(F )

∣∣]=: A3 + A4. (5.8)

Lemma 5.11 below shows that the term A3 = E[|Hβ(F)−Kβ(F)|] is bounded by the right-hand
of (5.5).

It remains to estimate A4. For this we need the following lemma which provides an explicit
expression for the term Kβ(F). Before stating this lemma we need to introduce some notation.
For any multi-index β = (β1, β2, . . . , βk), k � 1, denote by β̂i1...im the multi-index obtained from
β after taking away the elements βi1, βi2, . . . , βim . For example, β̂14 = (β2, β3, β5, . . . , βk). For
any d dimensional vector G we denote by Gβ the product Gβ1Gβ2 · · ·Gβk

and set Gβ = 1 if the
length of β is 0. Denote by (Sm

k ;0 � m � � k
2�) the following sets⎧⎪⎨⎪⎩

S−1
k = S0

k =∅,

Sm
k =

{ {(i1, i2), . . . , (i2m−1, i2m)} ∈ {1,2, . . . , k}2m:
i2l−1 < i2l for 1 � l � m and il �= ij if l �= j

}
.

(5.9)

For each element {(i1, i2), . . . , (i2m−1, i2m)} ∈ Sm
k , we emphasize that the m pairs of indices are

unordered. In other words, for m � 1, the set Sm
k can be viewed as the set of all partitions of

{1,2, . . . , k} into m pairs and k − 2m singletons.
Denote M = V −1γF V −1Q−1 for V and Q given in (5.4) and denote Mij the (i, j)th

entry of M . Denote by Dβi
the Malliavin derivative in the direction of (V −1Q−1DF)βi

=
V −1Q−1DFβi

, that is,

Dβi
G = 〈

DG,
(
V −1Q−1DF

)
βi

〉
H

(5.10)

for any random variable G ∈D1,2.
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Lemma 5.3. Let F be a non-degenerate random vector. For a multi-index β = (β1, . . . , βk) of
length k � 0, Kβ(F) defined by (5.7) can be computed as follows:

Kβ(F) = Gβ(F) + Tβ(F ), (5.11)

where

Gβ(F) =
�k/2�∑
m=0

(−1)m
∑

{(i1,i2),...,(i2m−1,i2m)}∈Sm
k

(
V −1F

)
β̂i1 ···i2m

Mβi1
βi2

· · ·Mβi2m−1 β2m
, (5.12)

and Tβ(F ) are defined recursively by

Tβ(F ) = (
V −1F

)
βk

Tβ̂k
(F ) − Dβk

Tβ̂k
(F ) (5.13)

−
∑

{(i1,i2),...,(i2m−1,i2m)}∈Sm
k−1

(
V −1F

)
β̂ki1 ···i2m

Dβk
(Mβi1 βi2

· · ·Mβi2m−1
β2m

),

for k � 2 and T1(F ) = T2(F ) = 0.

Proof. For simplicity, we write Kβ , Gβ and Tβ for Kβ(F), Gβ(F) and Tβ(F ), respectively. By
using the fact that δ(((V Q)−1DF)βi

) = (V −1F)βi
we obtain from (5.7) that

Kβ = (
V −1F

)
βk

Kβ̂k
− Dβk

Kβ̂k
. (5.14)

If k = 1, namely, β = (β1), then

Kβ = (
V −1F

)
β1

= Gβ.

If k = 2, namely, β = (β1, β2), then

Kβ = (
V −1F

)
β

− Mβ1β2 = Gβ.

Hence, the identity (5.11) is true for k = 1,2. Assume now (5.11) is true for all multi-index of
length less than or equal to k. Let β = (β1, . . . , βk+1). Then, (5.14) implies

Kβ = (
V −1F

)
βk+1

(Gβ̂k+1
+ Tβ̂k+1

) − Dβk+1(Gβ̂k+1
+ Tβ̂k+1

). (5.15)

Noticing that

Dβk+1

(
V −1F

)
β̂(k+1)i1 ···i2m

=
∑ (

V −1F
)
β̂(k+1)j i1 ···i2m

Mβj βk+1 ,
j∈{1,...,k}\{i1,...,i2m}
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we have

Dβk+1Gβ̂k+1

= Bβ +
�k/2�∑
m=0

(−1)m
∑

{(i1,i2),...,(i2m−1,i2m)}∈Sm
k

(
V −1F

)
β̂(k+1)i1 ···i2m

Dβk+1(Mβi1 βi2
· · ·Mβi2m−1 β2m

),

(5.16)

where we let

Bβ =
�k/2�∑
m=0

(−1)m
∑

{(i1,i2),...,(i2m−1,i2m)}∈Sm
k ,

j∈{1,...,k}\{i1,...,i2m}

(
V −1F

)
β̂j (k+1)i1 ···i2m

Mβj βk+1Mβi1 βi2
· · ·Mβi2m−1 βi2m

.

Substituting the expression (5.16) for Dβk+1Gβ̂k+1
into (5.15) and using (5.13) we obtain

Kβ = (
V −1F

)
βk+1

Gβ̂k+1
− Bβ + Tβ.

To arrive at (5.11) it remains to verify

Gβ = (
V −1F

)
βk+1

Gβ̂k+1
− Bβ. (5.17)

Introduce the following notation

Cm
k+1 = {{

(i1, i2), . . . , (i2m−3, i2m−2), (j, k + 1)
}
:
{
(i1, i2), . . . , (i2m−3, i2m−2)

} ∈ Sm−1
k

}
(5.18)

for 1 �m � � k
2�. Then, Sm

k+1 can be decomposed as follows

Sm
k+1 = Sm

k ∪ Cm
k+1. (5.19)

We consider first the case when k is even. In this case, noticing that for any element in

{(i1, i2), . . . , (i2m−1, i2m)} ∈ S
� k

2 �
k , {1, . . . , k}\{i1, . . . , i2m} = ∅. For any collection of indices

i1, . . . , i2m ⊂ {1,2, . . . , k}, we set

Φi1...i2m
= (

V −1F
)
β̂i1 ···i2m

Mβi1 βi2
· · ·Mβi2m−1 βi2m

.

Then, we have

−Bβ =
� k

2 �−1∑
m=0

(−1)m+1
∑

{(i1,i2),...,(i2m−1,i2m)}∈Sm
k ,

Φj(k+1)i1...i2m
j∈{1,...,k}\{i1,...,i2m}
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=
� k

2 �∑
m=1

(−1)n
∑

{(i1,i2),...,(i2m−3,i2m−2)}∈Sm−1
k ,

j∈{1,...,k}\{i1,...,i2n−2}

Φj(k+1)i1...i2m−2

=
� k+1

2 �∑
m=1

(−1)m
∑

{(i1,i2),...,(i2m−3,i2m−2),(j,k+1)}
∈Cm

k+1

Φj(k+1)i1...i2m−2 , (5.20)

where in the last equality we used (5.18) and the fact that � k
2� = � k+1

2 � since k is even. Taking
into account that (V −1F)βk+1(V

−1F)β̂(k+1)i1 ···i2m
= (V −1F)β̂i1 ···i2m

, we obtain from (5.12) that

(
V −1F

)
βk+1

Gβ̂k+1

=
�k/2�∑
m=0

(−1)m
∑

{(i1,i2),...,(i2m−1,i2m)}∈Sm
k

(
V −1F

)
β̂i1 ···i2m

Mβi1 βi2
· · ·Mβi2m−1 βi2m

. (5.21)

Now combining (5.20) and (5.21) with (5.19) and using again � k
2� = � k+1

2 � we obtain

(
V −1F

)
βk+1

Gβ̂k+1
− Bβ =

�(k+1)/2�∑
m=0

(−1)m
∑

{(i1,i2),...,(i2m−1,i2m)}∈Sm
k

Φi1...i2m

+
�(k+1)/2�∑

m=1

(−1)m
∑

{(i1,i2),...,(i2m−3,i2m−2),(j,k+1)}∈Cm
k+1

Φi1...i2m

=
�(k+1)/2�∑

m=0

(−1)m
∑

{(i1,i2),...,(i2m−1,i2m)}∈Sm
k+1

Φi1...i2m

= Gβ

as desired. This verifies (5.17) for the case k is even. The case when k is odd can be verified
similarly. Thus, we have proved (5.11) by induction. �
Remark 5.4. For the random vector N ∼ N(0, I ), we have γN = V Q = I , so Hβ(N) = Kβ(N).
Then, it follows from Lemma 5.3 that Hβ(N) = Kβ(N) = gβ(N) with the function gβ(x) :
Rd →R given by

gβ(x) =
�k/2�∑
m=0

(−1)m
∑

{(i1,i2),...,(i2m−1,i2m)}∈Sm
k

xβ̂i1 ···i2m
δβi1 βi2

· · · δβi2m−1
β2m

, (5.22)

where we used δij to denote the Kronecker symbol (without confusion with the divergence oper-
ator). Notice that
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gβ(x) =
d∏

i=1

Hki
(xi),

where Hki
is the ki th Hermite polynomial and for each i = 1, . . . , d , ki is the number of compo-

nents of β equal to i.

Let us return to the proof of Theorem 5.2 of estimating the term A4. From (5.11) we can write

A4 = E
[∣∣Kβ(F) − gβ(F )

∣∣]�E
[∣∣Gβ(F) − gβ(F )

∣∣]+ E
[∣∣Tβ(F )

∣∣]. (5.23)

Observe from the expression (5.13) that Tβ(F ) is the sum of terms of the following form

(
V −1F

)
βi1 βi2 ···βis

Dβk1
Dβk2

· · ·Dβkt

(
r∏
i

Mβji
βli

)
(5.24)

for some {i1, . . . , is , k1, . . . , kt , j1, l1, . . . jr , lr} ⊂ {1,2, . . . , k} and t � 1. Applying Lemma 5.5
with (2.11) and (2.12) we obtain

E
[∣∣Tβ(F )

∣∣]� C
∑

1�l�d

∥∥‖DFl‖2
H − qlE

[
F 2

l

]∥∥ 1
2
2 . (5.25)

In order to compare gβ(F ) with Gβ(F), from (5.22) we can write gβ(F ) as

gβ(F ) =
�k/2�∑
m=0

(−1)m
∑

{(i1,i2),...,(i2m−1,i2m)}∈Sm
k

Fβ̂i1 ···i2m
δβi1 βi2

· · · δβi2m−1 β2m
.

Then, it follows from hypercontractivity property (2.11) that

E
[∣∣Gβ(F) − gβ(F )

∣∣]� C
(∣∣V −1 − I

∣∣+ ‖M − I‖2
)
,

where the constant C depends on k,V and Q. From V −1 −I = V −1(I −V ) we have |V −1 −I | �
C|V − I |, where C depends on V . We also have M − I = V −1(γF − V Q)V −1Q−1 + V −1 − I .
Then, Lemma 5.5 implies that

‖M − I‖2 � C
(‖γF − V Q‖2 + ∣∣V −1 − I

∣∣)
� C

( ∑
1�l�d

∥∥‖DFl‖2
H − qlEF 2

l

∥∥
2 + |V − I |

)
,

where the constant C depends on k,V and Q. Therefore

E
[∣∣Gβ(F) − gβ(F )

∣∣]� C

(
|V − I | +

∑ ∥∥‖DFl‖2
H − qlEF 2

l

∥∥ 1
2
2

)
. (5.26)
1�l�d
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Combining it with (5.25) we obtain from (5.23) that

A4 � C

(
|V − I | +

∑
1�l�d

∥∥‖DFl‖2
H − qlEF 2

l

∥∥ 1
2
2

)
,

where the constant C depends on d,V,Q. This completes the estimation of the term A4. �
5.2. Sobolev norms of γ −1

F

In this subsection we estimate the Sobolev norms of γ −1
F , the inverse of the Malliavin matrix

γF for a random variable F of multiple stochastic integrals. We begin with the following esti-
mate on the variance and Sobolev norms of (γF )ij = 〈DFi,DFj 〉H, 1 � i, j � d , following the
approach of [13,16,19].

