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Abstract

Kernels are efficient in representing nonlocal dependence and they are widely used to design
operators between function spaces. Thus, learning kernels in operators from data is an inverse
problem of general interest. Due to the nonlocal dependence, the inverse problem can be
severely ill-posed with a data-dependent singular inversion operator. The Bayesian approach
overcomes the ill-posedness through a non-degenerate prior. However, a fixed non-degenerate
prior leads to a divergent posterior mean when the observation noise becomes small, if the
data induces a perturbation in the eigenspace of zero eigenvalues of the inversion operator.
We introduce a data-adaptive prior to achieve a stable posterior whose mean always has
a small noise limit. The data-adaptive prior’s covariance is the inversion operator with a
hyper-parameter selected adaptive to data by the L-curve method. Furthermore, we provide a
detailed analysis on the computational practice of the data-adaptive prior, and demonstrate it
on Toeplitz matrices and integral operators. Numerical tests show that a fixed prior can lead
to a divergent posterior mean in the presence of any of the four types of errors: discretization
error, model error, partial observation and wrong noise assumption. In contrast, the data-
adaptive prior always attains posterior means with small noise limits.

Keywords: Data-adaptive prior, kernels in operators, linear Bayesian inverse problem,
RKHS, Tikhonov regularization
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1 Introduction

Kernels are efficient in representing nonlocal or long-range dependence and interaction between
high- or infinite-dimensional variables. They are widely used to design operators between function
spaces, with numerous applications in machine learning such as kernel methods (e.g., [5, 9, 13, 26,
50, 45]) and operator learning (e.g., [28, 41]), in partial differential equations (PDEs) and stochastic
processes such as nonlocal and fractional diffusions (e.g., [6, 17, 19, 55, 56]), and in multi-agent
systems (e.g., [7, 37, 39, 44]).

The inverse problem of learning kernels in operators from data is an integral part of these
applications. Most of the kernels are user-specified with a few hyper-parameters tuned to fit data.
But the increasing complexity of kernels in applications, particularly those in PDEs and multi-agent
systems, calls for general kernels to be learned from data.
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A starting point is to learn the kernel via regression when the operator depends linearly on
the kernel. However, due to the nonlocal dependence, the inverse problem is often severely ill-
posed with an inversion operator that is singular (or low-rank) and data-dependent ([29, 35]).
This inversion operator is the covariance matrix of the likelihood distribution when the kernel
is finite-dimensional, and it is the second order derivative of the loss functional in a variational
approach.

The Bayesian approach overcomes the ill-posedness by introducing a prior, so that the pos-
terior is stable under perturbations in the observation noise (e.g., [14, 27, 51]). Since little prior
information is available about the kernel, it is common to use a non-degenerate prior to ensure the
well-posedness of the posterior.

However, we show that a fixed non-degenerate prior has the risk of a catastrophic error: it
leads to a divergent posterior mean as the observation noise decreases to zero, if the data induces
a perturbation in the eigenspace of zero eigenvalues of the inversion operator (see Theorem 3.2).
Such a perturbation can be caused by any of the four types of errors in data or computation: (i)
discretization error, (ii) model error, (iii) partial observations, and (iv) wrong noise assumption.
In particular, both the inversion operator and the perturbation are data-dependent.

We solve the issue by a data-adaptive prior. The data-adaptive prior’s covariance is the inversion
operator with a hyper-parameter selected adaptive to data. We prove that it leads to a stable
posterior whose mean always has a small noise limit, and the small noise limit converges to the
identifiable parts of the true kernel (in Theorem 4.2). Additionally, the data-adaptive prior can
improve the quality of the posterior in two aspects: (i) reducing the expected mean square error
of the MAP estimator; and (ii) reducing the uncertainty in the posterior in terms of the trace of
the posterior covariance (see Section 4.2).

Furthermore, we provide a detailed analysis on the computational practice of the data-adaptive
prior. We select the hyper-parameter by the widely-used L-curve method by [24]. Numerical tests
on the Toeplitz matrices and integral operators show that while a fixed non-degenerate prior leads
to divergent posterior means, the data-adaptive prior always attains posterior means with small
noise limits (see Section 5).

The outline of this study is as follows. We review related work in Section 1.1. Section 2
introduces the inverse problem of learning kernels in operators, and it reviews the variational
approach and a closely related regularization method. In particular, it presents the mathematical
setup of this study, and shows the ill-posedness of the inverse problem. The ill-posedness leads
onto Section 3 where we introduce the Bayesian approach and show the issue of a fixed non-
degenerate prior. To solve the issue, we introduce a data-adaptive prior in Section 4, and analyze its
advantage. Section 5 discusses the data-adaptive prior in computational practice and demonstrates
the advantage of the data-adaptive prior in numerical tests on Toeplitz matrices and integral
operators. Finally, in Section 6 we conclude our findings and provide some future research directions
related to this work. The Appendix includes the proofs and some computational details.

1.1 Related work

Bayesian inverse problems. We study the selection of a prior for Bayesian linear inverse
problems when the likelihood has a deficient ranked covariance matrix. Thus, the focus is different
from the studies of Bayesian inverse problems that focus on efficient sampling of the posterior
[14, 27, 49, 51] when the prior is pre-specified, even though the low-rank property has been utilized
for fast approximation of the posterior mean in [10, 49]. Importantly, we re-discover the well-
known Zellner’s g-prior [1, 4, 58] when the kernel is finite-dimensional and the basis functions are
orthonormal in the function space of learning.

Variational approach and regularization. The Bayesian approach is closely related to the
variational approach and Tikhonov/ridge regularization methods. The likelihood function provides
a loss function in a variational approach, and the prior often provides a regularization norm (also
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called a penalty term). Various regularization terms have been studied, including the widely-used
Euclidean norm in the classical Tikhonov regularization (see e.g., [21, 23, 24, 53]), the RKHS
norm with an ad hoc reproducing kernel (see e.g., [9, 3]), the total variation norm in the Rudin-
Osher-Fatemi method in [47], the L1 norm in LASSO (see e.g., [52]), and the data-adaptive RKHS
norm in [35, 36]. In comparison, relatively few priors are studied in the Bayesian approach. The
prior is often assumed to be known, or assumed to be a non-degenerate measure when there is
little prior information. This study shows the advantage of a data-adaptive prior coming from the
regularization with the data-adaptive RKHS norm.

Kernel methods and operator learning. This study focuses on learning the kernels, not
the operators. Thus, our focus differs from the focus of the widely-used kernel methods (see
e.g.,[5, 9, 13, 26, 45, 50, 57]) and the operator learning (see e.g., [15, 16, 28, 34, 40, 41]). These
methods aim to approximate the operator matching the input and output, not to identify the
kernel in the operator.

Learning interacting kernels and nonlocal kernels. The learning of kernels in operators has
been studied in the context of identifying the interaction kernels in interacting particle systems
(e.g., [20, 25, 18, 30, 33, 37, 39, 38, 42, 43, 54]) and the nonlocal kernels in homogenization of
PDEs (e.g., [35, 55, 56]). This study is the first to analyze the selection of a prior in a Bayesian
approach.

2 The learning of kernels in operators

This section introduces the inverse problem of learning kernels in operators. It presents the mathe-
matical setup of this study: the function space of learning, the inversion operator, and the function
space of identifiability.

2.1 Learning kernels in operators

We consider the inverse problem of identifying kernels in operators from data. That is, given data

D = {(uk, fk)}Nk=1, (uk, fk) ∈ X× Y, (2.1)

where X is a Banach space and Y is a Hilbert space, our goal is to find a kernel function φ in an
operator Rφ : X→ Y so that Rφ best fits the data pairs {(uk, fk)}Nk=1 in the form

Rφ[u] + η + ξ = f, (2.2)

where the measurement noise η is a Y-valued white noise in the sense that E[〈η, f〉2Y] = σ2
η〈f, f〉Y

for any f ∈ Y. Here ξ, which we call model error, represents the unknown errors such as model
error or computational error due to incomplete data, and it may depend on the input data u.

The operator Rφ can be either linear or nonlinear in u, but it depends linearly on φ:

Rc1φ1+c2φ2
= c1Rφ1

+ c2Rφ2
, (2.3)

for any c1, c2 ∈ R and for φ1, φ2 such that the operators Rφ1
and Rφ2

are well-defined. We focus
on operators that depend non-locally on their kernels in the form

Rφ[u](y) =

∫
Ω

φ(y − x)g[u](x, y)µ(dx), ∀y ∈ Ω, (2.4)

where (Ω, µ) is a measure space that can be either a domain in the Euclidean space with the
Lebesgue measure or a discrete set with a counting measure. A generalization to bivariate kernels
φ(x, y) : Ωx × Ωy → R will be studied in a future work.

Such operators are widely seen in PDEs, matrix operators, and image processing. Examples
include the Toeplitz matrix, the integral operators, and nonlocal operators. In these examples, the
model error can come from homogenization or approximation of the integrals in the operators.
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Example 2.1 (Kernels in Toeplitz matrices). Consider the estimation of the kernel φ in the
Toeplitz matrix Rφ ∈ Rn×n, i.e., Rφ(i, j) = φ(i − j) for all 1 ≤ i, j ≤ n, from measurement data
{(uk, fk) ∈ Rn × Rn}Nk=1 by fitting the data to the model

Rφu+ η + ξ(u) = f, η ∼ N (0, σ2
ηIn), X = Y = Rn, (2.5)

where ξ(u) represents unknown model error. We can write the Toeplitz matrix as an integral
operator in the form of (2.4) with Ω = {1, 2, . . . , n}, g[u](x, y) = u(y), and µ being a uniform
discrete measure on Ω. The kernel is a vector φ : S → R2n−1 with S = {rl}2n−1

l=1 with rl = l − n.

Example 2.2 (Integral operator). Let X = Y = L2([0, 1]). We aim to find a function φ : [−1, 1]→
R fitting the dataset in (2.1) to the model (2.2) with an integral operator

Rφ[u](y) =

∫ 1

0

φ(y − x)u(x)dx, ∀y ∈ [0, 1]. (2.6)

We assume that η is a white noise, that is, E[η(y)η(y′)] = δ(y′ − y) for any y, y′ ∈ [0, 1]. In the
form of the operator in (2.4), we have Ω = [0, 1], g[u](x, y) = u(x), and µ being the Lebesgue
measure. This operator is an infinite-dimensional version of the Toeplitz matrix.

Example 2.3 (Nonlocal operator). Suppose that we want to estimate a kernel φ : Rd → R in a
model (2.2) with a nonlocal operator

Rφ[u](y) =

∫
Ω

φ(y − x)[u(y)− u(x)]dx, ∀y ∈ Rd,

from a given data set as in (2.1) with X = L2(Rd) and Y = L2(Rd). Such nonlocal operators arise
in [19, 56, 35]. Here η is a white noise that is, E[η(y)η(y′)] = δ(y − y′) for any y, y′ ∈ Rd. This
example corresponds to (2.4) with g[u](x, y) = u(y)−u(x). Note that even the support of the kernel
φ is unknown.

