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Abstract. We discuss some implications of linear programming for Mather theory [Mt1-2],

[M-F] and its finite dimensional approximations. We find that the complementary slackness

condition of duality theory formally implies that the Mather set lies in an n–dimensional

graph and as well predicts the relevant nonlinear PDE for the “weak KAM” theory of Fathi

[F1-3], [E-G].

In memory of Professor Jacques–Louis Lions

1. Introduction.

This largely heuristic paper discusses some formal implications of linear programming
duality theory to Mather’s variational problem in dynamics [Mt1-2] [M-F]. Our intention
in working out this application is mostly to publicize the following ideas for studying
nonlinear optimization problems.

Two general principles:
• Relaxation. It is often useful to “relax” a minimization problem, searching for a

probability measure on an appropriate phase space. This procedure in effect “linearizes”
the original problem, subject to constraints.
• Duality. Once this relaxed problem is found, we can sometimes apply linear pro-

gramming duality theory. Often the dual formulation contains useful information about
the structure of the solution of the original problem.

(Applications to the Monge–Kantorovich mass transfer problem following these guidelines
are well–known: see for instance the survey paper [E1].)

Mather’s variational problem. To formulate our application of these principles in
dynamics, we begin with a smooth Lagrangian function L : Rn × Tn → R, L = L(q, x),
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where q denotes velocity in Rn and x denotes position in Tn, the flat torus in n dimensions.
Our primary hypotheses are that

the mapping x �→ L(q, x) is Tn periodic

for each q ∈ Rn, and

the mapping q �→ L(q, x) is uniformly convex

for each x ∈ Tn.
The original problem is to search for curves x(·) : [0,∞) → R

n that minimize for each
time T > 0 the classical action ∫ T

0

L(ẋ,x) dt

among Lipschitz curves y(·) with x(0) = y(0), x(T ) = y(T ). We call such a curve x(·) an
absolute minimizer, and are interesting in finding absolute minimizers which satisfy for a
given vector Q ∈ Rn the asymptotic growth condition

(1.1) lim
t→∞

x(t)
t

= Q.

In general however absolute minimizing curves with these given asymptotics do not exist.
Following instead the first general principle above, we relax the problem and look instead

for a measure µ on Rn × Tn to minimize the generalized action

(1.2)
∫
Rn

∫
Tn

L(q, x) dµ,

subject to the constraints that

(1.3)
∫
Rn

∫
Tn

q ·Dφ dµ = 0 for all φ ∈ C1(Tn),

(1.4) µ(Rn × Tn) = 1, µ ≥ 0,

and

(1.5)
∫
Rn

∫
Tn

q dµ = Q.

Condition (1.4) says of course that µ is a probability measure and (1.5) generalizes (1.1).
The requirement (1.3), that the measure µ be flow invariant, generalizes the classical
requirement that the action be computed along a curve. Mather has shown that in general
there exists a minimizing measure in this sense.
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We will discuss in this paper what information can be extracted from the second general
principle mentioned above, namely application of linear programming duality theory. We
do so firstly, and rigorously, for a natural finite–dimensional approximation to problem
(1.2) − (1.5). Secondly we explain a formal application of duality for the true, infinite
dimensional problem. Our main observation is that the duality theory immediately implies
that the minimizing measure µ lies on a graph in the q–direction over Tn. Furthermore
duality predicts the structure of the Hamiltonian PDE of the “weak KAM” theory of Fathi
[F1-3] and [E-G].

Now this and much more has already been discovered in the references cited above.
Our point is therefore only to emphasize that the general principles above contain clues
as to some interesting mathematics, which can indeed be made rigorous. It is surprising
to us that general abstraction can point in such fruitful directions, and we hope that this
viewpoint may usefully apply to other problems.

Our thanks go to the referee for carefully reading this paper.

We are pleased to contribute to this memorial volume in honor of Professor Jacques–
Louis Lions, the author of many influential books in PDE theory. Our favorites are
Quelques méthodes de résolution des problèmes aux limites non linéaires and Asymptotic
Analysis of Periodic Structures, written with Bensoussan and Papanicolaou.