Lemma 5.5. Let F = Ip(f ) and G = Iq(g) with f ∈ H�p and g ∈ H�q for p,q � 1. Then for
all k � 0 there exists a constant Cp,q,k such that

∥∥Dk
(〈DF,DG〉H − √

pqE[FG])∥∥2

� Cp,q,k

(‖F‖2
2 + ‖G‖2

2

)(∥∥‖DF‖2
H − pE

[
F 2]∥∥ 1

2
2 + ∥∥‖DG‖2

H − pE
[
G2]∥∥ 1

2
2

)
. (5.27)

Proof. Without lost of generality, we assume p � q . Applying (2.4) with the fact that DIp(f ) =
pIp−1(f ) we have

〈DF,DG〉H = pq
〈
Ip−1(f ), Iq−1(g)

〉
H

(5.28)

= pq

p−1∑
r=0

r!
(

p − 1

r

)(
q − 1

r

)
Ip+q−2−2r (f ⊗̃r+1g)

= pq

p∑
r=1

(r − 1)!
(

p − 1

r − 1

)(
q − 1

r − 1

)
Ip+q−2r (f ⊗̃rg).

Note that E[FG] = 0 if p < q and E[FG] = 〈f,g〉H⊗p = f ⊗̃pg if p = q . Then

〈DF,DG〉H − √
pqE(FG) = pq

p∑
r=1

(1 − δqr )(r − 1)!
(

p − 1

r − 1

)(
q − 1

r − 1

)
Ip+q−2r (f ⊗̃rg),

where δqr is again the Kronecker symbol. It follows that

E
[〈DF,DG〉H − √

pqE[FG]]2 (5.29)

= p2q2
p∑

(1 − δqr )(r − 1)!2
(

p − 1

r − 1

)2(
q − 1

r − 1

)2

(p + q − 2r)!‖f ⊗̃rg‖2
H⊗(p+q−2r) .
r=1
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Note that if r < p � q , then (see also [16, (6.2.7)])

‖f ⊗̃rg‖2
H⊗(p+q−2r) � ‖f ⊗r g‖2

H⊗(p+q−2r) = 〈f ⊗p−r f, g ⊗q−r g〉H⊗2r

� 1

2

(‖f ⊗p−r f ‖2
H⊗2r + ‖g ⊗q−r g‖2

H⊗2r

)
, (5.30)

and if r = p < q ,

‖f ⊗̃pg‖2
H⊗(q−p) � ‖f ⊗p g‖2

H⊗(q−p) � ‖f ‖2
H⊗p‖g ⊗q−p g‖H⊗2p . (5.31)

From (4.5) and (4.6) it follows that

∥∥‖DF‖2
H − pE

[
F 2]∥∥2

2 = p4
p−1∑
r=1

(r − 1)!2
(

p − 1

r − 1

)2

(2p − 2r)!‖f ⊗r f ‖2
H⊗(2p−2r) . (5.32)

Combining (5.29)–(5.32) we obtain

E
[〈DF,DG〉H − √

pqE[FG]]2

� Cp,q

(∥∥‖DF‖2
H − pE

[
F 2]∥∥2

2 + ‖F‖2
2

∥∥‖DG‖2
H − pE

[
G2]∥∥

2

)
.

Then (5.27) with k = 0 follows from ‖‖DF‖2
H

− pE[F 2]‖2 � Cp‖F‖2
2, which is implied by

(2.12). From (5.28) we deduce

Dk〈DF,DG〉H

= pq

p∧[(p+q−k)/2]∑
r=1

(r − 1)!
(

p − 1

r − 1

)(
q − 1

r − 1

)
p + q − 2r

p + q − k − 2r
Ip+q−k−2r (f ⊗̃rg).

Then it follows from (5.30)–(5.32) that

E
∥∥Dk〈DF,DG〉H

∥∥2
H⊗k

= p2q2
p∧[(p+q−k)/2]∑

r=1

(r − 1)!2
(

p − 1

r − 1

)2(
q − 1

r − 1

)2
(p + q − 2r)!2

(p + q − k − 2r)! ‖f ⊗̃rg‖2
H⊗(p+q−2r)

� Cp,q

(∥∥‖DF‖2
H − pE

[
F 2]∥∥2

2 + ‖F‖2
2

∥∥‖DG‖2
H − pE

[
G2]∥∥

2

)
.

This completes the proof. �
The following lemma gives estimates on the Sobolev norms of the entries of γ −1

F .

Lemma 5.6. Let F = (F1, . . . ,Fd) = (Iq1(f1), . . . , Iqd
(fd)) be non-degenerate and let γF =

(〈DFi,DFj 〉H)1�i,j�d . Set V = (E[FiFj ])1�i,j�d . Then for any real number p > 1,∥∥γ −1∥∥ � C
∥∥(detγF )−1

∥∥ , (5.33)
F p 2p
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where the constant C depends on q1, . . . , qd, d,p and V . Moreover, for any integer k � 1 and
any real number p > 1

∥∥γ −1
F

∥∥
k,p

� C
∥∥(detγF )−1

∥∥k+1
(k+2)2p

d∑
i=1

∥∥‖DFi‖2
H − qiE

[
F 2

i

]∥∥
2, (5.34)

where the constant C depends on q1, . . . , qd, d,p, k and V .

Proof. Let γ ∗
F be the adjugate matrix of γF . Note that Hölder inequality and (2.12) imply

∥∥〈DFi,DFj 〉H
∥∥

p
� ‖DFi‖2p‖DFj‖2p � CV,p

for all 1 � i, j � d , p � 1. Applying Hölder’s inequality we obtain that the p norm of γ ∗
F is

also bounded by a constant. A further application of Hölder’s inequality to γ −1
F = (detγF )−1γ ∗

F

yields

∥∥γ −1
F

∥∥
p
�
∥∥(detγF )−1

∥∥
2p

∥∥ γ ∗
F

∥∥
2p

� CV,p

∥∥(detγF )−1
∥∥

2p
, (5.35)

which implies (5.33).
Since F is non-degenerate, then (see [22, Lemma 2.1.6]) (γ −1

F )ij belongs to D∞ for all i, j

and

D
(
γ −1
F

)
ij

= −
d∑

m,n=1

(
γ −1
F

)
im

(
γ −1
F

)
nj

D(γF )mn. (5.36)

Then, applying Hölder’s inequality we obtain

∥∥D(
γ −1
F

)∥∥
p
�
∥∥γ −1

F

∥∥2
3p

‖DγF ‖3p

� CV,p

∥∥(detγF )−1
∥∥2

6p

d∑
i=1

∥∥‖DFi‖2
H − qiE

[
F 2

i

]∥∥
2,

where in the second inequality we used (5.33) and

‖DγF ‖3p � CV,p‖DγF ‖2 � CV,p

d∑
i=1

∥∥‖DFi‖2
H − qiE

[
F 2

i

]∥∥
2

for all p � 1, which follows from (2.12) and (5.27). This implies (5.34) with k = 1. For higher
order derivatives, (5.34) follows from repeating the use of (5.36), (2.12) and (5.27). �

The following lemma estimates the difference γ −1 − V −1Q−1.
F
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Lemma 5.7. Let F = (F1, . . . ,Fd) = (Iq1(f1), . . . , Iqd
(fd)) be a non-degenerate random vector

with 1 � q1 � · · · � qd and fi ∈ H�qi . Let γF be the Malliavin matrix of F . Recall the notation
of V and Q in (5.4). Then, for every integer k � 1 and any real number p > 1 we have

∥∥γ −1
F − V −1Q−1

∥∥
k,p

� C
∥∥(detγF )−1

∥∥k+1
(k+2)2p

∑
1�l�d

∥∥‖DFl‖2
H − qlE

[
F 2

l

]∥∥ 1
2
2 , (5.37)

where the constant C depends on d,V,Q,p and k.

Proof. In view of Lemma 5.6, we only need to consider the case when k = 0 because V and Q

are deterministic matrices. Note that

γ −1
F − V −1Q−1 = γ −1

F (V Q − γF )V −1Q−1.

Then, applying Hölder’s inequality we have

∥∥γ −1
F − V −1Q−1

∥∥
p
� CV,Q

∥∥γ −1
F

∥∥
2p

‖V Q − γF ‖2p.

Note that (2.12) and (5.27) with k = 0 imply

‖V Q − γF ‖2p � CV,Q,p‖V Q − γF ‖2 � CV,Q,p

d∑
i=1

∥∥‖DFi‖2
H − qiE

[
F 2

i

]∥∥ 1
2
2 .

Then, applying (5.35) we obtain

∥∥γ −1
F − V −1Q−1

∥∥
p
� Cd,V,Q,p

d∑
i=1

∥∥‖DFi‖2
H − qiE

[
F 2

i

]∥∥ 1
2
2 (5.38)

as desired. �
5.3. Technical estimates

In this subsection, we study the terms A1 = |E[h(F )] − E[h(N)]| in Eq. (5.6) and A3 =
E[|Hβ(F) − Kβ(F)|] in (5.8). For A1, we shall use the multivariate Stein’s method to give an
estimate for a large class of non-smooth test functions h.