Example 2.4 (Interaction operator). Let X = C1
0 (R) and Y = L2(R) and consider the problem of

estimating the interaction kernel φ : R→ R in the nonlinear operator

Rφ[u](y) =

∫
R
φ(y − x)[u′(y)u(x) + u′(x)u(y)]dx, ∀y ∈ R,

by fitting the dataset in (2.1) to the model (2.2). This nonlinear operator corresponds to (2.4) with
g[u](x, y) = u′(y)u(x) + u′(x)u(y). It comes from the aggression operator Rφ[u] = ∇ · [u∇(Φ ∗ u)]
in the mean-field equation of interaction particles (see e.g., [7, 30]).

To identify the kernel, the variational approach finds a minimizer of the loss functional over a
hypothesis space H:

φ̂ = arg min
φ∈H

E(φ), where E(φ) =
1

Nσ2
η

∑
1≤k≤N

‖Rφ[uk]− fk‖2Y. (2.7)

Here the loss functional is the empirical mean square error under the assumption that the noise
η is white. Note that the loss functional is quadratic in φ since the operator Rφ depends linearly
on φ. Thus, we can find its minimizer via least squares regression when the hypothesis space is a
finite-dimensional linear space.

However, the loss functional often possesses multiple minima that are sensitive to data, i.e.,
this inverse problem is ill-posded. As we will show in the next section, such an ill-posedness is
due to that the derivative of the loss functional leads to an ill-conditioned or singular regression
matrix.
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Regularization and Bayesian inversion are used to ameliorate the ill-posedness. We review here
regularization methods, and investigate the Bayesian approach in Section 3.

Regularization methods aim to alleviate the ill-posedness by either constraining the hypothesis
space H or by adding a penalty term to the loss functional

Eλ(φ) = E(φ) + λR(φ), (2.8)

where R(φ) is a penalty term and λ is a hyper-parameter which controls the strength of regular-
ization. Given the importance of such inverse problem, it is no surprise that there are tremendous
amount of efforts addressing the ill-posedness (see the references in Section 1.1). Among these
methods, the Tikhonov regularization methods [53] are closely related to the Bayesian inversion.
It sets a penalty term to be an inner product norm and select an optimal hyper-parameter, for
example, by the L-curve method [24]. Clearly, the penalty term is crucial for the success of regu-
larization, because it defines the function space of search for a solution. This function space, and
hence the penalty term, is pre-specified in classical inverse problems, such as solving the first-kind
Fredholm integral equation or regression.

However, such a function space is yet to be defined for the learning of kernels in operators. In
fact, the function space in which we can identify the kernel is data-dependent ([35, 36]). Impor-
tantly, the penalty term must be chosen properly so that the search takes place inside this function
space. DARTR, a data-adaptive RKHS Tikhonov regularization method in [35, 36], tackles this
issue, and we review it in the next sections.

2.2 Function space of identifiability

Data-dependent function space of identifiability is a unique feature of learning kernels in operators.
Clearly, given a set of data, we can only hope to identify the kernel where the data provides
information. Thus, we must first specify this space in a data-dependent fashion, then develop a
regularization strategy.

We start from specifying a function space of learning. Examples 2.1– 2.4 show that the support
of the kernel φ is yet to be extracted from data. Thus, we introduce an empirical probability
measure quantifying the exploration of data to the kernel:

ρ(dr) =
1

ZN

∑
1≤k≤N

∫
Ω

∫
Ω

δ(y − x− r)
∣∣g[uk](x, y)

∣∣µ(dx)µ(dy), r ∈ S, (2.9)

where δ is the Kronecker delta function, S = {x−y : x, y ∈ Ω}, and Z is the normalizing constant.
We call ρ an exploration measure. It plays an important role in the learning of the function φ.
Its support is the region inside of which the learning process ought to work and outside of which
we have limited information from the data to learn the function φ. Thus, it defines an ambient
function space of learning: L2(S, ρ).

With the ambient function space, we define next the function space of identifiability (FSOI) by
the loss functional.

Definition 2.5. The function space of identifiability (FSOI) by the loss functional E in (2.7) is
the largest linear subspace of L2(S, ρ) in whic h E has a unique minimizer.

Since the loss functional is quadratic, the FSOI is the space in which its Fréchet derivative
has a unique zero. To compute its Fréchet derivative, we first introduce a bilinear form 〈〈·, ·〉〉:
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∀φ, ψ ∈ L2(S, ρ),

〈〈φ, ψ〉〉 =
1

N

∑
1≤k≤N

〈Rφ[uk], Rψ[uk]〉Y,

=
1

N

∑
1≤k≤N

∫ [∫ ∫
φ(y − x)ψ(y − z)g[uk](x, y)g[uk](z, y)µ(dx)µ(dz)

]
µ(dy)

=

∫
S

∫
S
φ(r)ψ(s)G(r, s)ρ(dr)ρ(ds),

(2.10)

where the integral kernel G given by, for r, s ∈ supp(ρ),

G(r, s) =
G(r, s)

ρ(r)ρ(s)
with G(r, s) =

1

N

∑
1≤k≤N

∫
g[uk](x, r + x)g[uk](x, s+ x)µ(dx), (2.11)

in which by an abuse of notation, we also use ρ(r) to denote either the probability of r when ρ
defined in (2.9) is discrete or the probability density of ρ when the density exists.

By definition, the bivariate function G is symmetric and positive semi-definite in the sense
that

∑n
i,j=1 cicjG(ri, rj) ≥ 0 for any {ci}ni=1 ⊂ R and {ri}ni=1 ⊂ S. In the following, we assume

that the data is continuous and bounded so that G defines a self-adjoint compact operator which
is fundamental for the study of identifiability. This assumption holds true under mild regularity
conditions on the data {uk} and the operator Rφ.

Assumption 2.6 (Integrability of G). Assume that Ω is bounded and {g[uk](x, y)} are continuous
satisfying max1≤k≤N supx,y∈Ω |g[uk](x, y)| <∞.

Under Assumption 2.6, the integral operator LG : L2(ρ)→ L2(ρ)

LGφ(r) =

∫
S
φ(s)G(r, s)ρ(s)ds, (2.12)

is a positive semi-definite trace-class operator (see Lemma A.1). Hereafter we denote {λi, ψi} the
eigen-pairs of LG with the eigenvalues in descending order, and assume that the eigenfunctions are
orthonormal, hence they provide an orthonormal basis of L2(ρ). Further more, for any φ, ψ ∈ L2(ρ),
the bilinear form in (2.10) can be written as

〈〈φ, ψ〉〉 = 〈LGφ, ψ〉L2(ρ), (2.13)

and we can write the loss functional in (2.7) as

E(φ) = 〈〈φ, φ〉〉 − 2
1

N

∑
1≤k≤N

〈Rφ[uk], fk〉Y +
1

N

∑
1≤k≤N

‖fk‖2Y

= 〈LGφ, φ〉L2(ρ) − 2〈φD, φ〉L2(ρ) + CfN ,

(2.14)

where φD ∈ L2(ρ) is the Riesz representation of the bounded linear functional:

〈φD, ψ〉L2(ρ) =
1

N

∑
1≤k≤N

〈Rψ[uk], fk〉Y, ∀ψ ∈ L2(ρ). (2.15)

The next theorem characterizes the FSOI. Its proof is deferred to Appendix A.1.

Theorem 2.7 (Function space of identifiability). Suppose the data in (2.1) is generated from the
system (2.2) with a true kernel φtrue, with η being a Y-valued white noise, and with ξ being a
model error. Suppose that Assumption 2.6 holds so that LG is defined in (2.12) is compact and
φD ∈ L2(ρ) be the Riesz representation in (2.15). Then, the following statements hold.
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(a) The data-dependent function φD ∈ L2(ρ) has the following decomposition:

φD = LGφtrue + εξ + εη, (2.16)

where εξ comes from the model error, the random εη comes from the observation noise and
it has a Gaussian distribution N (0, σ2

ηLG), and they satisfy

〈εξ, ψ〉L2(ρ) =
1

N

∑
1≤k≤N

〈Rψ[uk], ξk〉Y, 〈εη, ψ〉L2(ρ) =
1

N

∑
1≤k≤N

〈Rψ[uk], ηk]〉Y, ∀ψ ∈ L2(ρ).

(b) The Fréchet derivative of E(φ) in L2(ρ) is ∇E(φ) = 2(LGφ− φD).

(c) The function space of identifiability (FSOI) of E is H = span{ψi}i:λi>0 with closure in L2(ρ).

In particular, if φD ∈ LG(L2(ρ)), the unique minimizer of E(φ) in the FSOI is φ̂ = LG
−1φD.

Furthermore, if φtrue ∈ H and there is no observation noise and no model error, we have
φ̂ = LG

−1φD = φtrue.

Theorem 2.7 enables us to analyze the ill-posedness of the inverse problems through the operator
LG and φD. When φD ∈ LG(L2(ρ)), the inverse problem has a unique solution in the FSOI H, even
when it is underdetermined in L2(ρ) due to H being a proper subspace, which happens when the
compact operator LG has a zero eigenvalue. However, when φD /∈ LG(L2(ρ)), the inverse problem
∇E = 0 has no solution in L2(ρ) because LG

−1φD is undefined. According to (2.16), this happens
in one or more of the following scenarios:

• when the model error leads to εξ /∈ LG(L2(ρ)).

• when the observation noise leads to εη /∈ LG(L2(ρ)). In particular, since εη is Gaussian

N (0,LG), it has the Karhunen–Loève expansion εη =
∑
i λ

1/2
i εηi ψi with εηi being i.i.d.N (0, 1).

Then, LG
−1εη =

∑
i λ
−1/2
i εηi ψi, which diverges almost surely if

∑
i:λi>0 λ

−1
i diverges. Thus,

we have (almost surely) εη /∈ LG(L2(ρ)) when
∑
i:λi>0 λ

−1
i diverges.

Additionally, φD only encodes information of φHtrue, and it provides no information about φ⊥true,
where φHtrue and φ⊥true form an orthogonal decomposition φtrue = φHtrue+φ⊥true ∈ H⊕H⊥. In other
words, the data provides no information to recover φ⊥true.

As a result, it is important to avoid absorbing the errors outside of the FSOI when using a
regularization method or a Bayesian approach to mitigate the ill-posedness.

2.3 DARTR: data-adaptive RKHS Tikhonov regularization

The DARTR [35, 36] is a regularization method that filters out the error outside of the FSOI in
Theorem 2.7. It ensures that the learning takes place inside the FSOI, only in which the inverse
problem is well-defined, by using the norm of a data-adaptive RKHS.

The next lemma is a standard operator characterization of this RKHS (see e.g., [9, Section
4.4]). Its proof can be found in [36, Theorem 3.3].

Lemma 2.8 (The data-adaptive RKHS). Suppose that Assumption 2.6 holds so that LG in (2.12)
is compact and positive definite. Then, the following statements hold.

