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Abstract

This paper introduces a new representation formula for viscosity solutions of non-
convex Hamilton–Jacobi PDE using “generalized envelopes” of affine solutions. We
study as well envelope and singular characteristic constructions of equivocal surfaces
and discuss also differential game theoretic interpretations.

In memory of Arik A. Melikyan.

1 Introduction

This paper is devoted to several themes, mostly concerning envelope constructions of viscosity
solutions for nonconvex Hamilton–Jacobi PDE and of their singular surfaces. We explain as
well some implications for Hamilton–Jacobi–Isaacs PDE from differential game theory.

1.1 Constructing solutions from envelopes. Given a smooth Hamiltonian H : Rn →
R and a smooth function g : Rn → R, define

(1.1) v(x, y, t) := g(y) + (x− y) ·Dg(y)− tH(Dg(y)).

Then for each fixed y ∈ Rn, the mapping (x, t) 7→ v(x, y, t) is affine and solves the Hamilton–
Jacobi equation ut + H(Du) = 0. We compute the envelope of this family of functions by
setting

(1.2) Dyv(x, y, t) = (x− y − tDH(Dg(y)))D2g(y) = 0.

Assuming D2g is nonsingular, we see that therefore

(1.3) x = y + tDH(Dg(y)).
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For the moment, let us suppose we can uniquely and smoothly solve this expression for
y = y(x, t). The envelope of the family of functions v is then u(x, t) := v(x, y(x, t), t); and
(1.3) implies

(1.4) ut(x, t) = −H(Dg(y(x, t))), Du(x, t) = Dg(y(x, t)).

Consequently, the envelope u so defined solves the initial-value problem

(1.5)

{
ut +H(Du) = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}.

These computations are of course purely formal, but motivate the following rigorous consid-
erations.

Envelopes and viscosity solutions. Lax, E. Hopf and other authors long ago under-
stood for a convex Hamiltonian H that the expression

(1.6) u(x, t) := inf
y∈Rn

{
g(y) + tL(x−y

t
)
}

(Hopf–Lax)

where L := H∗ is the dual convex function of H, provides the correct solution of (1.5), in
modern parlance the viscosity solution. This is in fact a two-parameter envelope construction,
as we can rewrite (1.6) as

(1.7) u(x, t) := inf
y∈Rn

sup
z∈Rn

{g(y) + (x− y) · z − tH(z)} .

E. Hopf in [H] proposed a second formula for nonconvex Hamiltonians, but with a convex
initial function g that grows at most linearly:

(1.8) u(x, t) := sup
z∈Rn

{x · z − g∗(z)− tH(z)} (Hopf)

where g∗ denotes the convex dual of g. This is also a two-parameter envelope, had by
interchanging the sup and inf in (1.7):

(1.9) u(x, t) := sup
z∈Rn

inf
y∈Rn
{g(y) + (x− y) · z − tH(z)} .

Observe that our extremizing the two-parameter family of solutions g(y)+(x−y)·z−tH(z) in
y implies that z = Dg(y), in which case the one-parameter family of solutions (1.1) appears.

Inspired by Osher’s paper [O], M. Bardi and I proved in [B-E] that (1.8) provides a
representation formula for the unique viscosity solution of the initial value problem (1.5),
provided that g is convex. See Lions–Rochet [L-R] or Cardaliaguet [C] for better proofs; and
look also at Theorem 3.2 below. An interesting related paper is Bardi–Faggian [B-F].
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Section 2 of this paper derives a new representation formula for the viscosity solution
of (1.5), for nonconvex H and nonconvex initial data g, as a sort-of generalized envelope
of the affine solutions (1.1). We discuss various applications in Section 3, and in particular
interpret our expression as a generalization of both the Hopf–Lax and Hopf formulas. The
main technical tool is introducing solutions σε to the adjoint of the formal linearization of a
smooth approximation to (1.5), a method I used for nonconvex Hamilton–Jacobi PDE in a
different way in my earlier paper [E]. See also Tran [T] and Cagnetti–Gomes–Tran [C-G-T].