Lemma 5.8. Let h : Rd → R be an almost everywhere continuous function such that |h(x)| �
c(|x|m + 1) for some m,c > 0. Let F = (F1, . . . ,Fd) be non-degenerate with E[Fi] = 0,
1 � i � d and denote N ∼ N(0, I ). Then there exists a constant Cm,c depending on m and c

such that

∣∣E[
h(F )

]− E
[
h(N)

]∣∣� Cm,c

(‖F‖m
2m + 1

) d∑ ∥∥δ(Aij

(
γ −1
F

)
jk

DFk

)∥∥
2, (5.39)
i,j,k=1
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where γ −1
F is the inverse of the Malliavin matrix of F and

Aij = δij − 〈
DFj ,−DL−1Fi

〉
H

. (5.40)

Proof. For ε > 0, let

hε(x) = (1{|·|< 1
ε
}h) ∗ ρε(x) =

∫
Rd

1|y|< 1
ε
h(y)ρε(x − y)dy,

where ρε is the standard mollifier. That is, ρε(x) = 1
εd ρ( x

ε
), where ρ(x) = C1{|x|<1} exp( 1

|x|2−1
)

and the constant C is such that
∫
Rd ρ(x) dx = 1. Then hε is Lipschitz continuous. Hence, the

solution fε to the following Stein’s equation:

�fε(x) − 〈
x,∇fε(x)

〉
Rd = hε(x) − E

[
hε(N)

]
(5.41)

exists and its derivative has the following expression [16, page 82]

∂ifε(x) = ∂

∂xi

1∫
0

1

2t
E
[
hε(

√
tx + √

1 − tN)
]
dt

=
1∫

0

E
[
hε(

√
tx + √

1 − tN)Ni

] 1

2
√

t
√

1 − t
dt. (5.42)

It follows directly from the polynomial growth of h that∣∣hε(x)
∣∣� C1|x|m + C2 (5.43)

for all ε < 1, where C1,C2 > 0 are two constants depending on c and m. Then, from (5.41) we
can write ∣∣∂ifε(x)

∣∣� C1|x|m + C2,

with two possibly different constants C1, and C2. Hence,∥∥∂ifε(F )
∥∥

2 � C1‖F‖m
2m + C2. (5.44)

Meanwhile, note that for 1 � i � d ,

E
[
Fi∂ifε(F )

]= E
[
LL−1Fi∂ifε(F )

]
= E

[〈−DL−1Fi,D∂ifε(F )
〉]

=
d∑

E
[〈−DL−1Fi, ∂ij fε(F )DFj

〉]
.

j=1
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Then, replacing x by F and taking expectation in Eq. (5.41) yields

∣∣E[
hε(F )

]− E
[
hε(N)

]∣∣= ∣∣∣∣∣
d∑

i,j=1

E
[
∂2
ij fε(F )Aij

]∣∣∣∣∣. (5.45)

Notice that

〈
DFi,D∂ifε(F )

〉
H

=
〈
DFi,

d∑
j=1

∂2
ij fε(F )DFj

〉
H

=
d∑

j=1

∂2
ij fε(F )〈DFi,DFj 〉H

for all 1 � i, k � d , which implies

∂ij fε(F ) =
d∑

k=1

(
γ −1
F

)
jk

〈
DFk,D∂ifε(F )

〉
H

,

and hence

d∑
i,j=1

E
[
∂2
ij fε(F )Aij

]=
d∑

i,j=1

E

[
Aij

〈
d∑

k=1

(
γ −1
F

)
jk

DFk,D∂ifε(F )

〉
H

]

=
d∑

i,j=1

E

[
∂ifε(F )δ

(
Aij

d∑
k=1

(
γ −1
F

)
jk

DFk

)]
.

Substituting this expression in (5.45) and using (5.44) we obtain

∣∣E[
hε(F )

]− E
[
hε(N)

]∣∣= d∑
i,j,k=1

E
[
∂ifε(F )δ

(
Aij

(
γ −1
F

)
jk

DFk

)]

�
d∑

i,j,k=1

∥∥∂ifε(F )
∥∥

2

∥∥δ(Aij

(
γ −1
F

)
jk

DFk

)∥∥
2

�
(
C1‖F‖m

2m + C2
) d∑

i,j,k=1

∥∥δ(Aij

(
γ −1
F

)
jk

DFk

)∥∥
2.

Then, we can conclude the proof by observing that

lim
ε→0

∣∣E[
hε(F )

]− E
[
hε(N)

]∣∣= ∣∣E[
h(F )

]− E
[
h(N)

]∣∣,
which follows from (5.43) and the fact that hε → h almost everywhere. �

The next lemma gives an estimate for ‖δ(Aij (γ
−1
F )jkDFk)‖2 when F is a vector of multiple

stochastic integrals.
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Lemma 5.9. Let F = (F1, . . . ,Fd) = (Iq1(f1), . . . , Iqd
(fd)), where fi ∈H�qi , be non-degenerate

and denote N ∼ N(0, I ). Recall the notation of V and Q in (5.4) and Aij in (5.40). Then, for all
1 � i, j, k � d we have

∥∥δ(Aij

(
γ −1
F

)
jk

DFk

)∥∥
2

� C
∥∥(detγF )−1

∥∥3
12

(
|V − I | +

d∑
i=1

∥∥‖DFi‖2
H − qiE

[
F 2

i

]∥∥ 1
2
2

)
, (5.46)

where the constant C depends on d,V,Q.

Proof. Applying Meyer’s inequality (2.9) we have

∥∥δ(Aij

(
γ −1
F

)
jk

DFk

)∥∥
2 �

∥∥Aij

(
γ −1
F

)
jk

DFk

∥∥
2 + ∥∥D(

Aij

(
γ −1
F

)
jk

DFk

)∥∥
2.

Applying Hölder’s inequality and (2.12) we have

∥∥Aij

(
γ −1
F

)
jk

DFk

∥∥
2 � ‖Aij‖2

∥∥(γ −1
F

)
jk

∥∥
4‖DFk‖4 � Cd,V,Q‖Aij‖2

∥∥(γ −1
F

)
jk

∥∥
4.

Similarly, Hölder’s inequality and (2.12) imply

∥∥D(
Aij

(
γ −1
F

)
jk

DFk

)∥∥
2

� Cd,V,Q

[‖DAij‖2
∥∥(γ −1

F

)
jk

∥∥
4 + ‖Aij‖2

∥∥D(
γ −1
F

)
jk

∥∥
4 + ‖Aij‖2

∥∥(γ −1
F

)
jk

∥∥
4

]
.

Combining the above inequalities we obtain

∥∥δ(Aij

(
γ −1
F

)
jk

DFk

)∥∥
2 � Cd,V,Q‖Aij‖1,2

∥∥(γ −1
F

)
jk

∥∥
1,4.

Note that

Aij = δij − 〈
DFj ,−DL−1Fi

〉
H

= δij − Vij + Vij − 1

qi

〈DFj ,−DFi〉H.

Then, it follows from Lemma 5.5 that

‖Aij‖1,2 � Cd,V,Q

(
|V − I | +

d∑
i=1

∥∥‖DFi‖2
H − qiE

[
F 2

i

]∥∥ 1
2
2

)
.

Then, the lemma follows by taking into account of (5.34) with k = 1. �
As a consequence of the above two lemmas, we have the following result.



852 Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814–875
Proposition 5.10. Let h : Rd → R be an almost everywhere continuous function such that
|h(x)| � c(|x|m + 1) for some m,c > 0. Let F = (F1, . . . ,Fd) = (Iq1(f1), . . . , Iqd

(fd)), where
fi ∈H�qi , be non-degenerate and denote N ∼ N(0, I ). Recall the notation of V and Q in (5.4).
Then ∣∣E[

h(F )
]− E

[
h(N)

]∣∣
� C

∥∥(detγF )−1
∥∥3

12

(
|V − I | +

d∑
i=1

∥∥‖DFi‖2
H − qiE

[
F 2

i

]∥∥ 1
2
2

)
, (5.47)

where the constant C depends on d,V,Q,m,c.

In the following, we estimate the term A3 = E[|Hβ(F)−Kβ(F)|] in (5.8), where Hβ(F) and
Kβ(F) are defined in (5.3) and (5.7), respectively.

Lemma 5.11. Let F = (F1, . . . ,Fd) = (Iq1(f1), . . . , Iqd
(fd)) be non-degenerate. Let β =

(β1, . . . , βk) be a multi-index of length k � 1. Let Hβ(F) and Kβ(F) be defined by (5.3) and
(5.7), respectively. Then there exists a constant C depending on d,V,Q,k such that

E
[∣∣Hβ(F) − Kβ(F)

∣∣]
� C

∥∥(detγF )−1
∥∥k(k+2)

(k+4)2k+3

d∑
i=1

∥∥‖DFi‖2
H − qiE

[
F 2

i

]∥∥ 1
2
2 . (5.48)

Proof. To simplify notation, we write Hβ and Kβ for Hβ(F) and Kβ(F), respectively. From
(5.3) and (5.7) we see that

Hβ − Kβ = δ
(
Hβ̂k

(
γ −1
F DF

)
βk

− Kβ̂k

(
(V Q)−1DF

)
βk

)
,

where β̂k = (β1, . . . , βk−1). For any s � 0,p > 1, using Meyer’s inequality (2.9) we obtain

‖Hβ − Kβ‖s,p � Cs,p

∥∥Hβ̂k

(
γ −1
F DF

)
βk

− Kβ̂k

(
(V Q)−1DF

)
βk

∥∥
s+1,p

� Cs,p

∥∥(Hβ̂k
− Kβ̂k

)
(
(V Q)−1DF

)
βk

∥∥
s+1,p

+ Cs,p

∥∥Hβ̂k

((
γ −1
F − (V Q)−1)DF

)
βk

∥∥
s+1,p

.

Then, Hölder’s inequality yields

‖Hβ − Kβ‖s,p � ‖Hβ̂k
− Kβ̂k

‖s+1,2p

∥∥((V Q)−1DF
)
βk

∥∥
s+1,2p

+‖Hβ̂k
‖s+1,2p

∥∥((γ −1
F − (V Q)−1)DF

)
βk

∥∥
s+1,2p

.

Note that (2.12) implies ‖((V Q)−1DF)βk
‖s+1,2p � Cd,V,Q,s,p . Also note that (2.12), Hölder’s

inequality and (5.37) indicate∥∥((γ −1 − (V Q)−1)DF
) ∥∥ � Cd,V,Q,s,p�

∥∥(detγF )−1
∥∥s+2

,
F βk s+1,2p (s+3)8p
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where we denote

� :=
∑

1�l�d

∥∥‖DFl‖2
H − qlE

[
F 2

l

]∥∥ 1
2
2

to simplify notation. Thus we obtain

‖Hβ − Kβ‖s,p � Cd,V,Q,s,p‖Hβ̂k
− Kβ̂k

‖s+1,2p

+ Cd,V,Q,s,p�‖Hβ̂k
‖s+1,2p

∥∥(detγF )−1
∥∥s+2

(s+3)8p
. (5.49)

Similarly, from Meyer’s inequality (2.9), Hölder’s inequality and (2.12) we obtain by iteration

‖Hβ‖s,p � Cs,p

∥∥Hβ̂k

(
γ −1
F DF

)
βk

∥∥
s+1,p

� Cd,V,Q,s,p‖Hβ̂k
‖s+1,2p

∥∥(detγF )−1
∥∥s+2

(s+3)8p

· · ·
� Cd,V,Q,s,p,k

∥∥(detγF )−1
∥∥k(s+k)

(s+k+1)2k+2p
. (5.50)

Applying (5.50) into (5.49) and by iteration we can obtain

‖Hβ − Kβ‖s,p � Cd,V,Q,s,p,k

∥∥(detγF )−1
∥∥k(2s+k+2)

(2s+k+4)2k+2p
�.

Now (5.48) follows by taking s = 0, p = 2 in the above inequality. �
6. Uniform estimates for densities of general random variables

In this section, we study the uniform convergence of densities for general random variables.
We first characterize the convergence of densities with quantitative bounds for a sequence of
centered random variables, using the density formula (3.10). In the second part of this section, a
short proof of the uniform convergence of densities (without quantitative bounds) is given, using
a compactness argument based on the assumption that the sequence converges in law.

6.1. Convergence of densities with quantitative bounds

In this subsection, we estimate the rate of uniform convergence for densities of general random
variables. The idea is to use the density formula (3.10).

We use the following notations throughout this section:

w̄ = 〈
DF,−DL−1F

〉
H

, ū = −w̄−1DL−1F.