(a) The RKHS HG with G in (2.11) as the reproducing kernel satisfies HG = LG
1/2(L2(ρ)) and

its inner product satisfies

〈φ, ψ〉HG = 〈LG
−1/2φ,LG

−1/2ψ〉L2(ρ), ∀φ, ψ ∈ HG. (2.17)
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(b) Denote the eigen-pairs of LG by {λi, ψi}i with {ψi} being orthonormal. Then, for any φ =∑
i ciψi ∈ L2(ρ), we have

〈〈φ, φ〉〉 =
∑
i

λic
2
i , ‖φ‖2L2(ρ) =

∑
i

c2i , ‖φ‖2HG =
∑
i:λi>0

λ−1
i c2i , (2.18)

where the last equation is restricted to φ ∈ HG.

The DARTR regularizes the loss by the norm of this RKHS,

Eλ(φ) = E(φ) + λ‖φ‖2HG = 〈(LG + λLG
−1)φ, φ〉L2(ρ) − 2〈φD, φ〉L2(ρ) + CfN . (2.19)

With the optimal hyper-parameter selected by the L-curve method, it leads to the estimator

φ̂HG = (LG
2 + λ∗IH)−1LGφ

D, (2.20)

where IH is the identity operator on H. Note that this RKHS is dense in the FSOI, and its elements
are more regular than those in the FSOI. Thus, by using the norm of this RKHS, DARTR ensures
that the estimator is in the FSOI and is regularized.

In computational practice, we estimate the coefficients c of φ =
∑l
i=1 ciφi in a pre-scribed

hypothesis space H = span{φi}li=1. The inverse problem becomes a regression problem of solving
c in Ac = b, where the regression matrix A and vector b are defined in (5.3). DARTR uses the norm

of the RKHS, ‖φ‖2HG = c>Brkhsc, where the RKHS-basis matrix Brkhs = 〈φi, φj〉HG = BA
−1
B is

computed in Proposition 5.6. The above loss function with RKHS regularization becomes

Eλ(c) = E(c) + λ‖c‖2HG = c>Ac− 2c>b+ CfN + λc>BA
−1
Bc,

and the DARTR estimator is

φ̂ =
∑

1≤i≤l

ĉiφi, with ĉ = (A+ λBA
−1
B)−1b.

3 Bayesian inversion and the risk in a non-degenerate prior

The Bayesian approach overcomes the ill-posedness by introducing a prior, so that the posterior is
stable under perturbations in the observation noise. Since little prior information is available about
the kernel, it is common to use a non-degenerate prior to ensure the well-posedness of the posterior.
However, we will show that the commonly used non-degenerate prior can have a catastrophic error
in the sense that it may lead to a posterior with a divergent mean in the small noise limit. These
discussions promote the data-adaptive prior in the next section.

3.1 The Bayesian approach

In this study, we focus on Gaussian prior, so that in combination of a Gaussian likelihood, the
posterior is also a Gaussian measure. Also, with a shift by the mean, we can assume that the prior
is centered. Recall that the function space of learning is L2(S, ρ) defined in (2.9). For the purpose
of illustration, we first specify the prior and posterior when the space L2(S, ρ) is finite-dimensional,
then discuss them in the infinite-dimensional case.

Finite-dimensional case. Consider first that the space L2(S, ρ) is finite-dimensional, i.e., S =
{r1, . . . , rd}, as in Example 2.1. Then, the space L2(ρ) is equivalent to Rd with norm satisfying

‖φ‖2 =
∑d
i=1 φ(ri)

2ρ(ri). Also, assume that space Y is finite-dimensional, and the measurement
noise in (2.1) is Gaussian N (0, σ2

ηI). Since φ is finite-dimensional, we write the prior, the likelihood
and the posterior in terms of their probability densities with respect to the Lebesgue measure.
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• Prior distribution, denoted by N (0,Q0), with density

dπ0(φ)

dφ
∝ e−

1
2 〈φ,Q

−1
0 φ〉L2(ρ) ,

where Q0 is a strictly positive matrix, so that the prior is a non-degenerate measure.

• Likelihood distribution of the data with density

dπL(φ)

dφ
∝ exp(− 1

2σ2
η

E(φ)) = exp
(
− 1

2σ2
η

[〈LGφ, φ〉L2(ρ) − 2〈φD, φ〉L2(ρ) + CfN ]
)
, (3.1)

where E(φ) is the loss function defined in (2.7) and the equality follows from (2.14). Note that
this distribution is a non-degenerate Gaussian N (LG

−1φD, σ2
ηLG

−1) when LG
−1 exists, and it

can be ill-defined when LG has a zero eigenvalue.

• Posterior distribution with density combining the prior and the likelihood,

dπ1(φ)

dφ
∝ exp

(
−1

2
[σ−2
η E(φ) + 〈φ,Q−1

0 φ〉L2(ρ)]

)
. (3.2)

It is a Gaussian measure N (µ1,Q1) with

µ1 = (LG + σ2
ηQ−1

0 )−1φD, and Q1 = σ2
η(LG + σ2

ηQ−1
0 )−1. (3.3)

The Bayesian approach is closely related to the Tikhonov regularization approach [32]. Note
that a Gaussian prior corresponds to a regularization term R(φ) = 〈φ,Q−1

0 φ〉L2(ρ), the negative
log likelihood is the loss function, and the posterior corresponds to the penalized loss:

−2σ2
η log π1(φ) = E(φ) + λ〈φ,Q−1

0 φ〉L2(ρ) with λ = σ2
η.

In particular, the maximal a posteriori, MAP in short, which agrees with the posterior mean µ1 in
(3.3), is the minimizer of the penalized loss, i.e., the estimator in the regularization approach using
a fixed penalty term σ2

η〈φ,Q−1
0 φ〉L2(ρ). The difference is that a regularization approach selects the

hyper-parameter according to data.

Infinite-dimensional case. When space L2(S, ρ) is infinite-dimensional, i.e., the set S has
infinite elements, we use the generic notion of Gaussian measures on Hilbert spaces, see Appendix
A.2 for a brief review. Since there is no longer a Lebesgue measure on the infinite-dimensional
space, the prior and the posterior are characterized by their means and covariance operators. We
write the prior and the posterior as follows:

• Prior N (0,Q0), where Q0 is a strictly positive trace-class operator on L2(S, ρ);

• Posterior N (µ1,Q1), whose Radon–Nikodym derivative with respect to the prior is

dπ1

dπ0
∝ exp(−1

2
σ−2
η E(φ)) = exp

(
−1

2
σ−2
η [〈LGφ, φ〉L2(ρ) − 2〈φD, φ〉L2(ρ) + CfN ]

)
, (3.4)

which is the same as the likelihood in (3.1). Its mean and covariance are given as in (3.3).

Note that unlike the finite-dimensional case, it is problematic to write the likelihood distribution
as N (LG

−1φD, σ−2
η LG

−1), because the operator LG
−1 is unbounded and LG

−1φD may be ill-
defined.

9



3.2 The risk in a non-degenerate prior

The prior distribution plays a crucial role in Bayesian inverse problems. To make the ill-posed
inverse problem well-defined, it is often a non-degenerate measure (i.e., its covariance operator
Q0 has no zero eigenvalue). It is fixed and not adaptive to data. Such a non-degenerate prior
works well for an inverse problem whose function space of identifiability does not change with
data. However, in the learning of kernels in operators, a non-degenerate prior has a risk of leading
to a catastrophic error: the posterior may have a mean that diverges in the small observation noise
limit, as we show in the next theorem.

Assumption 3.1. Assume that the operator LG is finite rank and commutes with the prior co-
variance and assume the existence of error outside of the FSOI as follows.

(A1) The operator LG in (2.12) has zero eigenvalues. Let λK+1 = 0 be the first zero eigenvalue,
where K is less than the dimension of L2(ρ). As a result, the FSOI is H = span{ψi}Ki=1.

(A2) The covariance of the prior N (0,Q0) satisfies Q0ψi = riψi with ri > 0 for all i, where {ψi}i
are orthonormal eigenfunctions of LG.

(A3) The term εξ in (2.16), which represents the model error, is outside of the FSOI, i.e., εξ =∑
i ε
ξ
iψi has a component εξi0 6= 0 for some i0 > K.

Theorem 3.2 (Risk in a non-degenerate prior). A non-degenerate prior has the risk of leading
to a divergent posterior mean in the small noise limit. Specifically, under Assumption 3.1, the
posterior mean µ1 in (3.3) diverges as ση → 0.

Proof of Theorem 3.2. Recall that conditional on the data, the observation noise-induced term
εη in (2.16) has a distribution N (0, σ2

ηLG). Thus, in the orthonormal basis {ψi}, we can write

εη = ση
∑
i:λi>0 λ

1/2
i εηi ψi, where {εηi } are i.i.d. N (0, 1) random variables. Additionally, write the

true kernel as φtrue =
∑
i φtrue,iψi, where φtrue,i = 〈φtrue, ψi〉L2(ρ) for all i. Note that φtrue does

not have to be in the FSOI. Combining these facts, we have

φD =
∑
i

φDi ψi, with φDi = λiφtrue,i + σηλ
1/2
i εηi + εξi . (3.5)

There, the posterior mean µ1 = (LG + σ2
ηQ−1

0 )−1φD in (3.3) becomes

µ1 =
∑
i

(
λi + σ2

ηr
−1
i

)−1
φDi ψi =

K∑
i=1

(
λi + σ2

ηr
−1
i

)−1
φDi ψi +

∑
i>K

σ−2
η riε

ξ
iψi. (3.6)

Thus, the model error outside of the FSOI, i.e., the part with components εξi with i > K, contam-
inates the posterior mean. When ση → 0, it leads to a divergent µ1, because

lim
ση→0

(
µ1 −

∑
i>K

σ−2
η riε

ξ
iψi

)
=

∑
1≤i≤K

(
φtrue,i + λ−1

i εξi

)
ψi,

and
∑
i>K σ

−2
η riε

ξ
iψi diverges.

We remark that Assumptions (A1-A2) in Theorem 3.2 hold often in practice. Assumption (A1)
holds because the operator LG is finite rank when the data is discrete, and it is not full rank for
under-dertermined problems. It is natural to assume the prior has a full rank covariance Q0 as
in (A2). We assume that Q0 commutes with LG for the sake of simplicity and one can extend
it to the general case as in the proof of [12, Theorem 2.5]. The assumption (A3), which requires
φD to be outside the range of LG, holds when the regression vector b is outside the range of the
regression matrix A in (5.3), see Section 5.2–5.3 for more discussions.

Theorem 3.2 highlights that the risk of a non-degenerate prior comes from the error outside
of the data-adaptive FSOI. Thus, it is important to design a data-adaptive prior according to the
FSOI.
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4 Data-adaptive prior

We propose a data-adaptive prior to filter out the error outside of the FSOI, so that its posterior
mean always has a small noise limit. In particular, the small noise limit converges to the identifiable
part of the true kernel when the model error vanishes. Additionally, we show that this prior, even
with a sub-optimal λ∗, outperforms a large class of fixed non-degenerate priors in the quality of
the posterior.