1.2 Equivocal surfaces as envelopes. A big difference between convex versus non-
convex Hamiltonians H is that for the latter the viscosity solution u of the initial-value
problem (1.5) can admit what we will call in this paper “envelope shocks”, that is, surfaces
of discontinuity of ∇u from which characteristics can leave tangentially going forward in
time: see Figure 1.

Γ

x-axis

t-axis

Figure 1: An “envelope shock”

An important research goal is understanding how the nonconvexity of H gives rise to
such structures. As a step towards this, we explain in Section 4 some explicit expressions
for these envelope shocks in terms of the gradient of u on both sides and the second deriva-
tives of u from the “incoming” side. These calculations provide simplified derivations of
general formulas found by A. Melikyan in his extremely interesting book [M] on singular
characteristics.

1.3 Differential games. Two-person zero-sum differential games provide a rich variety
of Hamilton-Jacobi type PDE with nonconvex Hamiltonians. In particular, Isaacs [I, Chapter
10] identified for certain differential games what he called “equivocal surfaces”, which are
singular surfaces for the corresponding HJI equation, along which one or both players has
many optimal strategies available. Differential games may also entail barriers, which are
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surfaces of discontinuity of the value function u. In Sections 5 and 6 we present a PDE
interpretation of barriers and a game theoretic interpretation of envelope shocks as equivocal
surfaces. We end with some new geometric insights into an example due to Isaacs.

We hereafter informally use the fortuitous abbreviation ES for both “equivocal surfaces”
and “envelope shocks”.

Notation. We use “D” for the gradient of a function of the n variables x = (x1, . . . , xn),
and “∇” for the full gradient of a function of the n+1 variables (x, t) = (x1, . . . , xn, t). Thus
∇u = (Du, ut). We will also often denote a point of Rn+1 as q = (p, pn+1) for p ∈ Rn and
pn+1 ∈ R.

2 A representation formula

In this section we set forth for nonconvex H an envelope-type representation formula for the
unique viscosity solution of the initial value problem (1.5). We will later see that this expres-
sion generalizes Hopf’s formula (1.8) to nonconvex initial data (but is much less explicit).

2.1 An integral formula in terms of plane waves. Assume for now that H : Rn → R
is C1 and g : Rn → R is bounded and C1, with bounded gradient. Let u denote the unique
viscosity solution of the initial value problem (1.5).

THEOREM 2.1 For Ln+1 almost every point (x, t) ∈ Rn × (0,∞) there exists a Radon
probability measure γx,t on Rn such that

(2.1) u(x, t) =

∫
Rn

g(y) + (x− y) ·Dg(y)− tH(Dg(y)) dγx,t.

Furthermore,

(2.2) ut(x, t) = −
∫
Rn

H(Dg(y)) dγx,t, Du(x, t) =

∫
Rn

Dg(y) dγx,t,

and

(2.3) H

(∫
Rn

Dg(y) dγx,t

)
=

∫
Rn

H(Dg(y)) dγx,t.

Observe that although the expression (2.1) may appear to be linear, it is in fact highly
nonlinear, since the measure γx,t depends upon the solution. Our representation formula
is rather a sort-of “linear/envelope decomposition” of the solution u into the plane wave
solutions (1.1). Note in particular that the expressions (2.2) generalize the formulas (1.4),
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and indeed coincide with (1.4) if γx,t = δy(x,t). In general γx,t need not be a point mass,
although the nontrivial identity (2.3) must still hold.

2.2 Approximations, estimates. To establish (2.1), (2.2) we consider first the corre-
sponding initial-value problem for the regularized Hamilton–Jacobi equation:

(2.4)

{
uεt +H(Duε) = ε∆uε in Rn × (0,∞)

uε = g on Rn × {t = 0}.

As in [E] (see also Tran [T]) we study the adjoint of the linearization of (2.4). Given
next a time t1 > 0 and a Radon probability measure α on Rn, we introduce this terminal
value problem, the adjoint of the linearization of (2.4):

(2.5)

{
−σεt − div(σεDH(Duε)) = ε∆σε in Rn × [0, t1)

σε = α on Rn × {t = t1}.