The following technical lemma is useful.
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Lemma 6.1. Let F ∈ D2,s with s � 4 such that E[F ] = 0 and E[F 2] = σ 2. Let m be the largest
even integer less than or equal to s

2 . Then there is a positive constant Cm such that for any t � m,∥∥w̄ − σ 2
∥∥

t
�
∥∥w̄ − σ 2

∥∥
m
� Cm‖Dw̄‖m � Cm‖Dw̄‖s/2. (6.1)

Proof. It suffices to show the above second inequality. From the integration by parts formula in
Malliavin calculus it follows

σ 2 = E
[
F 2]= E

[〈
DF,−DL−1F

〉
H

]= E[w̄].

Note that from (3.9) and (3.13) we have w̄ ∈ D1, s
2 . Then the lemma follows from the following

infinite-dimensional Poincaré inequality [16, Lemma 5.3.8]:

E
[(

G − E[G])m]� (m − 1)m/2E
[‖DG‖m

H

]
,

for any even integer m and G ∈D1,m. �
The next theorem gives a bound for the uniform distance between the density of a random

variable F and the normal density.

Theorem 6.2. Let F ∈ D2,s with s � 8 such that E[F ] = 0, E[F 2] = σ 2. Suppose Mr :=
E[|w̄|−r ] < ∞, where w̄ = 〈DF,−DL−1F 〉H and r > 2. Assume 2

r
+ 4

s
= 1. Then F admits

a density fF (x) and there is a constant Cr,s,σ,M depending on r, s, σ and M such that

sup
x∈R

∣∣fF (x) − φ(x)
∣∣� Cr,s,σ,M‖F‖2

1,s

∥∥∥∥D2F
∥∥

op

∥∥
0,s

, (6.2)

where φ(x) is the density of N ∼ N(0, σ 2) and ‖D2F‖op indicates the operator norm of D2F

introduced in (3.9).

Proof. It follows from Proposition 3.3 that F admits a density given by fF (x) = E[1{F>x}δ(ū)].
Then

sup
x∈R

∣∣fF (x) − φ(x)
∣∣= sup

x∈R

∣∣E[
1{F>x}δ(ū)

]− σ−2E[1{N>x}N ]∣∣. (6.3)

Note that, from (2.7)

δ(ū) = δ
(−DL−1Fw̄−1)= Fw̄−1 + 〈

Dw̄−1,DL−1F
〉
H

.

Then ∣∣E[
σ 21{F>x}δ(ū)

]− E[1{N>x}N ]∣∣
�E

[∣∣Fw̄−1(σ 2 − w̄
)∣∣]+ σ 2E

[∣∣〈Dw̄−1,DL−1F
〉
H

∣∣]
+ ∣∣E[F1{F>x} − N1{N>x}]

∣∣. (6.4)
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Note that for t = ( 1
r

+ 3
s
)−1, we have s

2 − t � 2, so there exists an even integer m ∈ [t, s
2 ]. Also,

we have 1
r

+ 1
s

+ 1
t
= 1. Then, we can apply Hölder’s inequality and (6.1) to obtain

E
[∣∣Fw̄−1(w̄ − σ 2)∣∣]� ‖F‖s

∥∥w̄−1
∥∥

r

∥∥w̄ − σ 2
∥∥

t

� Cr,s‖F‖s

∥∥w̄−1
∥∥

r
‖Dw̄‖s/2. (6.5)

Meanwhile, applying Hölder’s inequality and (3.7) we have

E
[∣∣w̄−2〈Dw̄,−DL−1F

〉
H

∣∣]� ∥∥w̄−1
∥∥2

r
‖Dw̄‖ s

2

∥∥DL−1F
∥∥

s
2

�
∥∥w̄−1

∥∥2
r
‖Dw̄‖ s

2
‖DF‖s . (6.6)

Also, applying Lemma 2.2 for h(y) = y1{y>x} and (6.1) we have∣∣E[F1F>x − N1N>x]
∣∣� Cσ

∥∥σ 2 − w̄
∥∥

2 � Cσ ‖Dw̄‖s/2. (6.7)

Applying the estimates (6.5)–(6.7) to (6.4) we have∣∣E[
σ 21F>xδ(ū)

]− E[1N>xN ]∣∣� Cr,s,σ,M‖F‖1,s‖Dw̄‖s/2. (6.8)

Combining (6.3), (6.8) and (3.13) one gets

sup
x∈R

∣∣fF (x) − φ(x)
∣∣� Cr,s,σ,M‖F‖2

1,s

∥∥∥∥D2F
∥∥

op

∥∥
s
.

This completes the proof. �
Corollary 6.3. Let {Fn}n∈N ⊂ D2,s with s � 8 such that E[Fn] = 0 and limn→∞ E[F 2

n ] = σ 2.
Assume E[F 2

n ]� δ > 0 for all n. For r > 2 such that 2
r

+ 4
s

= 1, assume

(i) M1 = supn ‖Fn‖1,s < ∞.

(ii) M2 = supn E|〈DFn,−DL−1Fn〉H|−r < ∞.

(iii) E‖D2Fn‖s
op → 0 as n → ∞.

Then each Fn admits a density fFn(x) and

sup
x∈R

∣∣fFn(x) − φ(x)
∣∣� C

(∥∥∥∥D2Fn

∥∥
op

∥∥
s
+ ∣∣E[

F 2
n

]− σ 2
∣∣), (6.9)

where the constant C depends on σ,M1,M2 and δ. Moreover, if M3 = supn ‖Fn‖2s < ∞, then
for any k � 1 and α ∈ ( 1

2 , k),

‖fFn − φ‖Lk(R) � C
(∥∥∥∥D2Fn

∥∥
op

∥∥
s
+ ∣∣E[

F 2
n

]− σ 2
∣∣) k−α

k ,

where the constant C depends on σ,M1,M2,M3, α and δ.
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Remark 6.4. By the “random contraction inequality” (3.9), a sufficient condition for (iii) is
E‖D2Fn ⊗1 D2Fn‖s/2

H⊗2 → 0 or E‖D2Fn‖s
H⊗2 → 0.

Proof of Corollary 6.3. It follows from Theorem 6.2 and Proposition 3.3 with an argument
similar to Corollary 4.3. �
6.2. Compactness argument

In general, convergence in law does not imply convergence of the corresponding densities
even if they exist. The following theorem specifies some additional conditions which ensure that
convergence in law will imply convergence of densities.

Theorem 6.5. Let {Fn}n∈N be a sequence of random variables in D2,s satisfying any one of the
following two conditions:

sup
n

‖Fn‖2,s + sup
n

‖Fn‖2p + sup
n

∥∥‖DFn‖−2
H

∥∥
r
< ∞ (6.10)

for some p, r, s > 1 satisfying 1
p

+ 1
r

+ 1
s

= 1, or

sup
n

‖Fn‖2,s + sup
n

∥∥∣∣〈DFn,−DL−1Fn

〉
H

∣∣−1∥∥
r
< ∞ (6.11)

for some r, s > 1 satisfying 2
r

+ 4
s

= 1.
Suppose in addition that Fn → N ∼ N(0, σ 2) in law. Then each Fn admits a density fFn ∈

C(R) given by either (3.1) or (3.10), and

sup
x∈R

∣∣fFn(x) − φ(x)
∣∣→ 0

as n → ∞, where φ is the density of N .

Proof. We assume (6.10). The other condition can be treated identically. From Theorem 3.1 it
follows that the density formula (3.1) holds for each n and for all x, y ∈ R,∣∣fFn(x)

∣∣� C
(
1 ∧ x−2),∣∣fFn(x) − fFn(y)
∣∣� C|x − y| 1

p .

Hence the sequence {fFn} ⊂ C(R) is uniformly bounded and equi-continuous. Then applying
Azelà–Ascoli theorem, we obtain a subsequence {fFnk

} which converges uniformly to a contin-

uous function f on R such that 0 � f (x) � C(1 ∧ x−2). Then fFnk
→ f in L1(R) as k → ∞

with ‖f ‖L1(R) = limk ‖fFnk
‖L1(R) = 1. This implies that f is a density function. Then f must

be φ because Fn converges to N in law. Since the limit is unique for any subsequence, we get
the uniform convergence of fFn to φ. �
Corollary 6.6. Let {Fn}n∈N be a sequence of centered random variables in D2,4 with the follow-
ing Wiener chaos expansions: Fn =∑∞

JqFn. Suppose that
q=1
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(i) limQ→∞ lim supn→∞
∑∞

q=Q+1 E[|JqFn|2] = 0.

(ii) for every q � 1, limn→∞ E[(JqFn)
2] = σ 2

q .

(iii)
∑∞

q=1 σ 2
q = σ 2.

(iv) for all q � 1, 〈D(JqFn),D(JqFn)〉H −→ qσ 2
q , in L2(Ω) as n → ∞.

(v) supn ‖Fn‖2,4 + supn E[‖DFn‖−8
H

] < ∞.

Then each Fn admits a density fFn(x) and

sup
x∈R

∣∣fFn(x) − φ(x)
∣∣→ 0

as n → ∞, where φ is the density of N(0, σ 2).

Proof. It has been proved by Nualart and Ortiz-Latorre in [23, Theorem 8] that under conditions
(i)–(iv), Fn converges to N ∼ N(0, σ 2) in law. The condition (v) implies (6.10) with s = 4,
p = 2, r = 4. Then we can conclude from Theorem 6.5. �
7. Applications

The main difficulty in applying Theorem 4.1 or Theorem 5.2 is the verification of the
non-degeneracy condition of the Malliavin matrix: supn E[‖DFn‖−p

H
] < ∞ or

supn E[|detγFn |−p] < ∞, respectively. In this section we consider the particular case of random
variables in the second Wiener chaos and we find sufficient conditions for
supn E[‖DFn‖−p

H
] < ∞. As an application we consider the problem of estimating the drift pa-

rameter in an Ornstein–Uhlenbeck process.
A general approach to verify E[G−p] < ∞ for some positive random variable and for some

p � 1 is to obtain a small ball probability estimate of the form

P(G � ε) � Cεα for some α > p and for all ε ∈ (0, ε0), (7.1)

where ε0 > 0 and C > 0 is a constant that may depend on ε0 and α. We refer to the paper by
Li and Shao [10] for a survey on this topic. However, finding upper bounds of this type is a
challenging topic, and the application of small ball probabilities to Malliavin calculus is still an
under-explored domain.

7.1. Random variables in the second Wiener chaos

A random variable F in the second Wiener chaos can always be written as F = I2(f ) where
f ∈ H�2. Without loss of generality we can assume that

f =
∞∑
i=1

λiei ⊗ ei, (7.2)

where {λi, i � 1} verifying |λ1| � |λ2| � · · · � |λn| � · · · are the eigenvalues of the Hilbert–
Schmidt operator corresponding to f and {ei, i � 1} are the corresponding eigenvectors forming
an orthonormal basis of H. Then, we have F = I2(f ) =∑∞

λi(I1(ei)
2 − 1),
i=1
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DF = 2
∞∑
i=1

λiI1(ei)ei (7.3)

and

‖DF‖2
H = 4

∞∑
i=1

λ2
i I1(ei)

2. (7.4)

For random variables of the form in (7.4), i.e., G = (
∑∞

i=1 λ2
i X

2
i )

1
2 , Hoffmann-Jørgensen,

Shepp and Dudley [6] used the volume of the small ball Bn(0, ε) (the Rn ball centered at 0 with
radius ε) to control P(G � ε) as

P(G � ε)� P

(
n∑

i=1

λ2
i X

2
i � ε2

)
� (2π)−

n
2 εn

∣∣Bn(0,1)
∣∣ n∏
i=1

λ−1
i . (7.5)

They proved that P(G � ε) converges to zero at the rate O(εn) for all n as ε → 0, under some
implicit conditions on {λi, i � 1}. This idea can be used here to prove inequality (7.6) in the
following lemma. However, our case is much simpler, and we shall use the Gamma function to
give an alternative proof which leads to a necessary and sufficient condition for E[G−p] < ∞.