4.1 Data-adaptive prior and its posterior

We first introduce the data-adaptive prior and specify its posterior. This prior is a Gaussian
measure with a covariance from the likelihood. It is the counterpart of the DARTR in Section 2.3.

Following the notations in Section 2.1, the operator LG is a data-dependent positive definite
trace-class operator on L2(ρ), and we denote its eigen-pairs by {λi, ψi}i≥1 with the eigenfunction
forming an orthonormal basis of L2(ρ). Then, as characterized in Theorem 2.7 and Lemma 2.8,
the data-dependent FSOI and RKHS are

H = span{ψi}λi>0
L2(ρ)

, HG = span{ψi}λi>0, (4.1)

where the closure of HG is with respect to the norm ‖φ‖2HG =
∑
i:λi>0 λ

−1
i 〈φ, ψi〉2L2(ρ). Note that

HG is the Cameron-Martin space of the operator LG (see e.g., [11, Section 1.7] and a brief review
of the Gaussian measures in Section A.2). Also, note that those two spaces are the same vector
space but with different norms. They are a proper subspace of L2(ρ) when the operator LG has a
zero eigenvalue.

Recall from Section 3.1 that the prior N (0,Q0) has Q0 being strictly positive definite, and the
posterior N (µ1,Q1) has its mean and covariance defined in (3.3). To remove the risk in this prior
(see Theorem 3.2), we introduce the following data-adaptive prior.

Definition 4.1 (Data-adaptive prior). Let LG be the operator defined in (2.12). The data-adaptive
prior is a Gaussian measure on L2(ρ) with mean and covariance defined by

πD0 = N (µD0 ,QD0 ) : µD0 = 0; QD0 = λ−1
∗ LG, (4.2)

where the hyper-parameter λ∗ ≥ 0 is determined adaptive to data.

In practice, we select the hyper-parameter λ∗ ≥ 0 adaptive to data by the L-curve method in
[24], which is effective in reaching an optimal trade-off between the likelihood and the prior (see
Section 5.1 for more details).

This data-adaptive prior is a Gaussian distribution with support in the FSOI H in (4.1). When
H is finite-dimensional, its probability density in H is

dπD0 (φ)

dφ
∝ e−

1
2 〈φ,λ∗LG

−1φ〉L2(ρ) , ∀φ ∈ H.

Combining with the likelihood (3.1), the posterior becomes

µD1 = (LG + σ2
ηλ∗LG

−1)−1φD, QD1 = σ2
η(LG + σ2

ηλ∗LG
−1)−1. (4.3)

When L2(ρ) is infinite-dimensional, the above mean and covariance remain valid, following similar
arguments based on the likelihood ratio in (3.4). In either case, the posterior is a Gaussian
distribution whose support is H, and it is degenerate in L2(ρ) if H is a proper subspace of L2(ρ).
In other words, the data-adaptive prior is a Gaussian distribution on the FSOI with a hyper-
parameter adaptive to data. The resulting posterior is a Gaussian distribution with a support
being the FSOI. Both of them are degenerate when the FSOI is a proper subspace of L2(ρ).

We compare the priors and posteriors side by side-by-side in Table 1.
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Table 1: Priors and posteriors on L2(ρ).

Gaussian measure Mean Covariance
π0 = N (µ0,Q0), µ0 = 0 Q0

π1 = N (µ1,Q1) µ1 = σ−2
η Q1φ

D Q1 = σ2
η(LG + σ2

ηQ−1
0 )−1

πD0 = N (µD0 ,QD0 ), µD0 = 0 QD0 = λ−1
∗ LG

πD1 = N (µD1 ,QD1 ) µD1 = σ−2
η QD1 φD QD1 = σ2

η(LG + σ2
ηλ∗LG

−1)−1

4.2 Quality of the posterior and its MAP estimator

The data-adaptive prior aims to improve the quality of the posterior. Comparing with a fixed non-
degenerate prior, we show that the data-adaptive prior improves the quality of the posterior in
three aspects: (1) it leads to an MAP estimator that always has a small-noise limit, thus improving
the stability of the MAP estimator; (2) it improves the accuracy of the MAP estimator by reducing
the expected mean square error; and (3) it reduces the uncertainty in the posterior in terms of the
trace of the posterior covariance.

We show first that the posterior mean has always a small noise limit, and the limit converges
to the projection of the true function in the FSOI when the model error vanishes.

Theorem 4.2 (Small noise limit of the MAP estimator). Suppose that Assumption 3.1 (A1-A2)
holds. Then, the posterior mean in (4.3) with the data-adaptive prior (4.2) always has a small
noise limit. In particular, its small noise limit converges to the projection of true kernel in the
FSOI H in (4.1) when the model error in (2.16) vanishes.

Proof. The claims follow directly from the definition of the new posterior mean in (4.3) and the

decomposition in Eq. (3.5), which says that φD =
∑
i φ
D
i ψi with φDi = λiφtrue,i + σηλ

1/2
i εηi + εξi .

Namely, we can write µD1 = (LG
2 + σ2

ηλ∗LG
−1)−1φD as

µD1 =
∑

1≤i≤K

(
λi + σ2

ηλ∗λ
−1
i

)−1
φDi ψi. (4.4)

Thus, the small noise limit is limσ2
η→0 µ

D
1 =

∑K
i=1

(
φtrue,i + λ−1

i εξi

)
ψi. Furthermore, as the model

error ‖εξi ‖L2(ρ) → 0, this small noise limit converges to
∑K
i=1 φtrue,iψi, the projection of φtrue in

the FSOI.

We show next that the data-adaptive prior leads to a more accurate MAP estimator than the
non-degenerate prior’s.

Theorem 4.3 (Expected MSE of the MAP estimator). Suppose that Assumption 3.1 (A1-A2)
holds. Assume in addition that maxi≤K{λir−1

i } ≤ λ∗ ≤ 1. Then, the expected mean square error
of the MAP estimator of the data-adaptive prior is smaller than the non-degenerate prior’s, i.e.,

EπD0 Eη
[
‖µD1 − φtrue‖2L2(ρ)

]
≤ Eπ0

Eη
[
‖µ1 − φtrue‖2L2(ρ)

]
, (4.5)

where the equality holds only when the two priors are the same.

Proof. Note that from (3.6) and (4.4), we have

µD1 − φtrue =
∑

1≤i≤K

ψi
(
λi + σ2

ηλ∗λ
−1
i

)−1
[σηλ

1/2
i εηi − (σ2

ηλ∗λ
−1
i )φtrue,i + εξi ] +

∑
i>K

φtrue,i,

µ1 − φtrue =
∑
i≥1

ψi
(
λi + σ2

ηr
−1
i

)−1
[σηλ

1/2
i εηi − (σ2

ηr
−1
i )φtrue,i + εξi ].
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Recall that {εηi } and {φtrue,i} are independent centered Gaussian with εηi ∼ N (0, 1), φtrue,i ∼
N (0, λi) when φtrue ∼ πD0 , and φtrue,i ∼ N (0, ri) when φtrue ∼ π0. Then, the expectations of the

MSEs Eη
[
‖µD1 − φtrue‖2L2(ρ)

]
and Eη

[
‖µ1 − φtrue‖2L2(ρ)

]
are

EπD0 Eη[‖µD1 − φtrue‖2L2(ρ)] =
∑

1≤i≤K

(
λi + σ2

ηλ∗λ
−1
i

)−2
[σ2
ηλi + σ4

ηλ
2
∗λ
−1
i + |εξi |

2] +
∑
i>K

ri, (4.6)

Eπ0
Eη[‖µ1 − φtrue‖2L2(ρ)] =

∑
1≤i≤K

(
λi + σ2

ηr
−1
i

)−2
[σ2
ηλi + σ4

ηr
−1
i + |εξi |

2]

+
∑
i>K

[ri + σ−4
η r2

i |ε
ξ
i |

2] .

Clearly, when ri = 0 for all i > K and λi = ri for all i ≤ K, i.e., when the two priors are the same,
the two expectations are equal.

To prove (4.5), note that

λ∗ ≤ 1 =⇒ λi + σ2
ηλ

2
∗λ
−1
i ≤ λi + σ2

ηλ∗λ
−1
i ,

max
i≤K
{λir−1

i } ≤ λ∗ =⇒ λi + σ2
ηλ∗λ

−1
i ≥ λi + σ2

ηr
−1
i .

Then,

EπD0 Eη[‖µD1 − φtrue‖2L2(ρ)] ≤
∑

1≤i≤K

(
λi + σ2

ηλ∗λ
−1
i

)−1
σ2
η +

(
λi + σ2

ηλ∗λ
−1
i

)−2 |εξi |
2]

≤
∑

1≤i≤K

(
λi + σ2

ηr
−1
i

)−2
[σ2
ηλi + σ4

ηr
−1
i + |εξi |

2]

≤ Eπ0Eη[‖µ1 − φtrue‖2L2(ρ)].

In particular, the first inequality is strict if λ∗ < 1, the second inequality is strict if λi < ri for
some 1 ≤ i ≤ K, and the third inequality is strict if ri > 0 for some i > K. Thus, the inequality
in (4.5) is strict if the two priors are different.

Additionally, the next theorem shows that under the condition λ∗ > maxi≤K{λir−1
i }, the data-

adaptive prior outperforms the non-degenerate prior in producing a posterior with a smaller trace
of covariance. We note that this condition is sufficient but not necessary, since the proof is based
on component-wise comparison and does not take into account the part

∑
i>K ri (see Remark 4.7

for more discussions).

Theorem 4.4 (Trace of the posterior covariance). Suppose that Assumption 3.1 (A1-A2) holds.
Recall that QD1 and Q1 are the posterior covariance operators of the data-adaptive prior and the non-
degenerate prior in (4.3) and (3.3), respectively. Then, Tr(QD1 ) < Tr(Q1) if λ∗ > maxi≤K{λir−1

i }.
Additionally, when ri = 0 for all i > K, we have Tr(QD1 ) > Tr(Q1) if λ∗ < mini≤K{λir−1

i }.

Proof. By definition, the trace of the two operators are

Tr(QD1 ) =
∑

1≤i≤K

σ2
η(λi + σ2

ηλ∗λ
−1
i )−1,

T r(Q1) =
∑

1≤i≤K

σ2
η(λi + σ2

ηr
−1
i )−1 +

∑
i>K

ri.
(4.7)

Thus, when λ∗ > maxi{λir−1
i }, we have (λi + σ2

ηλ∗λ
−1
i )−1 < (λi + σ2

ηr
−1
i )−1 for each i ≥ K, and

hence Tr(QD1 ) < Tr(Q1). The last claim follows similarly.
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Remark 4.5 (Expected MSE of the MAP and the trace of the posterior covariance). When there

is no model error, we have Eπ0Eη
[
‖µ1−φtrue‖2L2(ρ)

]
= Tr(Q1) in (4.7). That is, for the prior π0,

the expected MSE of the MAP estimator is the trace of the posterior covariance [2, Theorem 2].