2. Linear programming: discrete case.

2.1 General linear programming.

Let us review the basic structure of duality theory for finite–dimensional linear pro-
gramming; cf. Bertsimas and Tsitsiklis [B-T], Franklin [F], Lax [L, Chapter 13], etc.

First, we record the notation that if x ∈ RN is a vector, x = (x1, x2, . . . , xN ), we write
x ≥ 0 to mean xi ≥ 0 for i = 1, . . . , N .

We are given vectors c ∈ RN , b ∈ RM and an M ×N matrix A. The primal problem is
to find x̂ ∈ RN to

(P)




minimize c · x,
subject to the constraints that
Ax = b, x ≥ 0;

and the corresponding dual problem is to find ŷ ∈ RM to

(D)




maximize y · b,
subject to the constraints that
AT y ≤ c.
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A vector x ∈ RN satisfying Ax = b, x ≥ 0 is called feasible for (P); y ∈ RM is feasible
for (D) if AT y ≤ c.

The central assertion of finite dimensional linear programming is this:

Theorem 2.1 (Strong duality). Assume that the collections of feasible vectors for (P)
and for (D) are both nonempty. Then

(i) problem (P) has a solution x̂ and (D) has a solution ŷ.
(ii) We have

(2.1) c · x̂ = ŷ · b

or, equivalently,

(2.2) x̂ · (AT ŷ − c) = 0.

This last equality expresses the complementary slackness condition. This identity im-
plies for each i = 1, . . . , N , that either x̂i = 0 or (AT ŷ − c)i = 0, or both.

See Chapter 4 in Bertsimas and Tsitsiklis [B-T] for more, and note in particular the
chart on page 151 of this reference.

2.2 Discrete approximation of Mather’s problem.

We as follows discretize velocity-position space Rn × Tn. Fix large positive integers
K, L, and introduce the multiindices

(2.3)
{

i = (i1, . . . , in), j = (j1, . . . , jn), where
ik ∈ {0, . . . , K − 1}, jk ∈ {−L, . . . , L} for k = 1, . . . , n.

We write i ∈ I and j ∈ J if (2.3) holds, and note that |I| = Kn, |J | = (2L + 1)n. We
define as well the discrete Lagrangian λ = ((λij)), where

(2.4) λij := L

(
j

K
,

i

K

)
.

(These is a slight notational problem here, since the letter L is also used in (2.3). When
L denotes the Lagrangian in this section, we will always make this clear by displaying its
arguments.)

The discrete primal problem is to find µ = ((µij)) to

(2.5) minimize
1
|I||J |

∑
i,j

λijµij
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subject to the following constraints. We firstly require that

(2.6)
1
|I||J |

n∑
k=1

∑
j

jk(µi−ek,j
− µij) = 0 for all i ∈ I.

Here we assume that all quantities are periodic in the variables i, and write ek := (0, . . . , 1, . . . , 0),
where the 1 lies in the kth-slot. The identities (2.6) form the discrete analogue of the flow-
invariance requirement (1.3). We also want µ to be a discrete probability measure, and so
ask that

(2.7)
1
|I||J |

∑
i,j

µij = 1, µij ≥ 0 for all i, j.

Lastly we enforce the analogue of (1.5):

(2.8)
1
|I||J |

∑
i,j

jk

K
µij = Qk for k ∈ {1, . . . , n},

where Q = (Q1, . . . , Qn) is a given vector in Rn.

In summary, we want to find µ to minimize (2.5) subject to (2.6), (2.7), (2.8). There are
in all M = |I|+1+n = Kn +1+n equality constraints, for the N = |I||J | = (2L+1)nKn

unknown components of µ = ((µij)).

2.3 The dual problem.

The foregoing problem is of the form (P) for

(2.9) c =
1
|I||J | ((λij)), b = |I||J |(0, . . . , 0,︸ ︷︷ ︸

|I| zeros

1, Q1, . . . , Qn)

and an appropriate M ×N matrix A.
We do not attempt to write out A explicitly, but as follows use duality to compute AT .

Let us take x = µ ∈ RN , µ = ((µij)) as above, and also write y ∈ RM as

(2.10) y = (vi (i ∈ I), w0, w1, . . . , wn).