Lemma 7.1. Let G = (
∑∞

i=1 λ2
i X

2
i )

1
2 , where {λi}i�1 satisfies |λi | � |λi+1| for all i � 1 and

{Xi}i�1 are i.i.d standard normal. Fix an α > 1. Then, E[G−2α] < ∞ if and only if there exists
an integer N > 2α such that |λN | > 0 and in this case there exists a constant Cα depending only
on α such that

E
[
G−2α

]
� CαN−α|λN |−2α. (7.6)

Proof. Notice λ−α = 1
Γ (α)

∫∞
0 e−λyyα−1 dy and E[e−tX2

i ] = 1√
1+2t

for all t > 0. If there exists
N > 2α such that |λN | > 0, then

E
[
G−2α

]
� E

[(
N∑

i=1

λ2
i X

2
i

)−α]
= 1

Γ (α)
E

[ ∞∫
0

e−y
∑N

i=1 λ2
i X

2
i yα−1 dy

]

= 1

Γ (α)

∞∫
0

yα−1
N∏

i=1

(
1 + 2λ2

i y
)− 1

2 dy. (7.7)

Since λ2
i is non-increasing in i and N > 2α, using the change of variables 1+2λ2

Ny = z we have

∞∫
0

yα−1
N∏

i=1

(
1 + 2λ2

i y
)− 1

2 dy �
∞∫

0

yα−1(1 + 2λ2
Ny

)− N
2 dy

= (
2λ2

N

)−α

∞∫
(z − 1)α−1z− N

2 dz
1
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= (
2λ2

N

)−α

∞∫
1

(
z − 1

z

)α−1

zα−1− N
2 dz

= (
2λ2

N

)−α

1∫
0

(1 − x)α−1x
N
2 −α−1 dx

= (
2λ2

N

)−α Γ (α)Γ (N
2 − α)

Γ (N/2)
,

which implies (7.6).
On the other hand, if |λi | = 0 for all i > 2α, let N � 2α be the largest nonnegative integer

such that |λN | > 0. Then, the inequality in (7.7) becomes an equality. Using again that {λ2
i }i�1

is a decreasing sequence we have

∞∫
0

yα−1
N∏

i=1

(
1 + 2λ2

i y
)− 1

2 dy �
(
1 + 2λ2

1

)− N
2

( 1∫
0

yα−1 dy +
∞∫

1

yα−1− N
2 dy

)
= ∞,

and we conclude that E[G−2α] = ∞. This completes the proof. �
The following theorem describes the distance between the densities of F = I2(f ) and

N(0,E[F 2]).

Theorem 7.2. Let F = I2(f ) with f ∈ H�2 given in (7.2). Assume that there exists N > 6m +
6(�m

2 � ∨ 1), for some integer m � 0, such that λN �= 0. Then F admits an m times continuously
differentiable density fF . Furthermore, if φ(x) denotes the density of N(0,E[F 2]), then for
k = 0,1, . . . ,m,

sup
x∈R

∣∣f (k)
F (x) − φ(k)(x)

∣∣� C

( ∞∑
i=1

λ4
i

) 1
2

� C
(
E
[
F 4]− 3

(
E
[
F 2])2) 1

2 ,

where the constant C depends on N and λN .

Proof. Taking into account of (7.4), we have

Var
(‖DF‖2

H

)= E

∣∣∣∣∣4
∞∑
i=1

λ2
i

(
I1(ei)

2 − 1
)∣∣∣∣∣

2

= 32
∞∑
i=1

λ4
i . (7.8)

From (7.4) and Lemma 7.1 it follows that

E
[‖DF‖−β

H

]
� Cβ/2N

−β/2|λN |−β, (7.9)

for all β < N . Then, the theorem follows from Theorem 4.4, taking into account (7.8). �
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Now we are ready to prove convergence of densities of random variables in the second Wiener
chaos. Consider a sequence Fn = I2(fn) with fn ∈H�2, which can be written as

fn =
∞∑
i=1

λn,ien,i ⊗ en,i , (7.10)

where {λn,i , i � 1} verifies |λn,i | � |λn,i+1| for all i � 1 and {en,i , i � 1} are the corresponding
eigenvectors.

Theorem 7.3. Let Fn = I2(fn) with fn ∈ H�2 given by (7.10). Assume that {λn,i}n,i∈N satisfies

(i) σ 2 := 2 limn→∞
∑∞

i=1 λ2
n,i > 0;

(ii) limn→∞
∑∞

i=1 λ4
n,i = 0;

(iii) infn(supi>6m+6(� m
2 �∨1) |λn,i |

√
i ) > 0 for some integer m� 0.

Then, each Fn admits a density function fFn ∈ Cm(R). Furthermore, for k = 0,1, . . . ,m and

if φ denotes the density of the law N(0, σ 2), the derivatives of f
(k)
Fn

converge uniformly to the
derivatives of φ with a rate given by

sup
x∈R

∣∣f (k)
Fn

(x) − φ(k)(x)
∣∣� C

[( ∞∑
i=1

λ4
n,i

) 1
2

+
∣∣∣∣∣2

∞∑
i=1

λ2
n,i − σ 2

∣∣∣∣∣
1
2
]
,

where C is a constant depending only on m and the infimum appearing in condition (iii).

Proof of Theorem 7.3. Note that E[(I1(en,i)
2 − 1)(I1(en,j )

2 − 1)] = 2δij . Thus,

∞∑
i=1

λ2
n,i = ‖fn‖2

H�2 = 1

2
E
[
F 2

n

]
.

Then, the result follows from (7.8), (7.9) and Corollary 4.6. �
Condition (iii) in Theorem 7.3 means that there exist a positive constant δ > 0 such that for

each n we can find an index i(n) > 6m + 6(�m
2 � ∨ 1) with |λn,i(n)|√i(n) � δ.

Remark 7.4. It is interesting to compare Theorem 7.3 with the case when

λn,i =
{

1√
n

if 1 � i � n;
0 if i � n + 1,

which corresponds to classical case of sum of independent and identically distributed random
variables. In this case all the conditions of Theorem 7.3 are satisfied with σ 2 = 2. Moreover
we have

∑∞
i=1 λ4

n,i = 1
n

and
∑∞

i=1 λ2
n,i = 1. Then we obtain a Berry–Essen type bound for the

derivatives of the density. Namely, we have supx∈R |f (k)
Fn

(x) − φ(k)(x)| � C√
n

for sufficiently
large n, which provides the right rate of convergence.
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7.2. Parameter estimation in Ornstein–Uhlenbeck processes

Consider the following Ornstein–Uhlenbeck process

Xt = −θ

t∫
0

Xs ds + γBt ,

where θ > 0 is an unknown parameter, γ > 0 is known and B = {Bt , 0 � t < ∞} is a standard
Brownian motion. Assume that the process X = {Xt, 0 � t � T } can be observed continuously in
the time interval [0, T ]. Then the least squares estimator (or the maximum likelihood estimator)

of θ is given by θ̂T =
∫ T

0 Xt dXt∫ T
0 X2

t dt
. It is known (see for example, [11,9]) that, as T tends to infinity,

θ̂T converges to θ almost surely and

√
T (θ̂T − θ) = − T FT∫ T

0 X2
t dt

L−→ N(0,2θ), (7.11)

where

FT = I2(fT ) =
T∫

0

T∫
0

fT (t, s) dBt dBs, (7.12)

with

fT (t, s) = γ 2

2
√

T
e−θ |t−s|. (7.13)

Recently, Hu and Nualart [7] extended this result to the case where B is a fractional Brownian
motion with Hurst parameter H ∈ [ 1

2 , 3
4 ), which includes the standard Brownian motion case.

Since 1
T

∫ T

0 X2
t dt → 1

2γ 2θ−1 almost surely as T tends to infinity, the main effort in proving

(7.11) is to show the convergence in law of FT to the normal law N(0,
γ 4

2θ
). We shall prove

that the density of FT converges as T tends to infinity to the density of the normal distribution

N(0,
γ 4

2θ
).

Theorem 7.5. Let FT be given by (7.13) and let φ be the density of the law N(0, σ 2), where

σ 2 = γ 4

2θ
. Then for each T > 0, FT has a smooth probability density fFT

and for any k � 0,

sup
x∈R

∣∣f (k)
FT

(x) − φ(k)(x)
∣∣� CT − 1

2 ,

where the constant C depends on k, γ and θ .



862 Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814–875
Before proving the theorem, let us first analyze the asymptotic behavior of the eigenvalues
of fT . The Hilbert space corresponding to Brownian motion B is H = L2([0, T ]). Let QT :
L2([0, T ]) → L2([0, T ]) be the Hilbert–Schmidt operator associated to fT , that is,

(QT ϕ)(t) =
T∫

0

fT (t, s)ϕ(s) ds (7.14)

for ϕ ∈ L2[0, T ]. The operator QT has eigenvalues λT,1 > λT,2 > · · · � 0 and
∑∞

i=1 λ2
T ,i < ∞.

The following lemma provides upper and lower bounds for these eigenvalues.

Lemma 7.6. Fix T > 0. Let fT be given by (7.13) and QT be given by (7.14). The eigenvalues
λT,i of QT (except maybe one) satisfy the following estimates

γ 2θ
√

T (θ2 + (
iπ+ π

2
T

)2)
< λT,i <

γ 2θ
√

T (θ2 + (
iπ− π

2
T

)2)
. (7.15)

Proof. Consider the eigenvalue problem QT ϕ = λϕ, that is,

T∫
0

fT (t, s)ϕ(s) ds = γ 2

2
√

T

( t∫
0

e−θ(t−s)ϕ(s) ds +
T∫

t

e−θ(s−t)ϕ(s) ds

)
= λϕ(t). (7.16)

Then, φ is differentiable and

γ 2θ

2
√

T

(
−

t∫
0

e−θ(t−s)ϕ(s) ds +
T∫

t

e−θ(s−t)ϕ(s) ds

)
= λϕ′(t). (7.17)

Differentiating again we have

γ 2θ

2
√

T

(
−2ϕ(t) + θ

t∫
0

e−θ(t−s)ϕ(s) ds + θ

T∫
t

e−θ(s−t)ϕ(s) ds

)
= λϕ′′(t).

Comparing this expression with (7.16), we obtain

(
θ2 − γ 2θ√

T λ

)
ϕ(t) = ϕ′′(t). (7.18)

Also, from (7.16) and (7.17) it follows that

ϕ(0) = θϕ′(0), ϕ(T ) = −θϕ′(T ). (7.19)
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Eqs. (7.18) and (7.19) form a Sturm–Liouville system. Its general solution is of the form

ϕ(t) = C1 sinμt + C2 cosμt,

where C1 and C2 are constants, and μ > 0 is an eigenvalue of the Sturm–Liouville system. By
eliminating the constants C1 and C2 from (7.18) and (7.19) we obtain

−μ2 = θ2 − γ 2θ√
T λ

. (7.20)

Then, the desired estimates on the eigenvalues of QT ϕ = λϕ will follow form estimates on μ.
Note that the Neumann condition (7.19) yields(

μ2θ2 − 1
)

sinμT = 2μθ cosμT .