However, for the data-adaptive prior πD0 , we have EπD0 Eη
[
‖µD1 −φtrue‖2L2(ρ)

]
= Tr(QD1 ) if and only

if λ∗ = 1, which follows from (4.6) and (4.7). Thus, if maxi≤K{λir−1
i } ≤ 1, a smaller expected

MSE of the MAP estimator in Theorem 4.3 implies a smaller trace of the posterior covariance in
Theorem 4.4.

Remark 4.6 (A-optimality). Theorem 4.4 shows that the data-adaptive prior achieves A-optimality
among all priors with {ri} satisfying λ∗ > maxi≤K{λir−1

i }. Here an A-optimal design is defined
to be the one that minimizes the trace of the posterior covariance operator in a certain class ([2]
and [8]). It is equivalent to minimizing the expected MSE of the MAP estimator (which is equal
to Tr(Q1)) through an optimal choice of the π0. Thus, in our context, the A-optimal design seeks
a prior with {ri}i≥1 in a certain class such that g(r1, . . . , rK) := Tr(Q1) =

∑
i≤K(λi + r−1

i ) is
minimized, and the data-adaptive prior achieves A-optimality in the above class of priors.

Remark 4.7 (Conditions on the spectra). The condition maxi≤K{λir−1
i } ≤ λ∗ in Theorems 4.3–

4.4 is far from necessary, since their proofs are based on an component-wise comparison in the
sum and its does not take into account the part

∑
i>K ri. The optimal λ∗ in practice is often much

smaller than the maximal ratio maxi≤K{λir−1
i } and it depends on the dataset, in particular, it

depends nonlinearly on all the elements involved (see Figures 7–8 in Appendix A.3). Thus, a full
analysis with an optimal λ∗ is beyond the scope of this study and we leave it in future research.

5 Computational practice

We have followed the wisdom of [51] on “avoid discretization until the last possible moment” so that
we have presented the analysis of the distributions on L2(ρ) using operators. In the same spirit, we
avoid the selection of a basis for the function space until the lass possible moment. The moment
arrives now. Based on the abstract theory in the previous sections, we present the implementation
of the data-adaptive prior in computational practice. We demonstrate it on Toeplitz matrices and
integral operators, which represent finite-dimensional and infinite-dimensional function spaces of
learning.

In practice, our goal is to estimate the coefficient c of φ =
∑l
i=1 ciφi in a prescribed hypothesis

space H = span{φi}li=1 ⊂ L2(ρ) with l ≤ ∞, where the basis function {φi} can be the B-splines,
polynomials, or wavelets. Then, the prior and posterior are represented by distributions of the
coefficient c ∈ Rl. Note that the pre-specified basis {φi} is often not orthonormal in L2(ρ),
because ρ is data-adaptive but the basis is not. Hence we only require that the basis matrix

B = (〈φi, φj〉L2(ρ))1≤i,j≤l, (5.1)

is nonsingular, i.e., the basis functions are linearly independent in L2(ρ). This simple requirement
reduces redundancy in basis functions.

In terms of c, the negative log-likelihood in (2.14) reads

E(c) = c>Ac− 2c>b+ CfN , (5.2)

where the regression matrix A and vector b are given by

A(i, j) =
1

N

∑
1≤k≤N

〈Rφi [uk], Rφj [u
k]〉Y = 〈LGφi, φj〉L2(ρ),

b(i) =
1

N

∑
1≤k≤N

〈Rφi [uk], fk〉Y = 〈φi, φD〉L2(ρ).

(5.3)
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The least squares estimator ĉ = A
−1
b is the default choice of solution when b is in the range of A.

However, the LSE is ill-defined when b is not in the range of A, which may happen when there is
model error or computational error due to incomplete data, as we have discussed after Theorem
2.7, and a Bayesian approach makes the inverse problem well-posed by introducing a prior.

We will compare our data-adaptive prior with the widely-used Gaussian prior on the coefficient,
that is, c ∼ π0 = N (0, Q0) with Q0 = Il. This prior leads to a posterior π1 = N (m1, Q1) with

m1 = (A+ σ2
ηI)−1b, Q1 = (A+ σ2

ηI)−1. (5.4)

5.1 Data-adaptive prior in computation

In terms of c, we compute the data-adaptive prior (4.2) and posterior (4.3) as follows.

Proposition 5.1. Let the hypothesis space be H = span{φi}li=1 ⊂ L2(ρ) with l ≤ ∞ and let
LG : L2(ρ)→ L2(ρ) be the integral operator in (2.12). Let A and b be defined in (5.3). Then, the

data-adaptive prior and its posterior in (4.2)–(4.3) in terms of the coefficient c in φ =
∑l
i=1 ciφi

are N (0, QD0 ) and N (mD1 , Q
D
1 ) with

QD0 = λ∗B
−1AB−1, QD1 = σ2

η(A+ σ2
ηλ∗BA

−1
B)−1, mD1 = σ−2

η QD1 b, (5.5)

where B is the basis matrix in (5.1).

Proof. The prior covariance QD0 = λ∗B
−1AB−1 follows directly from the definition of the data-

adaptive prior in (4.2) and Lemma A.2. The posterior follows from this prior N (0, QD0 ) and the

likelihood in (5.2):
dπD1 (c)
dc ∝ exp

(
− 1

2

[
σ−2
η (c>Ac− 2c>b+ CfN ) + c>(QD0 )−1c

])
. Thus, completing

the squares in the exponent, we obtain (5.5).

We select the hyper-parameter λ∗ by the L-curve method in [24]. The L-curve is a log-log

plot of the curve l(λ) = (y(λ), x(λ)) with y(λ)2 = c>λBA
−1
Bcλ and x(λ)2 = E(cλ), where cλ =

(A+λBA
−1
B)−1b. The L-curve method maximize the curvature of the L-curve to reach a balance

between the minimization of the likelihood and the control of the regularization:

λ∗ = argmaxλmin≤λ≤λmax
κ(l(λ)), κ(l(λ)) =

x′y′′ − x′y′′

(x′ 2 + y′ 2)3/2
,

where λmin and λmax are the smallest and the largest generalized eigenvalues of (A,B).

Remark 5.2 (Avoiding pseudo-inverse of singular matrix). The inverse of matrix in QD1 in (5.5)
can cause large numerical error when A is singular or severely ill-conditioned. We increase the

numerical stability by avoiding A
−1

: let D = B−1A
1/2

and write QD1 as

QD1 = σ2
η(A+ σ2

ηλ∗BA
−1
B)−1 = σ2

ηD(D>AD + λI)−1D>. (5.6)

Remark 5.3 (Relation to Zellner’s g-prior). When the basis of the hypothesis space are orthonor-
mal in L2(ρ) (that is, the basis matrix B = (〈φi, φj〉L2(ρ))1≤i,j≤l = I), we have QD0 = A. Thus, we
re-discover the well-known Zellner’s g-prior [1, 4, 58].

Remark 5.4 (Relation to the basis matrix of the RKHS). The matrix B−1AB−1 in the covariance
QD0 in (5.5) is the pseudo-inverse of the basis matrix of {φi} in the RKHS HG defined in Lemma
2.8, that is, Brkhs(i, j) = 〈φi,LG

−1φj〉L2(ρ) = 〈φi, φj〉HG , assuming that the basis functions {φi}
are in the RKHS. A computation of the matrix Brkhs involves a general eigenvalue problem to
solve the eigen-values of LG (see Proposition 5.6).
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Remark 5.5 (Relation between distributions of the coefficient and the function). We emphasize
that the prior and posterior distributions of the coefficient c depend on the basis {φi}li=1, and they

are not the prior and posterior distributions of the function φ =
∑l
i=1 ciφi, which are independent of

the basis. The relation between the distributions of the coefficient and the function are characterized
by Lemma A.2 -A.3. That is, if c ∼ N (0, Q) and φ =

∑l
i=1 ciφi has a Gaussian measure N (0,Q)

on H = span{φi}li=1, then, we have A := (〈φi,Qφj〉) = BQB provided that B in (5.1) is strictly
positive definite. Additionally, when computing the trace of the operator Q, we solve a generalized
eigenvalue problem Av = λBv, which follows from the proof of Proposition 5.6.

The next proposition shows that the eigenvalues of LG are solved by a generalized eigenvalue
problem. Its proof is deferred to Appendix A.1.

Proposition 5.6. Assume that the hypothesis space satisfies H = span{φi}li=1 ⊇ LG(L2(ρ)) with
l ≤ ∞, where LG : L2(ρ) → L2(ρ) be the integral operator in (2.12). Let A and b be defined
in (5.3). Then, the operator LG has eigenvalues (λ1, . . . , λl) solved by the generalize eigenvalue
problem with B in (5.1):

AV = BV Λ, s.t., V >BV = I, Λ = Diag(λ1, . . . , λl). (5.7)

and the corresponding eigenfunctions of LG are {ψk =
∑l
j=1 Vjkφj}. Additionally, for any φ =∑l

i ciφi in LG
1/2(L2(ρ)), we have 〈φ,LG

−1φ〉L2(ρ) = c>Brkhsc with

Brkhs = (V ΛV >)−1 = BA
−1
B.

We summarize the priors and posteriors in computation in Table 2.

Table 2: Priors and posteriors of the coefficients c of φ =
∑l
i=1 ciφi ∈ H ⊂ L2(ρ).

Gaussian measure Mean Covariance
π0 = N (m0, Q0) m0 = 0 Q0 = I

π1 = N (m1, Q1) m1 = (A+ σ2
ηI)−1b Q1 = σ2

η(A+ σ2
ηI)−1

πD0 = N (mD0 , Q
D
0 ) mD0 = 0 QD0 = λ−1

∗ B−1AB−1

πD1 = N (mD1 , Q
D
1 ) mD1 = σ−2

η QD1 b QD1 = σ2
η(A+ σ2

ηλ∗BA
−1
B)−1

5.2 Discrete kernels in Toeplitz matrices

The Toeplitz matrix in Example 2.1 has a vector kernel, which lies in a finite-dimensional function
space of learning L2(S, ρ). It provides a typical example of discrete kernels. We use the simplest
case of a 2× 2 Toeplitz matrix to demonstrate the data-adaptive function space of identifiability,
and the advantage of a data-adaptive prior.

Recall that we aim to recover the kernel φ ∈ R2n−1 in the Rn×n Toeplitz matrix from measure-
ment data {(uk, fk) ∈ Rn × Rn}Nk=1 by fitting the data to the model (2.5). The kernel is a vector
φ : S → R2n−1 with S = {rl}2n−1

l=1 with rl = l − n. Since Rφ[u] is linear in φ for each u, there is a
matrix Lu ∈ Rn×(2n−1) such that Rφ[u] = Luφ. Note that Lu is linear in u since Rφ[u] is, hence
only linearly independent data {uk}Nk+1 brings new information for the recovery of φ.

A least squares estimator (LSE) of φ ∈ R2n−1 is φ̂ = A
−1
b with A = 1

N

∑
1≤k≤N L

>
ukLuk

and b = 1
N

∑
1≤k≤N L

>
ukf

k. Here the A
−1

is a pseudo-inverse when A is singular. However,
pseudo-inverse is unstable to perturbations, and the inverse problem is ill-posed.