We record next the elementary estimates that for each time t1 > 0

(2.6) sup
Rn×[0,t1]

|uε|, |Duε|, |uεt | ≤ C and σε ≥ 0,

∫
Rn

σε dx = 1 (0 ≤ t < t1).

Also, as demonstrated in [E] there exists a constant C, independent of ε > 0, such that

(2.7) ε

∫ t1

0

∫
Rn

(|D2uε|2 + |Duεt |2)σεdxdt ≤ C.

Furthermore, uε → u locally uniformly, where u is the unique viscosity solution of (1.5).

2.3 Approximating a point mass by the average over a cylinder. Fix a point
(x1, t1) ∈ Rn × (0,∞), and define the cylinder

(2.8) C(x1, t1, r) := B(x1, r)× [t1, t1 + r]

for small r > 0. Fix r > 0 and let σεs,r denote the solution of (2.5) having as terminal data
the function

(2.9) αr :=
1

|B(x1, r)|
χ

B(x1,r)
.

at time s, where t1 ≤ s ≤ t1 + r. Now average with respect to s:

(2.10) σεr(x, t) :=

∫
−
t1+r

t1

σεs,r(x, t) ds

for (x, t) ∈ Rn × [0, t1); and observe that σεr solves the adjoint PDE (2.5).
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THEOREM 2.2 (i) The function

(2.11) wε := uε − x ·Duε − tuεt

solves the PDE

(2.12) wεt +DH(Duε) ·Dwε = ε∆wε + ε∆uε.

(ii) Also,

(2.13)

∫
−
C(x1,t1,r)

wε dxdt =

∫
Rn

wε(y, 0)σεr(y, 0) dy +O(ε
1
2 ).

Proof. 1. We have wεt = −x ·Duεt − tuεtt, wεxi = −x ·Duεxi − tu
ε
xit

, and therefore

wεt +Hpiw
ε
xi

= −x · (Duεt +HpiDu
ε
xi

)− t(uεtt +HpiDu
ε
t)

= ε(−x ·∆Duε − t∆uεt) = ε∆wε + ε∆uε.

2. Select a time t1 ≤ s ≤ t1 + r, and define σεs,r as above. Then for times 0 ≤ t ≤ s, we
have

d

dt

∫
Rn

wεσεs,r dx =

∫
Rn

wεtσ
ε
s,r + wε(σεs,r)t dx

=

∫
Rn

(−Hpiw
ε
xi

+ ε∆wε + ε∆uε)σεs,r + wε(−(σεs,rHpi)xi − ε∆σεs,r) dx

=

∫
Rn

ε∆uεσεs,r dx = O(ε
1
2 ),

according to the estimates (2.6) and (2.7). Integrate from 0 to the time s:∫
−
B(x1,r)

wε(x, s) dx =

∫
Rn

wε(y, 0)σεs,r(y, 0) dy +O(ε
1
2 ).

Finally, average for t1 ≤ s ≤ t1 + r, to derive the integral identity (2.13). �

2.4 Proof of Theorem 2.1. Since
∫
Rn σ

ε
r(y, 0) dy = 1 and σεr(y, 0) ≥ 0, there exists a

sequence εj → 0 such that σ
εj
r (y, 0) dy ⇀ dσr weakly as measures on Rn. Observe next that

wε(y, 0) = g(y)− y ·Dg(y).

Since uε → u locally uniformly and ∇uε ⇀ ∇u weakly* in L∞, we may therefore pass to
limits in the identity (2.13), to learn that∫

−
C(x1,t1,r)

u− x ·Du− tut dxdt =

∫
Rn

g(y)− y ·Dg(y) dσr.

6



Assume next that (x, t) is a Lebesgue point for ∇u. We now select a sequence rj → 0
such that σrj ⇀ dγx,t weakly as measures on Rn. Then our putting r = rj above and sending
rj → 0 gives

u(x, t)− x ·Du(x, t)− tut(x, t) =

∫
Rn

g(y)− y ·Dg(y) dγx,t.