If we write x = μθ > 0 (since μ,θ > 0), the above equation becomes

(
x2 − 1

)
sin

x

θ
T = 2x cos

x

θ
T .

The solution x = 1 corresponds to the eigenvalue μ = 1
θ

. If x �= 1, then cos x
θ
T �= 0 and

tan
x

θ
T = 2x

x2 − 1
. (7.21)

For any i ∈ Z+, there is exactly one solution xi to (7.21) such that xi

θ
T ∈ (iπ − π

2 , iπ + π
2 ).

Corresponding to each xi is an eigenvalue μi = xi

θ
of the Sturm–Liouville system, satisfying

iπ − π
2

T
< μi <

iπ + π
2

T
. The corresponding eigenvalue λi of QT obtained from Eq. (7.20)

satisfies the estimate (7.15). �
Proof of Theorem 7.5. For each T , let us compute the second moment of FT ,

E
[
F 2

T

]= ‖fT ‖2
H⊗2 =

T∫
0

T∫
0

fT (t, s)2 ds dt

= γ 4

4T

T∫
0

t∫
0

e−2θ(t−s) ds dt

= γ 4

2θ
− γ 4

8θT

(
1 − e−2θT

)
.

Also, noticing that FT = I2(fT ) = δ2(fT ) and

DsDtF
3 = 3F 2fT (t, s) + 6FT I1

(
f (·, t))⊗ I1

(
f (·, s)),
T T
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and using the duality between δ and D, we can write

E
[
F 4

T

]= E
[〈
fT ,D2F 3

T

〉
H⊗2

]
= 3E

[
F 2

T 〈fT ,fT 〉H⊗2

]+ 6E
[
FT

〈
fT (t, s), I1

(
fT (·, t))⊗ I1

(
fT (·, s))〉

H⊗2

]
= 3

(
E
[
F 2

T

])2 + 6A,

where

A = E
[
FT

〈
fT (t, s), I1

(
fT (·, t))⊗ I1

(
fT (·, s))〉

H⊗2

]
= 〈

fT (u, v),
〈
fT (t, s), fT (u, t) ⊗ fT (v, s)

〉
H⊗2

〉
H⊗2

= γ 8

16T 2

T∫
0

T∫
0

T∫
0

T∫
0

e−θ(|u−v|+|t−s|+|u−t |+|v−s|) dudv dt ds.

Because the integrand is symmetric, we have

A = γ 8

16T 2
4!

T∫
0

du

u∫
0

dv

v∫
0

ds

s∫
0

dt e−2θ(u−t) � CT −1.

Then, in order to complete the proof by applying Corollary 4.6, we only need to verify that con-
dition (iii) of Theorem 7.3 holds for any integer m � 1, which implies the uniform boundedness
of the negative moments

sup
T >0

E
[‖DFT ‖−β

H

]
< ∞

for any β > 0. Fix β > 0, and for each T , let i(T ) = �β + 1� + �T �. Then, the lower bound in
(7.15) yields

√
i(T )λT,i(T ) �

√
i(T )γ 2/θ√

T (1 + (
(i+1/2)π

T θ
)2)

�
√

i(T )γ 2/θ√
T (1 + (

i(T )
T

)24π2

θ2 )
� γ 2/θ

max(β+2)−1�r�1 g(r)
> 0,

where in the last inequality we made the substitution r−1 = i(T )
T

and set

g(r) := √
r

(
1 + r−24

π2

θ2

)
.

This implies condition (iii) and the proof of the theorem is complete. �
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7.3. Multidimensional case

Now we give an example for random vectors. Let X = {X(h),h ∈ H} be an isonormal Gaus-
sian process associated with the Hilbert space H. Suppose that {eij ,1 � i � d, j � 1} is a
sequence of orthonormal elements in H. Set ek = (e1k, . . . , edk) for any k � 1. Let An be a
sequence of d × d invertible matrices such that An → I as n → ∞. For any k � 1 define

ξnk =
⎛⎝ ξ1nk

...

ξdnk

⎞⎠= An

⎛⎝ e1k
...

edk

⎞⎠
and, for any j = 1, . . . , d set

Fjn =
∞∑

k=1

λjnkI2
(
ξ⊗2
jnk

)=
∞∑

k=1

λjnk

[
ξ̃2
jnk − ‖ξjnk‖2],

where ξ̃jnk = I1(ξjnk) = X(ξjnk) and λjnk are real numbers which will be specified later. We
plan to use Theorem 5.2 to study the convergence of the random vectors Fn = (F1n . . . Fdn). For
this we can follow the approach of Section 7.1, the main extra work being to prove the existence
of a uniform bound for the negative moments of the Malliavin covariance matrices. We have

DFjn = 2
∞∑

k=1

λjnkξ̃jnkξjnk.

Thus

〈DFin,DFjn〉H = 4
∞∑

k=1

λinkλjnkξ̃inkξ̃jnkαijn, (7.22)

where αijn is the (i, j)th entry of the matrix αn = AnA
T
n . Consider the matrix βn :=

(βijn)1�i,j�d given by

βijn := 4
∞∑

k=1

λinkλjnkξ̃inkξ̃jnk.

Then from (7.22), we see that 〈DFn,DFn〉 = (〈DFin,DFjn〉H)1�i,j�d is the Hadamard product
of the nonnegative definite matrices αn and βn. By the Oppenheim’s inequality for Hadamard
product, and taking into account that det(αn) converges to one, there exists a constant c > 0 such
that

det
(〈DFn,DFn〉

)
� det(αn)

d∏
j=1

βjjn � c

d∏
j=1

βjjn,

for all n. Note βjjn = 4
∑∞

k=1 λ2
jnk(ξ̃jnk)

2 and ξjnk → ejk . Thus we can follow Section 7.1 to
verify the conditions that allow us to apply Theorem 5.2. We will write down the theorem and
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omit the details. In the following we denote by φσ the density of the law N(0,diag(σ 2
1 , . . . , σ 2

d ))

and ∂α1 · · · ∂αd
f (x) = ∂ |α|

∂x
α1
1 ···∂x

αd
d

f (x) with |α| = α1 + · · · + αd .

Theorem 7.7. Let An be a sequence of d × d invertible matrices such that An → I and let
Fn = (F1n, . . . ,Fdn) be defined as above. We assume the λjnk satisfy the following conditions
for any 1 � j � d .

(i) σ 2
j := limn→∞

∑∞
k=1 λ2

jnk > 0;

(ii) limn→∞
∑∞

k=1 λ4
jnk = 0;

(iii) infj,n(supk>6m+6(� m
2 �∨1) |λjnk|

√
k) > 0 for some integer m� 0.

Then, each Fn admits a density function fFn ∈ Cm(Rd). Furthermore, for any α =
(α1, . . . , αd), with |α| �m, the derivatives of ∂α1 · · ·∂αd

fFn converge uniformly to the derivatives
of ∂α1 · · ·∂αd

φσ with a rate given by

sup
x∈R

∣∣∂α1 · · · ∂αd
fFn(x) − ∂α1 · · ·∂αd

φσ (x)
∣∣� C

d∑
j=1

[( ∞∑
k=1

λ4
jnk

) 1
2

+
∣∣∣∣∣

∞∑
i=1

λ2
jnk − σ 2

∣∣∣∣∣
1
2
]
,

where C is a constant depending only on m and the infimum appearing in condition (iii).
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Appendix A

In this section, we present the omitted proofs and some technical results.

Proof of Lemma 2.1. Since
∫∞
−∞{h(y) − E[h(N)]}e−y2/(2σ 2) dy = 0, we have

x∫
−∞

{
h(y) − E

[
h(N)

]}
e−y2/(2σ 2) dy = −

∞∫
x

{
h(y) − E

[
h(N)

]}
e−y2/(2σ 2) dy.

Hence ∣∣∣∣∣
x∫

−∞

{
h(y) − E

[
h(N)

]}
e−y2/(2σ 2) dy

∣∣∣∣∣�
∞∫

|x|

[
ayk + b + E

∣∣h(N)
∣∣]e−y2/(2σ 2) dy.

By using the representation (2.18) of fh and Stein’s equation (2.15) we have

∣∣f ′
h(x)

∣∣� ∣∣h(x) − E
[
h(N)

]∣∣+ |x|
σ 2

ex2/(2σ 2)

∣∣∣∣∣
x∫ {

h(y) − E
[
h(N)

]}
e−y2/(2σ 2) dy

∣∣∣∣∣

−∞



Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814–875 867
� a|x|k + b + E
∣∣h(N)

∣∣+ 1

σ 2
ex2/(2σ 2)

∞∫
|x|

y
[
ayk + b + E

∣∣h(N)
∣∣]e−y2/(2σ 2) dy

= a|x|k + (
b + E

∣∣h(N)
∣∣)(1 + 1

σ 2
s1(x)

)
+ a

σ 2
sk+1(x), (A.1)

where we let sk(x) = ex2/(2σ 2)
∫∞
|x| yke−y2/(2σ 2) dy for any integer k � 0.

Note that E|h(N)| � aE|N |k + b � Ckaσk + b and

s1(x) = ex2/(2σ 2)

∞∫
x

ye
− y2

2σ2 dy = σ 2

for all x ∈ R. Using integration by parts, we see by induction that for any integer k � 1,

sk+1(x) = ex2/(2σ 2)

∞∫
|x|

yk+1e−y2/(2σ 2) dy

= σ 2ex2/(2σ 2)

∞∫
|x|

yk d
(−e−y2/(2σ 2)

)
= σ 2[|x|k + k sk−1(x)

]
.

Then if k � 1 is even, we have

sk+1(x) � Ckσ
2[|x|k + σ 2|x|k−2 + · · · + σk−2s1(x)

]
� Ckσ

2
k∑

i=0

σk−i |x|i .