We only need to identify the basis matrix B in (5.1) to get the data-adaptive prior and its
posterior in Table 2. The basis matrix requires two elements: the exploration measure and the basis
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functions. Here the exploration measure ρ in (2.9) is ρ(rl) = Z−1
∑

1≤k≤N
∑

0≤i,j≤n δ(i−j−rl)|ukj |
with rl ∈ S, where Z = n

∑N
k=1

∑n−1
i=1 |uki | is the normalizing constant. Meanwhile, the unspoken

hypothesis space for the above vector φ =
∑2n−1
i=1 ciφi with ci = φ(ri) is H = span{φi}2n−1

i=1 =
R2n−1 with basis φi(r) = δ(ri − r) ∈ L2(S,R), where δ is the Kronecker delta function. Then,
the basis matrix of {φi(r) = δ(ri − r)} in L2(S, ρ), as defined in (5.1), is B = Diag(ρ). Thus,
if ρ is not strictly positive, this basis matrix is singular and these basis functions are linearly
dependent (hence redundant) in L2(S, ρ). In such a case, we select a linearly independent basis for
L2(S, ρ), which is a proper subspace of R2n−1, and we use pseudo-inverse of A and B to remove
the redundant rows. Additionally, since vector φ is the same as its coefficient c, the priors and
posteriors in Table 1 and Table 2 are the same.

Toeplitz matrix with n = 2. Table 3 shows three representative datasets for the inverse prob-
lem: (1) the dataset {u1 = (1, 0)} leads to a well-posed inverse problem in L2(ρ) though it appears
ill-posed in R3, (2) the dataset {u1, u2 = (0, 1)} leads to a well-posed inverse problem, and (3) the
dataset {u3 = (1, 1)} leads to an ill-posed inverse problem and our data-adaptive prior significantly
improves the accuracy of the posterior, see Table 4. Computational details are in Appendix A.3.

Table 3: The exploration measure, the FSOI and the eigenvalues of LG for learning the kernel in
a 2× 2 Toeplitz matrix from 3 typical datasets.

Data {uk} ρ on {−1, 0, 1} FOSI Eigenvalues of LG
{u1 = (1, 0)>} (0, 1

2 ,
1
2 ) span{φ2, φ3} = L2(ρ) {1, 1}

{u1, u2 = (0, 1)} ( 1
4 ,

1
2 ,

1
4 ) span{φ1, φ2, φ3} = L2(ρ) {2, 2, 2}

{u3 = (1, 1)>} ( 1
4 ,

1
2 ,

1
4 ) span{ψ1, ψ2} ( L2(ρ) {8, 4, 0}

∗The basis {φi} are defined as (φ1, φ2, φ3) = I3. For the dataset {u3}, the eigenvectors of LG in L2(ρ) are

ψ1 = (1, 1, 1)>, ψ2 = (−
√

2, 0,
√

2)>, and ψ3 = (1,−1, 1)>, see the text for more details.

Table 4: Performance of the posteriors in learning the kernel of Teoplitz matrix.∗

φtrue Bias of m1 Bias of mD1 Tr(Q1) Tr(QD1 )

(1, 1, 1)> ∈ FSOI 0.34± 0.01 0.10 ± 0.11 0.34± 0.00 0.0037 ± 0.00

(1, 0, 1)> /∈ FSOI 0.94± 0.01 0.66 ± 0.09 0.34± 0.00 0.0037 ± 0.00

* We compute the means and standard deviations of the relative errors of the posterior means (“bias of m1” and

“bias of mD1 ”) and the traces of the covariance of posteriors. They are computed in 100 independent datasets with

f3 observed with random noises, which are sampled from N (0, σ2
η) with ση = 0.1. and the u data is {u3 = (1, 1)}.

The relative bias of each estimator m is computed by ‖m− φtrue‖L2(ρ)/‖φtrue‖L2(ρ). The standard deviations of

the traces are less than 10−5.

Table 4 demonstrates the significant advantage of the data-adaptive prior over the non-degenerate
prior in the case of the third dataset. We examine the performance of the posterior in two as-
pects: the trace of its covariance operator, and the bias in the posterior mean. Following Re-
mark 5.5, we compute the trace of the covariance operator of the posterior by solving a gen-
eralized eigenvalue problem. Table 4 presents the means and standard deviations of the traces
and the relative errors of the posterior mean. It consider two cases: φtrue = ψ1 in the FSOI and
φtrue = (1, 0, 1)> = 0.5ψ1+0.5ψ3 outside of the FSOI (see Table 3). We highlight two observations.

• The data-adaptive prior leads to a posterior mean mD1 much more accurate than the original
prior’s posterior mean m1. When φtrue is in the FSOI, mD1 is relatively accurate. When the true
kernel is outside of the FSOI, the major bias comes from the part of φtrue outside of the FSOI,
because the part 0.5ψ3 leads to a relative error 0.71.
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• The trace of the data-adaptive prior’s posterior covariance QD1 is significantly smaller than the
original prior’s Q1. Because QD1 has a zero eigenvalue in the direction outside of the FSOI, while
Q1 is a full rank operator.

Numerical tests also show that an error outside of the range of the regression operator (Assump-
tion 3.1 (A3)) does not occur, and the small noise limit of m1 exists regardless of the model error
(e.g., ξ(u) = 0.01u|u|2) or computational error due to missing data. This is because b is always in
the range of the operator A (or equivalently, φD is in the range of LG) for this discrete problem.
More generally, the next proposition shows that Assumption 3.1 (A3) does not hold for the discrete
inverse problem of solving φ ∈ Rm in Lkφ = fk for 1 ≤ k ≤ N , regardless of the presence of model
error or missing data in fk. However, for continuous inverse problems (of estimating a continuous
function φ), Assumption 3.1 (A3) holds when b is computed using different regression arrays from
those in A due to discretization or missing data (see Section 5.3) or avoiding derivatives through
integration by parts [30].

Proposition 5.7. Let A =
∑

1≤k≤N L
>
k Lk and b =

∑
1≤k≤N L

>
k fk, where Lk ∈ Rn×m and

fk ∈ Rn×1 for each 1 ≤ k ≤ N , and m,n,N are integers. Then, b ∈ Range(A).

Proof. First, we show that it suffices to consider Lk’s being rank-1 arrays. The SVD (singular value
decomposition) of each Lk gives Lk =

∑
1≤i≤nk σk,iwk,iv

>
k,i, where {σk,i, wk,i, vk,i} are the singular

values, left and right singular vectors that are orthonormal, i.e., w>k,iwk,j = δi,j and v>k,ivk,j = δi,j .

Denote Lk,i = σk,iwk,iv
>
k,i, which is rank-1. Note that L>k Lk =

∑
1≤i,j≤nk σ

2
k,ivk,iw

>
k,iwk,jv

>
k,j =∑

1≤i≤nk σ
2
k,ivk,iv

>
k,i =

∑
1≤i≤nk L

>
k,iLk,i. Thus, we can write A =

∑
1≤k≤N

∑
1≤i≤nk L

>
k,iLk,i and

b =
∑

1≤k≤N
∑

1≤i≤nk L
>
k,ifk in terms of rank-1 arrays.

Next, for each k, write the rank-1 array as Lk = σkwkv
>
k with wk ∈ Rm×1 and vk ∈ Rn×1 both

being unitary vectors. Then, A =
∑

1≤k≤N σ
2
kvkw

>
k wkv

>
k =

∑
1≤k≤N σ

2
kvkv

>
k , and Range(A) =

span{vk}Nk=1 (where the vk’s can be linearly dependent). Therefore, b =
∑

1≤k≤N σkvkv
>
k fk is in

the range of A because v>k fk is a scalar.

5.3 Continuous kernels in integral operators

For the continuous kernels of the integral operators in Examples 2.2-2.4, their function space of
learning L2(ρ) is infinite-dimensional. Their Bayesian inversion are similar, so we demonstrate
the computation using the convolution operator in Example 2.2. In particular, we compare our
data-adaptive prior with a fixed non-degenerate prior in the presence of four types of errors: (i)
discretization error, (ii) model error, (ii) partial observation (or missing data), and (iv) wrong noise
assumption.

Recall that with X = Y = L2([0, 1]), we aim to recover the kernel φ in the operator in (2.6),

Rφ[u](y) =
∫ 1

0
φ(y − x)u(x)dx, by fitting the model (2.2) to an input-output dataset

{
uk, fk

}3

k=1
.

We set {uk}3k=1 to be the probability densities of normal distributions N (−1.6 + 0.6k, 1/15) for

k = 1, 2, 3 and we compute Rψ[uk] =
∫ 1

0
ψ(y − x)uk(x)dx by the global adaptive quadrature

method [48]. The data are
{
uk(xj), f

k(yl)
}3

k=1
on uniform meshes {xj}Jj=1 and {yl}Ll=1 of [0, 1]

with J = 100 and L = 50. Here fk(yl) is generated by

fk(yl) = Rφ[uk](yl) + ηkl + ξk(yl), (5.8)

where ηkl are i.i.d. N (0, σ2
η) random variables (unless the wrong noise assumption case to be spec-

ified later) with variance
σ2
η

4y and ξk(y) = σξu(y) |u(y)| are artificial model errors with σξ = 0 (no

model error) or σξ = 0.01 (a small model error).
The exploration measure (defined in (2.9)) of this dataset has a density

ρ(r) =
1

ZN

N∑
k=1

∫
[0,1]∩[r,r+1]

∣∣uk(y)
∣∣ dy, r ∈ [−1, 1],
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Figure 1: The exploration measure and the eigenvalues of the basis matrix B, regression matrix
AD and operator LG (computed via the generalized eigenvalue problem of (AD, B)).
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with Z being the normalizing constant. We set the H = span{φi}li=1, where {φi}li=1 are B-spline
basis functions (i.e., piecewise polynomials) with degree 3 and with knots from a uniform partition
of [−1, 1]. We approximate A and b using the Riemann sum integration,

AD(i, i′) =
1

N

N∑
k=1

J∑
j=1

R̂φi [u
k](yj)R̂φi′ [u

k](yj)4y,

b(i) =
1

N

∑
1≤k≤N

L∑
l=1

R̂φi [u
k](xl)f

k(yl)4y,

where we approximate Rψ[uk] via Riemann integration R̂ψ[uk](y) =
∑J
j=1 ψ(y − xj)u

k(xj)4x.

Additionally, to illustrate the effects of discretization error, we also compute A in (5.3) using the
continuous uk’s and quadrature integrations, and denote the matrix by AC .

Figure 1 shows the exploration measure and the eigenvalues of the basis matrix B, AD and LG
(which are the generalized eigenvalues of (AD, B)). Note that the support S is a proper subset
of [−1, 1], leading to a near singular B. In particular, the inverse problem is severely ill-posed in
L2(ρ) since LG has multiple almost-zero eigenvalues.

We consider four types of errors (in addition to the observation noise) in b that often happen
in practice.