We conclude by noting that

Du(x, t) =

∫
Rn

Dg(y) dγx,t, ut(x, t) =

∫
Rn

ut(y, 0) dγx,t =

∫
Rn

H(Dg(y)) dγx,t

�

Interpretation: an “infinitesimal” domain of dependence. The following manip-
ulations are only formal, but provide some additional understanding.

Given a smooth, bounded function h : Rn → R, we suppose for each −1 < τ < 1 that
uτ = uτ (x, t) is the unique viscosity solution of{

uτt +H(Duτ ) = 0 in Rn × (0,∞)

uτ = g + τh on Rn × {t = 0}.

Then calculations similar to those above suggest this formula for the derivative of uτ in the
parameter τ :

∂

∂τ
uτ (x, t)|τ=0 =

∫
Rn

h dγx,t.

In other words, an O(τ) change in the initial data outside the support of γx,t will have at
most a o(τ) effect on the solution at the point (x, t). �

Remark: unbounded initial data. In one of our applications in Section 3 we will
need (2.1) when the initial function g has bounded gradient, but g itself may be unbounded.

Our formula (2.1) is still valid in this case. Indeed, the gradientDuε is uniformly bounded,
and consequently we have finite propagation speed. In particular, as in the proof of Theorem
3.5 (ii) in [E], we can show that spt γx,t ⊆ B(x,Mt), where M := sup{|DH(Duε)|}. So the
behavior of the initial data g outside the ball with center x and radius Mt is not relevant.

�

3 Applications

This section discusses some applications of the representation formulas (2.1)–(2.3) and of
the adjoint technique used for their proof.
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3.1 Homogeneous Hamiltonians. We assume for this subsection that the Hamiltonian
H is positively homogeneous of degree one and thus

(3.1) DH(p) · p = H(p) (p 6= 0).

Now let u be the unique viscosity solution of the initial-value problem (1.5). Formal calcu-
lations using characteristics then imply

ẋ = DH(p), ṗ = 0, ż = p ·DH(p)−H(p) = 0,

where p(t) = Du(x(t), t) and z(t) = u(x(t), t); and hence u is constant along the character-
istics. The following theorem provides rigorous justification:

THEOREM 3.1 For Ln+1 almost every point (x, t) ∈ Rn × (0,∞), we have

(3.2) g = u(x, t) γx,t almost everywhere.

Proof. In view of (3.1), the solution uε of (2.4) satisfies

uεt +DH(Duε) ·Duε = ε∆uε in Rn × (0,∞).

Select a smooth function φ : Rn → Rn and put wε := φ(uε). Then

wεt +DH(Duε) ·Dwε = ε∆wε − εφ′′(uε)|Duε|2.

As in the previous section, we multiply by σεr , integrate, and pass to limits, to derive the
formula

φ(u(x, t)) =

∫
Rn

φ(g(y)) dγx,t.

Now select φ(z) := (z − u(x, t))2 to finish the proof. �

Our later Theorem 6.1 generalizes this argument to nonhomogeneous Hamiltonians, and
provides a game theoretic interpretation.

3.2 The Hopf–Lax and Hopf formulas again. Our representation (2.1), (2.2) and
(2.3) generalizes both the classical Hopf–Lax and Hopf formulas (1.6) and (1.8):

THEOREM 3.2 Suppose u is the unique viscosity solution of (1.5) and consequently sat-
isfies (2.1)–(2.3).

(i) If H is convex, then the Hopf–Lax expression (1.6) is valid for all points (x, t) ∈
Rn × (0,∞).

(ii) If instead g is convex and grows at most linearly, then Hopf’s expression (1.8) holds
for all points (x, t) ∈ Rn × (0,∞).

In both cases, for Ln+1 almost every point (x, t), γx,t is the unit mass at the point

(3.3) y = x− tDH(Du(x, t)).

8



When the solution u has “equivocal surfaces” in the gradient, the measure γx,t is not a
point mass. So equivocal surfaces cannot occur for the cases (i) and (ii) of either a convex
Hamiltonian or convex initial data.