Then

AT y · x = y ·Ax =
1
|J |

n∑
k=1

∑
i,j

vijk(µi−ek,j
− µij)

+
1
|I||J |

∑
i,j

w0µij +
1
|I||J |

n∑
k=1

∑
i,j

wk
jk

K
µij

=
1
|I||J |

∑
i,j

µij

(
n∑

k=1

(vi+ek
− vi)jk + w0 +

n∑
k=1

wkjk

K

)
.
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Hence the (i, j)th component of AT y is

(2.11)
1
|I||J |

(
n∑

k=1

(vi+ek
− vi)jk + w0 +

n∑
k=1

wkjk

K

)
,

where y has the form (2.10).

Suppose now that x̂ = µ, ŷ = (vi (i ∈ I), w0, w1, . . . , wn) are optimal. According to the
constraints and the complementary slackness condition (2.2), we have

(2.12)

{
w0 +

∑n
k=1

(
wk + vi+ek

−vi

1/K

)
jk

K ≤ λij

for all indices i ∈ I, j ∈ J , with equality if µij > 0.

2.4 Interpretations of complementary slackness.

a. Geometry of the support of µ.

For each fixed multiindex i ∈ I, define the function

(2.13) ψ(q) := L

(
q,

i

K

)
−

n∑
k=1

(
wk +

vi+ek
− vi

1/K

)
qk − w0.

for q ∈ Rn, q = (q1, . . . , qn). Then condition (2.12) states

(2.14) ψ

(
j

K

)
≥ 0 for all j ∈ J , with ψ

(
j

K

)
= 0 if µij > 0.

But the Lagrangian L, and so also ψ, are uniformly convex in q. Consequently ψ
(

j
K

)
= 0

for at most two adjacent lattice points in any coordinate direction, as illustrated. Hence

(2.15)
{

for each index i ∈ I, µij > 0 for at most 2n values of j ∈ J . These
points lie in a subset of the vertices of a cube of side length 1/K.

So duality theory predicts that the support of µ is approximately a graph.

���������ψ�

��	
���	���
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b. Approximate solutions of the corrector PDE

According to (2.12),

(2.16) w0 + (w + DKv) · j

K
≤ λij = L

(
j

K
,

i

K

)

where w = (w1, . . . , wn), DKv :=
(
. . . ,

vi+ek
−vi

1/K . . .
)
, with equality if µij > 0. Therefore

for each i ∈ I we have

HK

(
w + DKv,

i

K

)
:= sup

j∈J

{
j

K
· (w + DKv)− L

(
j

K
,

i

K

)}
≤ −w0,

with equality if there exists j ∈ J with µij > 0. We write

PK := w, H̄K(PK) := −w0.

Then

HK

(
PK + DKv,

i

K

)
≤ H̄K(PK) for i ∈ I, j ∈ J

and

HK

(
PK + DKv,

i

K

)
= H̄K(PK) wherever µ > 0.

This is a discrete analogue of the generalized eikonal equation H(P +Dv, x) = H̄(P ) from
weak KAM theory, as discussed in the next section.

Remark. The foregoing suggests a numerical approximation scheme for the generalized
eikonal equation. It is perhaps interesting that this procedure does not involve any sort of
upwinding method, to compute the correct, viscosity solution across shocks. Presumably
this is because, as discussed for instance in [E-G], there are no discontinuities of Dv on
the support of projection σ of the Mather measure onto Tn. �

3. Linear programming: continuum case.

In this section we discuss analogues for Mather’s problem (1.2)− (1.5) of the foregoing
discrete calculations. These involve infinite dimensional linear programming issues, for
which the book of Anderson and Nash [A-N] provides a good introduction. Our viewpoint
is not that infinite dimensional linear programming immediately provides us with useful
theorems. For instance there are subtle problems in finding the proper abstract spaces.
Rather we take on the more modest task of pointing out that certain known facts from
weak KAM theory are predicted by linear programming, at least heuristically.
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3.1 Infinite dimensional linear programming.