1. Discretization Error. We assume that fk in (5.8) has no model error.

2. Partial Observation. We assume that fk misses data in the first quarter of the interval, i.e.
fkl = 0 for l = 0, . . . , L/4. Also, assume that there is no model error.

3. Model Error. Assume there are model error.

4. Wrong Noise Assumption. Assume that ηkl is actually uniformly distributed on the interval

[−
√

3ση√
4y ,

√
3ση√
4y ] to introduce an error caused by a wrong noise assumption. Notice that we

add a
√

3 to keep the variance at the same level as the Gaussian prior.

For each of the four cases, we compute the posterior means in Table 2 with the optimal hyper-
parameter λ∗ selected by the L-curve method, and report the L2(ρ) error of the function estimators.
Additionally, for each of them, we consider different levels of observation noise ση in 10−1 ∼ 10−5,
so as to demonstrate the small noise limit of the posterior mean.

We access the performance of the fixed prior and the data-adaptive prior in Table 2 through
the accuracy of their posterior means. We report the interquartile range (IQR, the 75th, 50th and
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25th percentiles) of the L2(ρ) errors of their posterior means in 200 independent simulations in
which φtrue are randomly sampled.

Two scenarios are considered: φtrue is either inside or outside of the FSOI. To draw samples of
φtrue outside of the FSOI, we sample the coefficient c∗ of φtrue =

∑l
j=1 c

∗
jφj from the fixed prior

N (0, Il). Thus, the fixed prior is the true prior. To draw samples of φtrue inside the FSOI, we

sample φtrue =
∑l
j=0 c

∗
jψj with c∗ from N (0, I3), where {ψj =

∑l
i=1 vi,jφj} with v·,j being the

j-th eigenvector of AD. That is, φtrue is sampled in the low-frequency eigenspace of AD.
Note that the exploration measure, the matrices AD, AC and B are the same in all these

simulations, because they are determined by the data {uk} and the basis functions. Thus, we only
need to compute b for each simulation.

Figure 2: Interquartile range (IQR, the 75th, 50th and 25th percentiles) of the L2(ρ) errors of the
posterior means. They are computed in 200 independent simulations with φtrue sampled from the
fixed prior (hence outside of the FSOI), in the presence of four types of errors: discretization,
model error, partial observation, and wrong noise assumption. Top row: the regression matrix A is
computed from continuous {uk}; Bottom row: A is computed from discrete data. The fixed prior
leads to diverging posterior means in 6 out of the 8 cases, while the data-adaptive (DA) prior leads
to stable posterior means, as the observation noise’s standard deviation ση decreases.
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Figure 2 shows the IQR of these simulations in the scenario that the true kernels are outside
of the FSOI. The fixed prior leads to diverging posterior means in 6 out of the 8 cases, while the
DA-prior has stable posterior means in all cases. The fixed prior has diverging posterior mean
when using the continuously integrated regression matrix AC , because the discrepancy between
b and AC leads to a perturbation outside the FSOI, satisfying Assumption 3.1 (A3). Similarly,
either the model error or partial observation error in b causes a perturbation outside the FSOI of
AD, making the fixed prior’s posterior mean diverge. On the other hand, the discretely computed
AD matches b in the sense that b ∈ Range(AD) as proved in Proposition 5.7, so the fixed prior has
a stable posterior mean in cases of discretization and wrong noise assumption. In all these cases,
the error of the posterior mean of the DA-prior does not decay as ση → 0, because the error is
dominated by the part outside of the FSOI that cannot be recovered from data.

Figure 3 shows the IQR of these simulations with the true kernels sampled inside of the FSOI.
The DA prior leads to posterior means that are not only stable but also converge to small noise
limits, whereas the fixed prior leads to diverging posterior means as in Figure 2. The convergence
of the posterior means of the DA prior can be clearly seen in the cases of “Discretization” and
“Wrong noise” with both continuously and discretely computed regression matrix. Meanwhile, the
flat lines of the DA prior in the cases of “Model error” or “Partial observations” are due to the
error inside the FSOI caused by either the model error or partial observation error in b, as shown
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Figure 3: IQR of the L2(ρ) errors of the posterior means in 200 independent simulations with φtrue
sampled inside of the FSOI.
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in the proof of Theorem 4.2.

Additionally, we show in Figure 4 and Figure 5 the estimated posterior (in terms of its mean,
the 75th and 25th percentiles) in a typical simulation, when φtrue is outside and inside the FSOI,
respectively. Here the percentiles are computed by drawing samples from the posterior. A more
accurate posterior would have a more accurate mean and a narrower shaded region between the
percentiles so as to have a smaller uncertainty. In all cases, the DA prior leads to more accurate
posterior mean (MAP) than the fixed prior. When the observation noise has ση = 0.1, the DA
prior leads to a posterior with a larger shaded region between the percentiles than the fixed prior,
but when ση = 0.001, the DA prior’s shaded region is much smaller than those of the fixed prior.

Figure 4: The posterior (its mean, the 75th and 25th percentiles) when φtrue /∈ FSOI.
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In summary, these numerical results confirm that the data-adaptive prior removes the risk in a
fixed non-degenerate prior, leading to a robust posterior with a small noise limit.
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Figure 5: The posterior (its mean, the 75th and 25th percentiles) when φtrue ∈ FSOI.
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5.4 Limitations of the data-adaptive prior

As stated in [24]: “every practical method has its advantages and disadvantages”. The major
advantage of the data-adaptive prior is to avoid the posterior being contaminated by the errors
outside of the data-dependent function space of identifiability (FSOI), which is the eigenspace with
positive eigenvalues of the operator LG in the inverse problem. The data-adaptive prior overcomes
the ill-posedness caused by a singular operator LG. Its advantage vanishes when the operator LG
is well-conditioned, i.e., the inverse problem is well-posed in L2(ρ).

The data-adaptive prior has two disadvantages. First, it relies on the selection of the hyper-
parameter λ∗. The L-curve method is the state-of-the-art method and works well in our numerical
tests, yet it has limitations in dealing with smoothness and asymptotic consistency [24]. An im-
proper hyper-parameter can lead to a posterior with an inaccurate mean and unreliable covariance.
Second, the premise of the data-adaptive prior is that the identifiable part of the true kernel is in
the data-adaptive RKHS. But the data-adaptive RKHS can be restrictive when the data is smooth,
leading to an overly-smoothed estimator if the true kernel is non-smooth. It remains open to select
the covariance operator of the prior in the form of LG

s with s ≥ 0 to detect the smoothness of the
true kernel. We leave this as potential future work.

6 Conclusion

The inverse problem of learning kernels in operators can be severely ill-posed with a singular
inversion operator. The Bayesian approach overcomes the ill-posedness by a non-degenerate prior.
However, we show that such a fixed non-degenerate prior leads to a divergent posterior mean when
the observation noise becomes small, if the data induces a perturbation in the eigenspace of zero
eigenvalues of the inversion operator.

We solve the issue by a data-adaptive prior. It leads to a stable posterior whose mean always has
a small noise limit, and the small noise limit converges to the identifiable part of the true kernel
when the perturbation vanishes. The data-adaptive priors covariance is the inversion operator
with a hyper-parameter selected adaptive to data by the L-curve method. Also, the data-adaptive
prior improves the quality of the posterior over the fixed prior in two aspects: a smaller expected
mean square error of the posterior mean, and a smaller trace of the covariance operator (thus
reducing the uncertainty). Furthermore, we provide a detailed analysis on the data-adaptive prior
in computational practice. We demonstrate the advantage of the data-adaptive prior on Toeplitz
matrices and integral operators in the presence of four types of errors. Numerical tests show that
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while a fixed non-degenerate prior leads to divergent posterior mean in these cases, the data-
adaptive prior always attains posterior means with small noise limits.

We have also discussed the limitations of the data-adaptive prior, such as its dependence on the
selection of the hyper-parameter and its tendency of over-smoothing. It is of interest to overcome
these limitations in future research by adaptively selecting the regularity of the prior covariance
through a fractional operator. Among various other directions to be further explored, we mention
one that is particularly relevant in the era of big data: to investigate the inverse problem when
the data {uk} are randomly sampled in the setting of infinite-dimensional statistical models (e.g.,
[22]). When the operator Rφ[u] is linear in u, the examples of Toeplitz matrices and integral
operators show that the inverse problem will become less ill-posed when the number of linearly
independent data {uk} increases. When Rφ is nonlinear in u, it remains open to understand
how the ill-posedness depends on the data. Another direction would be to consider sampling the
posterior exploiting MCMC or sequential Monte Carlo methodologies (e.g.,[46]).
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A Appendix

A.1 Identifiability theory

The main theme in the identifiability theory is to find the function space in which the quadratic
loss functional has a unique minimizer.

The next lemma shows that the inversion operator LG defined in (2.12) is a trace-class operator.
Recall that an operator Q on a Hilbert space if it satisfies

∑
k〈Qek, ek〉 < ∞ for any complete

orthonormal basis {ek}∞k=1.

Lemma A.1. Under Assumption 2.6, the operator LG : L2(ρ) → L2(ρ) defined in (2.12) is a
trace-class operator with Tr(LG) =

∫
S G(r, r)ρ(r)dr.

Proof. We have ρ(r) = 1
ZN

∑
1≤k≤N

∫
Ω

∣∣g[uk](x, r + x)
∣∣µ(dx) by (2.9). Then,

G(r, s) =
1

N

∑
1≤k≤N

∫
g[uk](x, r + x)g[uk](x, s+ x)µ(dx) ≤ Cρ(r) ∧ ρ(s)

for and r, s ∈ S, where C = Z max1≤k≤K supx,y∈Ω |g[uk](x, y)|. Thus,

G(r, s) =
G(r, s)

ρ(r)ρ(s)
≤ Cρ(r)−1 ∧ ρ(s)−1,

for each r, s ∈ S. Meanwhile, since Ω is bonded, we have |S| <∞. Hence
∫
S G(r, r)ρ(r)dr ≤ C|S| <

∞. Also, note that G is continuous since g[uk] is continuous. Then, by [31, Theorem 12, p344],
the operator LG with integral kernel G has a finite trace Tr(LG) =

∫
S G(r, r)ρ(r)dr <∞.

Theorem 2.7 characterizes the FSOI through the inversion operator LG.
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Proof of Theorem 2.7. Part (a) follows from the definition of φD in (2.15). In fact, plugging in
fk = Rφtrue [u

k] + ξk + ηk into the right hand side of (2.15), we have, ∀ψ ∈ L2(ρ),

〈φD, ψ〉L2(ρ) =
1

N

∑
1≤k≤N

〈Rψ[uk], Rφtrue [u
k]〉Y + 〈Rψ[uk], ξk]〉Y + 〈Rψ[uk], ηk]〉Y

= 〈ψ,LGφtrue〉L2(ρ) + 〈ψ, εξ〉L2(ρ) + 〈ψ, εη〉L2(ρ),

where the first term in the last equation comes from the definitions of the operator LG in (2.12), the
second and the third term comes from the Riesz representation. Since each ηk is a Y-valued white
noise, the random variable 〈ψ, εη〉L2(ρ) = 1

N

∑
1≤k≤N 〈Rψ[uk], ηk]〉Y is Gaussian with mean zero and

variance σ2
η〈ψ,LGψ〉L2(ρ) for each ψ ∈ L2(ρ). Thus, εη has a Gaussian distribution N (0, σ2

ηLG).
Part (b) follows directly from loss functional in (2.14).
For Part (c), first, note that the quadratic loss functional has a unique minimizer in H. Mean-

while, note that H is the orthogonal complement of the null space of LG, and E(φtrue + φ0) =
E(φtrue) for any φ0 such that LGφ0 = 0. Thus, H is the largest such function space, and we
conclude that H is the FSOI.