Proof. 1. For case (i) we may assume H is uniformly convex, since we can approximate by
uniformly convex Hamiltonians otherwise.

Select a point (x, t) at which u is differentiable and at which (2.1)–(2.3) hold. Then as
H is uniformly convex, it follows from (2.2) and (2.3) that Dg(y) = Du(x, t) for γx,t almost
every point y. Since u is differentiable at (x, t), the only possibility is that γx,t is a Dirac
mass at the point y = y(x, t) = x− tH(Du(x, t)), since otherwise there would be more than
one characteristic hitting the point (x, t). Then (2.1) implies

u(x, t) = g(y(x, t)) + (x− y(x, t)) ·Dg(y(x, t))− tH(Dg(y(x, t)))

= g(y(x, t)) + tL(x−y(x,t)
t

),
(3.4)

since DL(x−y(x,t)
t

) = Du(x, t) = Dg(y(x, t)). Also, since ut+H(Du) = 0 implies ut+z ·Du ≤
L(z) for each z ∈ Rn, the comparison principle for viscosity solutions implies

u(x, t) ≤ g(x− tz) + tL(z).

Thus
u(x, t) ≤ inf

z
{g(x− tz) + tL(z)} = inf

y
{g(y) + tL(x−y

t
)}.

This and (3.4) give (1.6), at those points where (2.1)–(2.3) are valid. By continuity, (1.6)
holds for all x, t.

2. Assume now the hypothesis of (ii), and recall from the last remark in Section 2 that
our representation formula (2.1) is valid in the current setting.

Let (x, t) ∈ Rn × (0,∞) be a point at which u is differentiable and at which (2.1) holds.
As γx,t is a probability measure, we have

sup
z
{x · z − g∗(z)− tH(z)} ≥

∫
Rn

x ·Dg(y)− g∗(Dg(y))− tH(Dg(y)) dγx,t

=

∫
Rn

g(y) + (x− y) ·Dg(y)− tH(Dg(y)) dγx,t

= u(x, t),

(3.5)

since g∗(Dg(y))+g(y) = Dg(y)·y. Conversely, for each y, z ∈ Rn we have y ·z−g∗(z) ≤ g(y);
and consequently the comparison principle for viscosity solutions gives

x · z − g∗(z)− tH(z) ≤ u(x, t).
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This inequality is valid for each z. Hopf’s representation (1.8) follows, and we see also that
the inequality sign in (3.5) is in fact an equality.

Since g grows at most linearly, g∗ equals infinity outside some compact set. So the
supremum in Hopf’s formula (1.8) is really a maximum. Therefore for γx,t almost every y,
z = Dg(y) gives the max in Hopf’s formula (1.8). But as u is differentiable at the point
(x, t), we also have z = Du(x, t) = Dg(y). There is only one possibility for the point
y = x− tH(Du(x, t)) and thus γx,t is a unit mass there. �

Example: linear-quadratic differential games. The theory of differential games (see
Lewin [L, Section 7.4]) provides formulas for very special solutions of quadratic, nonconvex
Hamilton–Jacobi PDE. For an easy case, consider the problem

(3.6)

{
ut + 1

2
Du ·BDu = 0 in Rn × (0,∞)

u = 1
2
x ·Qx on Rn × {t = 0},

where B,Q are symmetric n × n matrices, Q is positive definite, and B has both positive
and negative eigenvalues. So the Hamiltonian H(p) := 1

2
p · Bp is nonconvex, but the initial

function g(x) := 1
2
x ·Qx is convex.

Following standard ideas for linear-quadratic problems we seek a solution of the form
u(x, t) = 1

2
x · S(t)x, where the symmetric matrix function S verifies the Riccati equation

(3.7) Ṡ + SBS = 0 (t > 0)

with S(0) = Q. The solution is S(t) = (Q−1 + tB)−1, valid until the first time t∗ > 0 when
Q−1 + tB fails to be invertible.