One infinite dimensional analogue of the linear programming problem discussed in §2.1
is this. Let X, Y be real topological vector spaces, and assume X is endowed with a
partial ordering, which is compatible with the linear structure and which induces a partial
ordering on its dual space X∗. We denote the pairing between a space and its dual by 〈 , 〉.

Fix c∗ ∈ X∗, b ∈ Y and suppose A : X → Y is a continuous linear operator, with
adjoint A∗ : Y ∗ → X∗. The primal problem is to find x̂ ∈ X to

(P)




minimize 〈c∗, x〉,
subject to the constraints that
Ax = b, x ≥ 0;

and the dual problem is to find ŷ∗ ∈ Y ∗ to

(D)




maximize 〈y∗, b〉,
subject to the constraints that
A∗y∗ ≤ c∗.

In this setting we do not generally have a strong duality assertion like Theorem 2.1. We
can however assert weak duality:

Theorem 3.1 (Weak duality).

(i) Assume that x is feasible for (P) and y∗ is feasible for (D). Then

〈y∗, b〉 ≤ 〈c∗, x〉.

(ii) Furthermore, if x̂ is feasible for (P) and ŷ∗ is feasible for (D), and if

(3.1) 〈ŷ∗, b〉 = 〈c∗, x̂〉,

then x̂ is optimal for (P) and ŷ∗ is optimal for (D).
Assertion (3.1) is equivalent to

(3.2) 〈A∗ŷ∗ − c∗, x̂〉 = 0.

The identity (3.2) is the complementary slackness condition.
It is also useful to define the duality gap

(3.3) ∆ := inf{〈c∗, x〉 | Ax = b, x ≥ 0} − sup{〈y∗, b〉 | A∗y∗ ≤ c∗}.
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3.2 Primal problem.

In this section we cast Mather’s variational problem into the foregoing framework. Let
us firstly take

(3.4) X =M(Rn × Tn),

the space of Radon measures on Rn × Tn, and

(3.5) Y = C1(Tn)∗ × R× Rn.

Let c∗ = L ∈ X∗, b = (0∗, 1, Q) ∈ Y , where 0∗ denotes the zero functional.
If µ ∈ X, we write

(3.6) Aµ :=
(

Lµ, µ(Rn × Tn),
∫
Rn

∫
Tn

q dµ

)
.

In this expression Lµ denotes the linear functional defined for each φ ∈ C1(Tn) by the
formula

(3.7) Lµφ :=
∫
Rn

∫
Tn

q ·Dφ(x) dµ.

The primal problem (P) is therefore to find a measure µ to

minimize 〈c∗, µ〉 =
∫
Rn

∫
Tn

L dµ,

subject to the requirements that

(3.8) µ ≥ 0, Aµ = b.

3.3 Dual problem.

Let y∗ = (v, w0, w) ∈ Y ∗ = C1(Tn)∗∗ × R × Rn. We will vastly simplify, by simply
assuming hereafter that in fact v ∈ C1(Tn).

We compute A∗y∗ by calculating for x = µ that

〈A∗y∗, x〉 = 〈y∗, Ax〉 =
∫
Rn

∫
Tn

q ·Dv(x) + w0 + w · q dµ.

We deduce
A∗y∗ = w0 + q · (w + Dv).

So the dual problem is to find y∗ = (v, w0, w) to

(3.9) maximize 〈y∗, b〉 = w0 + Q · w,

subject to the pointwise constraints that

(3.10) w0 + q · (w + Dv) ≤ L(q, x) in Rn × Tn.
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3.4 Interpretations of complementary slackness.

a. Geometry of the support of µ. Assume now that x̂ = µ and ŷ∗ = (v, w0, w)
are optimal, and as before suppose as well that v ∈ C1(Tn). Then the complementary
slackness condition implies

(3.11) w0 + q · (w + Dv) = L(q, x) on spt(µ).

For each fixed x ∈ Tn, define the function

ψ(q) := L(q, x)− q · (w + Dv)− w0.

Then

(3.12) ψ ≥ 0 on Rn, and ψ = 0 on spt(µ).