Next, for any φD ∈ LG(L2(ρ)), the estimator φ̂ = LG
−1φD is well-defined. By Part (b), this

estimator is the unique zero of the loss functional’s Fréchet derivative in H. Hence it is the unique
minimizer of E(φ) in H. In particular, when the data is noiseless and with no model error, and
it is generated from φtrue, i.e. Rφtrue [u

k] = fk, we have φD = LGφtrue from Part (a). Hence

φ̂ = LG
−1φD = φtrue. That is, φtrue ∈ H is the unique minimizer of the loss functional E .

The proof of Proposition 5.6 is an extension of Theorem 4.1 of [36].

Proof of Proposition 5.6. Let ψk =
∑l
j=1 Vjkφj with V >BV = I. Then, ψk is an eigenfunction of

LG with eigenvalue λk if and only if for each i,

〈φi, λkψk〉L2(ρ) = 〈φi,LGψk〉L2(ρ) =
∑

1≤j≤l

〈φi,LGφj〉L2(ρ)Vjk =
∑

1≤j≤l

A(i, j)Vjk,

where the last equality follows from the definition of A. Meanwhile, by the definition of B we have
〈φi, λkψk〉L2(ρ) =

∑l
j=1B(i, j)Vjkλk for each i. Then, Equation (5.7) follows.

Next, to compute 〈φ,LG
−1φ〉L2(ρ), we denote Ψ = (ψ1, . . . , ψl)

> and Φ = (φ1, . . . , φl)
>. Then,

we can write
Ψ = V >Φ φ =

∑
1≤i≤l

ciφi = c>Φ = c>V −>Ψ.

Hence, we can obtain Brkhs = (V ΛV >)−1 in 〈φ,LG
−1φ〉L2(ρ) = c>Brkhsc via:

〈φ,LG
−1φ〉L2(ρ) = 〈c>Φ,LG

−1c>Φ〉L2(ρ)

= 〈c>V −>Ψ,LG
−1c>V −>Ψ〉L2(ρ)

= c>V −>〈Ψ,LG
−1Ψ〉L2(ρ)V

−1c (A.1)

= c>V −>Λ−1V −1c,

where the last equality follows from 〈Ψ,LG
−1Ψ〉L2(ρ) = Λ−1.

Additionally, to prove Brkhs = BA
−1
B, we use the generalized eigenvalue problem. Since

V >BV = I, we have V −1 = V >B. Meanwhile, AV = BV Λ implied that B−1A = V ΛV −1. Thus,
B−1AB−1 = V ΛV −1 = V ΛV >, which is B−1

rkhs.
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A.2 Gaussian measures on a Hilbert space

A Gaussian measure on a Hilbert space is defined by its mean and covariance operator (see [11,
Chapter 1-2] and [12]). Let H be a Hilbert space with inner product 〈·, ·〉, and let B(H) de-
note its Borel algebra. Let Q be a symmetric nonnegative trace class operator on H, that is
〈Qx, y〉 = 〈x,Qy〉 and 〈Qx, x〉 ≥ 0 for any x, y ∈ H, and

∑
k〈Qek, ek〉 < ∞ for any complete

orthonormal basis {ek}∞k=1. Additionally, denote {λk, ek}∞k=1 the eigenvalues (in descending order)
and eigenfucntions of Q.

A measure on H with mean a and covariance operator Q is a Gaussian measure π = N (a,Q)

iff its Fourier transform π̂(h) =
∫
H
ei〈x,h〉π(dx) is ei〈a,h〉−

1
2 〈Qh,h〉 for any h ∈ H. The measure is

non-degenerate if KerQ = {0}, i.e., λk > 0 for all k. It is a product measure π =
∏∞
k=1N (ak, λk),

where ak = 〈a, ek〉 ∈ R for each k.
The next lemma specifies the covariance of the coefficient of a Hilbert space valued Gaussian

random variable. The coefficient can be on either the full or partial basis.

Lemma A.2 (Operator to coefficients). Let N (0,Q) be a Gaussian measure on H and let the hy-
pothesis space H = span{φi}li=1 ⊂ H with l ≤ ∞ have basis such that the matrix B = 〈φi, φj〉1≤i,j≤l
is strictly positive definite. Then, the coefficient c ∈ Rl of φ =

∑l
i=1 ciφi has a Gaussian measure

N (0, B−1AB−1), where the matrix A(i, j) = 〈φi,Qφj〉.

Proof. By definition, for any h ∈ H, the random variable 〈φ, h〉 has distribution N (0, 〈h,Qh〉).
Thus, we have 〈φ, φk〉 ∼ N (0, 〈φk,Qφk〉) for each k. Similarly, we have that
E[〈φ, φk + φl〉2] = 〈φk + φl,Q(φk + φl)〉. Then, we have

E[〈φ, φk〉〈φ, φl〉] =
1

2

(
E[〈φ, φk + φl〉2]− E[〈φ, φk〉2]− E[〈φ, φk〉2]

)
= 〈φk,Qφl〉.

Hence, the random vector X = (〈φ, φ1〉, . . . , 〈φ, φl〉)> is Gaussian N (0, A). Now, noticing that
X = Bc and B = B>, we obtain that the distribution of c = B−1X is N (0, B−1AB−1), where the
covariance follows from E[cc>] = E[B−1XX>B−1] = B−1AB−1.

On the other hand, the distribution of the coefficient only determines a Gaussian measure on
the linear space its basis spans.

Lemma A.3 (Coefficients to operator). Let H = span{φi}li=1 with l ≤ ∞ be a Hilbert space with
basis such that the matrix B = 〈φi, φj〉1≤i,j≤l is strictly positive definite. Let the coefficient c ∈ Rl

of φ =
∑l
i=1 ciφi have a Gaussian measure N (0, Q). Then, the H-valued random variable φ has a

Gaussian distribution N (0,Q), where the operator Q is defined by 〈φi,Qφj〉 = (BQB)i,j.

Proof. Since {φi} is a complete basis, we only need to determine the distribution of the random
vector X = (〈φ, φ1〉, . . . , 〈φ, φl〉)> ∈ Rl. Note that it satisfies X = Bc. Thus, its distribution is
Gaussian N (0, BQB).

Note that π(Q1/2H) = 0 if H is infinite-dimensional, that is, the Cameron-Martin space Q1/2H
has measure zero.

A.3 Details of numerical examples

Computation for Toeplitz matrix. Each dataset {uk = (uk0 , u
k
1)}k leads to an exploration

measure on S = {−1, 0, 1}:

ρ(−1) =

∑
k |uk1 |

2
∑
k(|uk1 |+ |uk0 |)

, ρ(0) =
1

2
, ρ(1) =

∑
k |uk0 |

2
∑
k(|uk1 |+ |uk0 |)

.
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Since each u = (u0, u1) leads to a rank-2 regression matrix

Lu =

[
u1 u0 0
0 u1 u0

]
, L>uLu =

 u2
1 u1u0 0

u1u0 u2
1 + u2

0 u1u0

0 u1u0 u2
0

 ,
the regression matrices A =

∑
k L
>
ukLuk of the three datasets are

A(1) =

0 0 0
0 1 0
0 0 1

 , A(2) =
1

2

2∑
k=1

L>ukLuk =
1

2

1 0 0
0 2 0
0 0 1

 , A(3) =

1 1 0
1 2 1
0 1 1

 . (A.2)

Additionally, with B = Diag(ρ), the prior covariances λ∗Q
D
0 = B−1AB−1 are

QD0,(1) =

0 0 0
0 4 0
0 0 4

 , QD0,(2) =

8 0 0
0 4 0
0 0 8

 , QD0,(3) =

16 8 0
8 8 8
0 8 16

 . (A.3)

We analyze the well-posedness of the inverse problem in terms of the operator LG, whose
eigenvalues are solved via the generalized eigenvalue problem (see Proposition 5.6). For the data
set {u1}, the exploration measure ρ is degenerate with ρ(−1) = 0, thus, we have no information
from data to identify φ(−1). As a result, L2(ρ) = span{φ2, φ3} is a proper subspace of R3. The
regression matrix A(1) and the covariance matrix QD0,(1) are effectively the identity matrix I2 and

4I2. The operator LG has eigenvalues {1, 1}, and the FSOI is L2(ρ). Thus, the inverse problem
is well-posed in L2(ρ). For the dataset {u1, u2}, the inverse problem is also well-posed in L2(ρ)
because the operator LG has eigenvalues {2, 2, 2}, and the FSOI is L2(ρ). Note that the data-
adaptive prior QD0,(2) assigns weights to the entries of the coefficient according to the exploration

measure. For the data set {u3}, the inverse problem is ill-defined in L2(ρ), but it is well-posed in
the FSOI, which is a proper subset of L2(ρ). Here the FSOI is the linear span of {ψ1, ψ2}, which
are the eigenvectors of LG with positive eigenvalues. Following (5.7), these eigenvectors {ψi} are
solved from the generalized eigenvalue problem A(3)ψ = λDiag(ρ)ψ and they are orthonormal

in L2(ρ). The eigenvalues are {8, 4, 0} and the corresponding eigenvectors are ψ1 = (1, 1, 1)>,
ψ2 = (−

√
2, 0,
√

2)>, and ψ3 = (1,−1, 1)>.

The hyper-parameter selected by the L-curve method. We select the hyper-parameter
λ∗ in the data-adaptive prior by the L-curve method. Figure 6 shows a typical L-curve, where
R(λ) = ‖φλ‖HG and E represents the square root of the loss E(φλ). The L-curve method selects
the parameter that attains the maximal curvature at the corner of the L shaped curve.

Figures 7–8 present the λ∗ in the simulations in Figures 2– 3, respectively. Those hyper-
parameters are mostly similar, and the majority of them are at the scale of 10−4. They show that
the optimal hyper-parameter depends on the spectrum of LG, the four types of the errors in b,
the strength of the noise, and the smoothness of the true kernel. In general, a large variation of
λ∗ suggests a difficulty in selecting an optimal hyper-parameter by the method. Additionally, the
error in the numerical computation of matrix inversion or the solution of the linear systems can
affect the result when λ∗ is small. Thus, it is complicated to analyze the optimal hyper-parameter.
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Figure 6: The L-curve for the selection of the hyper-parameter λ∗.
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