If k � 1 is odd, we have

sk+1(x) � Ckσ
2[|x|k + σ 2|x|k−2 + · · · + σk−1(|x| + s0(x)

)]
� Ckσ

2
k∑

i=0

σk−i |x|i ,

where we used the fact that s0(x) � s0(0) =
√

π
2 σ for all x ∈ R (indeed, when x � 0 we have

s′
0(x) = x

σ 2 ex2/(2σ 2)
∫∞
x

e−y2/(2σ 2) dy − 1 � ex2/(2σ 2)
∫∞
x

y

σ 2 e
− y2

2σ2 dy − 1 = 0; similarly when
x < 0, s′

0(x) � 0). Putting the above estimates into (A.1) we complete the proof. �
Proof of Lemma 3.5. We shall prove these properties by induction. From T1 = T2 = 0, (3.17)
and (3.19) we know that T3 = D2

uδu, with J3 = {(0,0,1)}; and T4 = δuD
2
uδu+ D3

uδu, with J4 =
{(1,0,1,0), (0,0,0,1)}. Now suppose the statement is true for all Tl with l � k − 1 for k � 5.
We want to prove the multi-indices of Tk satisfy (a)–(c). This will be done by studying the three
operations, δuTk−1, DuTk−1 and ∂λHk−1(Duδu, δu)D

2
uδu, in expression (3.19).
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For the term ∂λHk−1(Duδu, δu)D
2
uδu, we observe from (3.17) that

∂λHk−1(Duδu, δu)D
2
uδu = D2

uδu

∑
1�i��(k−1)/2�

ick−1,iδ
k−1−2i
u (Duδu)

i−1,

whose terms have multi-indices (k − 1 − 2i, i − 1,1,0, . . . ,0) ∈ Nk for 1 � i � � k−1
2 �. Then, it

is straightforward to check that these multi-indices satisfy (a), (b) and (c).
The term δuTk−1 shifts the multi-index (i0, i1, . . . , ik−2)∈Jk−1 to (i0 +1, i1, . . . , ik−2,0)∈Nk ,

which obviously satisfies (a), (b) and (c), due to the induction hypothesis.
The third term DuTk−1 shifts the multi-index (i0, i1, . . . , ik−2) ∈ Jk−1 to either α =

(i0 − 1, i1 + 1, . . . , ik−2,0) ∈Nk if i0 � 1, or to

β =
{

(i0, i1, . . . , ij0 − 1, ij0+1 + 1, . . . , ik−2,0), for 1 � j0 � k − 3;
(i0, i1, . . . , ij0 − 1,1), for j0 = k − 2,

if ij0 � 1. It is easy to check that β satisfies properties (a), (b) and (c) and α satisfies properties
(b) and (c). We are left to verify that α satisfies property (c). That is, we want to show that

1 +
k−2∑
j=1

ij �
⌊

k − 1

2

⌋
. (A.2)

If k is odd, say k = 2m+1 for some m � 2, (A.2) is true because (i0, i1, . . . , ik−2) ∈ Jk−1, which
implies by induction hypothesis that

∑k−2
j=1 ij � � k−2

2 � = m − 1. If k is even, say k = 2m + 2,

(A.2) is true because the following claim asserts that if i0 � 1, then
∑k−2

j=1 ij < � k−2
2 � = m.

Claim. For (i0, i1, . . . , i2m) ∈ J2m+1 with m � 1, if
∑2m

j=1 ij = m then i0 = 0.

Indeed, suppose (i0, i1, . . . , i2m) ∈ J2m+1,
∑2m

j=1 ij = m and i0 � 1. We are going to show

that leads to a contradiction. First notice that i1 � 1, otherwise i1 = 0 and
∑2m

j=2 ij = m, which
is not possible because

i0 + 2m� i0 +
2m∑
j=1

jij � 2m.

Also, we must have i2m = 0, because otherwise property (a) implies i2m = 1 and i0 = i1 =
· · · = i2m−1 = 0. Now we trace back to its parent multi-indices in J2m by reversing the three
operations. Of the three operations, we can exclude ∂λH2m(Duδu, δu)D

2
uδu and δuT2m, because

∂λH2m(Duδu, δu)D
2
uδu generates (2m − 2j, j − 1,1,0, . . . ,0) with 1 � j � m, where j must

be m; and δuT2m traces it back to (i0 − 1, i1, . . . , i2m−1) ∈ J2m, where i1 + · · · + i2m−1 = m >

� 2m−1
2 �. Therefore, its parent multi-index in J2m must come from the operation DuT2m and hence

must be (i0 + 1, i1 − 1, . . . , i2m−1) ∈ J2m. Note that for this multi-index, i1 − 1 + · · · + i2m−1 =
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m − 1. Repeating the above process we will end up at (i0 + i1,0, i2 . . . , i2m−i1) ∈ J2m+1−i1 with
i2 + · · · + i2m−i1 = m − i1, which contradicts the property (b) of J2m+1−i1 because

i0 + 2m − i1 � i0 + i1 +
2m−i1∑
j=2

jij � 2m − i1. �

Recall that we denote DDF w−1 = 〈Dw−1,DF 〉H and Dk
DF w−1 = 〈D(Dk−1

DF w−1),DF 〉H
for any k � 2. The following lemma estimates the Lp(Ω) norms of Dk

DF w−1.

Lemma A.1. Let F = Iq(f ) with q � 2 satisfying E[F 2] = σ 2. For any β � 1 we define and

Mβ = (E‖DF‖−β

H
)1/β . Set w = ‖DF‖2

H
.

(i) If Mβ < ∞ for some β � 6, then for any 1 � r � 2β
β+6∥∥DDF w−1

∥∥
r
� CM3

β

∥∥qσ 2 − w
∥∥

2. (A.3)

(ii) If k � 2 and Mβ < ∞ for some β � 2k + 4, then for any 1 < r <
2β

β+2k+4∥∥Dk
DF w−1

∥∥
r
� C

(
σ 2k−2 ∨ 1

)(
Mk+2

β ∨ 1
)∥∥qσ 2 − w

∥∥
2. (A.4)

(iii) If k � 1 and Mβ < ∞ for any β > k + 2, then for any 1 < r <
β

k+2∥∥Dk
DF w−1

∥∥
r
� C

(
σ 2k ∨ 1

)(
Mk+2

β ∨ 1
)
. (A.5)

Proof. Note that DDF w−1 = 〈Dw−1,DF 〉H = −2w−2〈D2F ⊗1 DF,DF 〉. Then

∣∣DDF w−1
∣∣� 2w− 3

2
∥∥D2F ⊗1 DF

∥∥
H

.

Applying Hölder’s inequality with 1
r

= 1
p

+ 1
2 , yields

∥∥DDF w−1
∥∥

r
� 2

(
E
(
w− 3p

2
)) 1

p
∥∥D2F ⊗1 DF

∥∥
2,

which implies (A.3) by choosing p � β/3 and taking into account (4.3). Notice that we need
1 � 1

r
� 3

β
+ 1

2 = β+6
2β

.
Consider now the case k � 2. From the pattern indicated by the first three terms,

DDF w−1 = 〈
Dw−1,DF

〉
H

,

D2
DF w−1 = 〈

D2w−1, (DF)⊗2〉
H⊗2 + 〈

Dw−1 ⊗ DF,D2F
〉
H⊗2,

D3
DF w−1 = 〈

D3w−1, (DF)⊗3〉
H⊗3 + 3

〈
D2w−1 ⊗ DF,D2F ⊗ DF

〉
H⊗3

+ 〈
Dw−1 ⊗ D2F,D2F ⊗ DF

〉
⊗3 + 〈

Dw−1 ⊗ (DF)⊗2,D3F
〉

⊗3 ,
H H
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we can prove by induction that

∣∣Dk
DF w−1

∣∣� C

k∑
i=1

∥∥Diw−1
∥∥
H⊗i ‖DF‖i

H

( ∑
∑k

j=1 ij =k−i

k∏
j=1

∥∥DjF
∥∥ij

H⊗j

)
.

By (2.12), for any p > 1, ‖DjF‖p � C‖F‖2 = Cσ . Applying Hölder’s inequality and assuming
that s > r , we have,

∥∥Dk
DF w−1

∥∥
r
� C

k∑
i=1

∥∥∥∥Diw−1
∥∥
H⊗i ‖DF‖i

H

∥∥
s
σ k−i . (A.6)

We are going to see that ‖DF‖i
H

will contribute to compensate the singularity of ‖Diw−1‖H⊗i .
First by induction one can prove that for 1 � i � m, Diw−1 has the following expression

Diw−1 =
i∑

l=1

(−1)l
∑

(α,β)∈Ii,l

w−(l+1)

l⊗
j=1

(
Dαj F ⊗1 Dβj F

)
, (A.7)

where Ii,l = {(α,β) ∈N2l : αj + βj � 3,
∑l

j=1(αj + βj ) = i + 2l}. In fact, for i = 1,

Dw−1 = −2w−2D2F ⊗1 DF,

which is of the above form because I1,1 = {(1,2), (2,1)}. Suppose that (A.7) holds for some
i � m − 1. Then,

Di+1w−1 =
i∑

l=1

(−1)l+12(l + 1)
∑

(α,β)∈Ii,l

w−(l+2)
(
D2F ⊗1 DF

) l⊗
j=1

(
Dαj F ⊗1 Dβj F

)

+
i∑

l=1

(−1)l
∑

(α,β)∈Ii,l

w−(l+1)
l∑

h=1

(
Dαj +1F ⊗1 Dβj F + Dαj F ⊗1 Dβj +1F

)

×
l⊗

j=1,j �=h

(
Dαj F ⊗1 Dβj F

)
,

which is equal to

i+1∑
l=1

(−1)l
∑

(α,β)∈Ii+1,l

w−(l+1)

l⊗
j=1

(
Dαj F ⊗1 Dβj F

)
.

From (A.7) for any i = 1, . . . , k we can write

∥∥Diw−1
∥∥
H⊗i ‖DF‖i

H �
i∑

w−(l+1)+ i
2

∑ l∏∥∥Dαj F ⊗1 Dβj F
∥∥
H

⊗αj +βj −2 , (A.8)

l=1 (α,β)∈Ii,l j=1
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where Ii,l = {(α,β) ∈Nl ×Nl : αj + βj � 3,
∑l

j=1(αj + βj ) = i + 2l}. Note that by (2.12),

∥∥Dαj F ⊗1 Dβj F
∥∥

p
� C‖F‖2

2 = Cσ 2

for all p � 1 and all αj ,βj . This inequality will be applied to all but one of the contraction terms
in the product

∏l
j=1 ‖Dαj F ⊗1 Dβj F‖

H
⊗αj +βj −2 . We decompose the sum in (A.8) into two parts.

If the index l satisfies l � i
2 − 1, then the exponent of w is nonnegative, and the p norm of w can

be estimated by a constant times σ 2, while for i
2 − 1 < l this exponent is negative. Then, using

Hölder’s inequality and assuming that 1
s

= 1
p

+ 1
2 , we obtain

∥∥∥∥Diw−1
∥∥
H⊗i ‖DF‖i

H

∥∥
s

� C

(
1{i�2}σ i−2 +

∑
i
2 −1<l�i

∥∥w−(l+1)+ i
2
∥∥

p
σ 2(l−1)

)∥∥Dα1F ⊗1 Dβ1F
∥∥

2. (A.9)

Note that for l � i � k, l + 1 − i
2 � k

2 + 1. Therefore, for i
2 − 1 < l � i,

∥∥w−(l+1)+ i
2
∥∥

p
= M2l+2−i

2(l+1− i
2 )p

� M2l+2−i
(k+2)p � Mk+2

(k+2)p ∨ 1.

Therefore, using (4.3) we obtain∥∥∥∥Diw−1
∥∥
H⊗i ‖DF‖i

H

∥∥
s
� C

((
σ 2i−2 ∨ 1

)(
Mk+2

(k+2)p ∨ 1
))∥∥qσ 2 − w

∥∥
2. (A.10)

Combining (A.10) and (A.6) and choosing p such that (k + 2)p � β we get (A.4). Note that we
need

1 >
1

r
>

k + 2

β
+ 1

2
= β + 2k + 4

2β
,

which holds if 1 < r <
2β

β+2k+4 . The proof of part (iii) is similar and omitted. �
The next lemma gives estimates on Dk

uδu for k � 0.

Lemma A.2. Let F = Iq(f ) with q � 2 satisfying E[F 2] = σ 2. For any β � 1 we define Mβ =
(E‖DF‖−β

H
)1/β and denote w = ‖DF‖2

H
.