Since L and therefore ψ are uniformly convex in the variable q, it follows for each x ∈ Tn

that the support of µ in Rn×{x} consists of at most one point q ∈ Rn. Since the gradient
of ψ(q) vanishes at its minimum, we in fact have DqL(q, x) = w + Dv(x). Consequently,
the Mather set spt(µ) lies on the n-dimensional graph q = (DqL(·, x))−1(w + Dv(x)) over
T

n.

b. Solutions of the generalized eikonal PDE. Let

H(p, x) := max
q∈Rn
{q · p− L(q, x)}

denote the Hamiltonian associated with the Lagrangian L. In view of (3.10), we have

(3.13) H(w + Dv, x) = max
q∈Rn

{q · (w + Dv)− L(q, x)} ≤ −w0 on Tn,

with equality on the support of σ := projx µ, the projection of µ onto the x-variables. We
change notation, now to write

(3.14) P := w, H̄(P ) := −w0.

Then
H(P + Dv, x) ≤ H̄(P ) on Tn,

with

(3.15) H(P + Dv, x) = H̄(P ) on spt(σ).
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This is the generalized eikonal equation, the basic PDE for “weak KAM theory”: see
Fathi [F1-3] and [E-G]. We observe also that the Mather set must lie on the graph q =
DpH(P + Dv(x), x).

In view of the change of notation (3.14), the maximization principle (3.9) is now to find

max
P

(Q · P − H̄(P )) =: L̄(Q),

the effective Lagrangian evaluated at the given vector Q.

Remark. Observe that linear programming does not predict that the generalized eikonal
PDE hold everywhere, but only on spt(σ), which is the projection of the Mather set onto
T

n. This is consistent with the alternative variational method developed in [E2]. �

c. Duality gap. The foregoing deductions we made under the assumption that we
had (i) a measure x̂ = µ solving the primal problem and (ii) a triple ŷ∗ = (v, w0, w) ∈
C1(Tn)× R× Rn solving the dual problem (D).

However, we are not aware of any general theorem asserting the existence of a solution
of (D) as above, and consequently the conclusions before are unjustified. However, we can
in fact show rigorously that there is no duality gap: recall the definition (3.3). Indeed, as
explained in the work of Mather and of Fathi, we have

(3.16) inf{〈c∗, x〉 | Ax = b, x ≥ 0} = L̄(Q),

where L̄ is the effective Lagrangian, the convex dual of H̄. On the other hand, according
to Lions–Papanicolaou–Varadhan [L-P-V], Fathi [F1-3], [E-G], etc, for each P ∈ Rn there
exists a Lipschitz continuous function v solving

H(P + Dv, x) = H̄(P ) in Tn

in the sense of viscosity solutions. As in [E-G], we introduce the mollified function vε :=
ηε ∗ v, where ηε is a radial convolution kernel in the variables x. Since the PDE H(P +
Dv, x) = H̄(P ) holds pointwise a.e., we have

(3.17) H(P + Dvε, x) ≤ H̄(P ) + Cε

for each x ∈ Tn.
Now take y∗ε = (vε,−H̄(P )− Cε, P ). Owing to (3.17), we have

w0 + q · (w + Dvε) = −H̄(P )− Cε + q · (P + Dvε)

≤ max
r
{r · (P + Dvε)− L(r, x)} − H̄(P )− Cε + L(q, x)

= H(P + Dvε, x)− H̄(P )− Cε + L(q, x)

≤ L(q, x) in Rn × Tn.
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Hence y∗ε is feasible for the dual problem. Consequently,

sup{〈y∗, b〉 | A∗y∗ ≤ c∗} ≥ −H̄(P )− Cε + Q · P
= L̄(Q)− Cε

= inf{〈c∗, x〉 | Ax = b, x ≥ 0} − Cε.

Since this holds for each ε > 0, the duality gap ∆ is zero.

Remark. In light of the foregoing, we propose these interpretations:
• The vector P is the Lagrange multiplier for the constraint (1.5), that the measure µ

have the rotation vector Q.
• The number H̄(P ) is the Lagrange multiplier for the constraint (1.4) that µ be a

probability measure.
• The function v, solving the generalized eikonal equation, is the Lagrange multiplier

for the constraint (1.3) that µ be flow invariant. �
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