(i) If Mβ < ∞ for some β > 3, then for any 1 < s <
β
3 ,

‖δu‖s � C
(
σ 2 ∨ 1

)(
M3

β ∨ 1
)
. (A.11)

(ii) If k � 1 and Mβ < ∞ for some β > 3k + 3, then for any 1 < s <
β

3k+3 ,

∥∥Dk
uδu

∥∥
s
� Cσ

(
M3k+3

β ∨ 1
)
. (A.12)
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(iii) If k � 2 and Mβ < ∞ for some β > 6k + 6, then for any 1 < s <
2β

β+6k+6 ,

∥∥Dk
uδu

∥∥
s
� Cσ

(
M3k+3

β ∨ 1
)∥∥qσ 2 − w

∥∥
2. (A.13)

Proof. Recall that δu = qFw−1 − DDF w−1. Then for any r > s,

‖δu‖s � C
(
σ
∥∥w−1

∥∥
r
+ ∥∥DDF w−1

∥∥
s

)
.

Then, ‖w−1‖r = M2
2r and the result follows by applying Lemma A.1(iii) with k = 1 and by

choosing r <
β
3 .

To show (ii) and (iii) we need to find a useful expression for Dk
uδu. Consider the operator

Du = w−1DDF . We claim that for any k � 1 the iterated operator Dk
u can be expressed as

Dk
u =

k∑
l=1

w−l
∑
i∈Il,k

bi

[
k−l∏
j=1

D
ij
DF w−1

]
D

i0
DF , (A.14)

where bi > 0 are real numbers and

Il,k =
{

i = (i0, i1, . . . , il): i0 � 1, ij � 0 ∀j = 1, . . . , l,

k−l∑
j=0

ij = k

}
.

In fact, this is clearly true for k = 1. Assume (A.14) holds for a given k. Then

Dk+1
u = w−1DDF Dku

=
k∑

l=1

lw−lDDF w−1
∑
i∈Il,k

bi

[
k−l∏
j=1

D
ij
DF w−1

]
D

i0
DF

+
k∑

l=1

w−l−1
∑
i∈Il,k

bi

[
k−l∑
h=1

D
ih+1
DF w−1

k−l∏
j=1,j �=h

D
ij
DF w−1

]
D

i0
DF

+
k∑

l=1

w−l−1
∑
i∈Il,k

bi

[
k−l∏
j=1

D
ij
DF w−1

]
D

i0+1
DF .

Shifting the indexes, this can be written as

Dk+1
u =

k∑
l=1

lw−lDDF w−1
∑
i∈Il,k

bi

[
k−l∏
j=1

D
ij
DF w−1

]
D

i0
DF

+
k+1∑
l=2

w−l
∑

bi

[
k+1−l∑
h=1

D
ih+1
DF w−1

k+1−l∏
j=1,j �=h

D
ij
DF w−1

]
D

i0
DF
i∈Il−1,k
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+
k+1∑
l=2

w−l
∑

i∈Il−1,k

bi

[
k+1−l∏
j=1

D
ij
DF w−1

]
D

i0+1
DF .

It easy to check that this coincides with

k+1∑
l=1

w−l
∑

i∈Il,k+1

bi

[
k+1−l∏
j=1

D
ij
DF w−1

]
D

i0
DF .

Also, note that δu = qFw−1 + DDF w−1 and

DDF δu = q + qFDDF w−1 + D2
DF w−1.

By induction we can show that for any i0 � 1

D
i0
DF δu = qδ1i0 + q

i0−1∑
j=1

ci,jD
i0−1−j
DF wD

j
DF w−1 + qFD

i0
DF w−1 + D

i0+1
DF w−1, (A.15)

where δ1i0 is the Kronecker symbol. Combining (A.14) and (A.15) we obtain

Dk
uδu =

k∑
l=1

w−l
∑
i∈Il,k

bi

[
k−l∏
j=1

D
ij
DF w−1

]

×
[
qδ1i0 + q

i0−1∑
j=1

ci,0jD
i0−1−j
DF wD

j
DF w−1 + qFD

i0
DF w−1 + D

i0+1
DF w−1

]
.

Next we shall apply Hölder’s inequality to estimate ‖Dk
uδu‖s . Notice that for l = k, i0 = k � 2.

Therefore,

∥∥Dk
uδu

∥∥
s
� Cσ

k−1∑
l=1

∑
i∈Il,k

∥∥w−l
∥∥

p

k−l∏
j=1

∥∥Dij
DF w−1

∥∥
rj

(
δ1i0 + max

1�h�i0+1

∥∥Dh
DF w−1

∥∥
r0

)
+ Cσ

∥∥w−k
∥∥

p
max

1�h�k+1

∥∥Dh
DF w−1

∥∥
ρ0

= B1 + B2,

assuming that for l = 1, . . . , k − 1, 1
s

> 1
p

+∑k−l
j=0

1
rj

and 1
s

> 1
p

+ 1
ρ0

, and where Cσ denotes a

function of σ of the form C(1 + σM).
Let us consider first the term B1. Note that if i0 = 1 there is at least one factor of the form

‖Drj
DF w−1‖rj in the above product, because

∑k−l
j=1 ij = k − 1 � 1. Then, we will apply the

inequality (A.4) to one of these factors and the inequality (A.5) to the remaining ones. The
estimate (A.5) requires 1 >

ij +2
for j = 1, . . . , k − l and 1 >

i0+3 . On the other hand, the

rj β r0 β
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estimate (A.4) requires 1
rj

>
ij +2

β
+ 1

2 for j = 1, . . . , k − l and 1
r0

>
i0+3

β
+ 1

2 . Then, choosing p

such that 2pl < β , and taking into account that
∑k−l

j=0 ij = k we obtain the inequalities

1

s
>

1

p
+

k−l∑
j=1

ij + 2

β
+ i0 + 3

β
+ 1

2
>

3k + 3

β
+ 1

2
.

Hence, if s <
2β

β+6k+6 we can write

B1 � Cσ

k−1∑
l=1

M2l
β

k−l∏
j=1

(
M

ij +2
β ∨ 1

)(
M

i0+3
β ∨ 1

)∥∥qσ 2 − w−1
∥∥

2

� Cσ

(
M3k+3

β ∨ 1
)∥∥qσ 2 − w−1

∥∥
2.

For the term B2 we use the estimate (A.4) assuming 2pk < β and

1

s
>

1

p
+ k + 3

β
+ 1

2
>

3k + 3

β
+ 1

2
.

This leads to the same estimate and the proof of (A.13) is complete. To show the estimate (A.12)
we proceed as before but using the inequality (A.5) for all the factors. In this case the summand
1
2 does not appear and we obtain (A.12). �
References

[1] A.D. Barbour, Asymptotic expansions based on smooth functions in the central limit theorem, Probab. Theory
Related Fields 72 (2) (1986) 289–303.

[2] A.R. Barron, O. Johnson, Fisher information inequalities and the central limit theorem, Probab. Theory Related
Fields 129 (3) (2004) 391–409.

[3] S.G. Bobkov, G.P. Chistyakov, F. Götze, Fisher information and the central limit theorem, preprint, arXiv:
1204.6650v1, 2012.

[4] S. Chatterjee, E. Meckes, Multivariate normal approximation using exchangeable pairs, ALEA Lat. Am. J. Probab.
Math. Stat. 4 (2008) 257–283.

[5] L.H.Y. Chen, L. Goldstein, Q.-M. Shao, Normal Approximation by Stein’s Method, Probab. Appl. (N. Y.), Springer-
Verlag, Heidelberg, 2011.

[6] J. Hoffmann-Jøgensen, L.A. Shepp, R.M. Dudley, On the lower tail of Gaussian seminorms, Ann. Probab. 7 (1979)
319–342, MR0525057.

[7] Y. Hu, D. Nualart, Parameter estimation for fractional Ornstein–Uhlenbeck processes, Statist. Probab. Lett.
80 (11–12) (2010) 1030–1038.

[8] O. Johnson, Information Theory and the Central Limit Theorem, Imperial College Press, London, 2004, xiv+209
pp.

[9] Yu.A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes, Springer Ser. Statist., Springer-Verlag, 2004.
[10] W.V. Li, Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, in: Stochastic

processes: theory and methods, in: Handbook of Statist., vol. 19, North-Holland, Amsterdam, 2001, pp. 533–597.
[11] R.S. Liptser, A.N. Shiryaev, Statistics of Random Processes. II. Applications, second edition, Appl. Math. (N. Y.),

vol. 6, Springer-Verlag, 2001.
[12] E. Meckes, An infinitesimal version of Stein’s method of exchangeable pairs, PhD thesis, Stanford University, 2006.
[13] S. Noreddine, I. Nourdin, On the Gaussian approximation of vector-valued multiple integrals, J. Multivariate Anal.

102 (6) (2011) 1008–1017.
[14] I. Nourdin, D. Nualart, G. Poly, Absolute continuity and convergence of densities for random vectors on Wiener

chaos, Electron. J. Probab. 18 (22) (2013) 1–19.

http://refhub.elsevier.com/S0022-1236(13)00386-8/bib626172626F7572s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib626172626F7572s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib424A3034s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib424A3034s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4243473132s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4243473132s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib434D3038s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib434D3038s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4347533131s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4347533131s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4853443739s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4853443739s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib484E313053504Cs1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib484E313053504Cs1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4A6F683034s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4A6F683034s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4B75743034s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4C533031s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4C533031s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4C6970533031s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4C6970533031s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4D65633036s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4E6F4E6F3131s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4E6F4E6F3131s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4E4E503132s1
http://refhub.elsevier.com/S0022-1236(13)00386-8/bib4E4E503132s1


Y. Hu et al. / Journal of Functional Analysis 266 (2014) 814–875 875
[15] I. Nourdin, G. Peccati, Stein’s method on Wiener chaos, Probab. Theory Related Fields 145 (1–2) (2009) 75–118.
[16] I. Nourdin, G. Peccati, Normal approximations with Malliavin calculus, in: From Stein’s method to universality, in:

Cambridge Tracts in Math., Cambridge University Press, 2012.
[17] I. Nourdin, G. Peccati, G. Reinert, Second order Poincaré inequalities and CLTs on Wiener space, J. Funct. Anal.

257 (2) (2009) 593–609.
[18] I. Nourdin, G. Peccati, G. Reinert, Invariance principles for homogeneous sums: universality of Gaussian Wiener

chaos, Ann. Probab. 38 (5) (2010) 1947–1985.
[19] I. Nourdin, G. Peccati, A. Réveillac, Multivariate normal approximation using Stein’s method and Malliavin calcu-

lus, Ann. Inst. Henri Poincaré Probab. Stat. 46 (1) (2010) 45–58.
[20] I. Nourdin, G. Peccati, Y. Swan, Entroy and the fourth moment phenomenon, Preprint, arXiv:1304.1255v1, 2013.
[21] I. Nourdin, G. Poly, Convergence in total variation on Wiener chaos, Stochastic Process. Appl. 123 (2) (2013)

651–674.
[22] D. Nualart, The Malliavin Calculus and Related Topics, 2nd edition, Springer-Verlag, 2006.
[23] D. Nualart, S. Ortiz-Latorre, Central limit theorems for multiple stochastic integrals and Malliavin calculus, Stochas-

tic Process. Appl. 118 (4) (2008) 614–628.
[24] D. Nualart, G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab. 33 (1)

(2005) 177–193.
[25] N. Privault, Cumulant operators and moments of the Itô and Skorohod integrals, preprint.
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