Although Hopf’s formula (1.8) is not applicable for (3.6), since g grows quadratically, it
nevertheless suggests the the alternative representation

(3.8) u(x, t) = sup
z
{x · z − 1

2
z ·Q−1z − t

2
z ·Bz}.

For small t > 0 the sup occurs for z = (Q−1 + tB)−1x, and so (3.8) agrees with the answer
provided by solving (3.7). The expression (3.8) breaks down at t∗ since the supremum
becomes infinite. �

3.3 The structure of the envelope shocks. For another application of our represen-
tation formulas (2.1) and (2.2), we indicate briefly how the geometry of the characteristic
surface

(3.9) Σ := {q | pn+1 +H(p) = 0}

( where q = (p, pn+1) for p ∈ Rn and pn+1 ∈ R) constrains the complexity of the structure of
the characteristics leading to the point (x, t). For this we will assume that u is a piecewise
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smooth, viscosity solution; and will discuss informally that we can sometimes estimate, in
terms of the location of ∇u(x, t) on Σ, the number of times a backwards characteristic starting
at (x, t) can intersect different envelope surfaces before reaching Rn × {t = 0}.

We assume for this section that u is a Lipschitz continuous and piecewise-C1 solution.
We suppose further that limp→∞H(p) =∞ and that H is convex outside of some bounded
set. Then Σ has the typical shape drawn in Figure 2.

Σ

Σ1

Σ1

Figure 2: The sets Σ and Σ1.

The set Σ1 ⊆ Σ. To start, let us assume that ∇u(x, t) lies on

(3.10) Σ1 := Σ ∩ co(Σ),

where “co” denote the closed, convex hull.

THEOREM 3.3 Assume that u is differentiable at (x, t). Suppose also that

(3.11) ∇u(x, t) ∈ Σ1 and Σ1 is strictly convex near ∇u(x, t).

Then γx,t is the unit mass at the point

(3.12) y = y(x, t) = x− tDH(Du(x, t)).

In particular there exists a straight backwards characteristic starting at (x, t) that extends
all the way until it hits Rn × {t = 0} at the point y.

Proof. According to (2.2), we have

∇u(x, t) =

∫
Rn

(Dg(y),−H(Dg(y))) dγx,t =

∫
Rn+1

q dµx,t,

where µx,t is a probability measure on Σ, the push-forward of γx,t under the mapping y 7→
(Dg(y),−H(Dg(y))) ∈ Σ. Consequently ∇u(x, t) is the center of mass of a probability
measure supported in Σ; and therefore

(3.13) µx,t = δ∇u(x,t),
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since (3.11) and the strict convexity assumption imply that ∇u(x, t) is an extreme point of
the support of µx,t.

Owing to (3.13), we therefore have (Dg(y),−H(Dg(y))) = ∇u(x, t) for γx,t almost every
point y. Consider now the forward characteristics starting at each such point y in the support
of γx,t. If and until these characteristics hit the singular set of ∇u, we have ∇u = ∇u(x, t)
along the path of the characteristic. If one of the characteristics ends at a compressive shock
before time t, it cannot therefore reach the point (x, t). Furthermore, the characteristic
cannot hit an envelope shock. Thus the only remaining possibility is that there is only one
such characteristic, starting at the point y = x− tH(Du(x, t)). �

We provide next an alternative interpretation of this result. Let Ĥ denote the largest
convex function less than or equal to H. Then

Σ1 = {q = (p, pn+1) | H(p) = Ĥ(p)}.

We turn our attention to the convex initial-value problem

(3.14)

{
ût + Ĥ(Dû) = 0 in Rn × (0,∞)

û = g on Rn × {t = 0}.

THEOREM 3.4 Assume that u is differentiable at (x, t) and that (3.11) holds. Then

u(x, t) = û(x, t).

Proof. Since Ĥ ≤ H, we see that ût + H(Dû) ≥ 0 in the viscosity sense, and thus u ≤ û
everywhere.

Conversely, Theorem 3.3 and the representation formula (2.1) imply

u(x, t) = g(y) +Dg(y) · (x− y)− tH(Dg(y)) = g(y) +Dg(y) · (x− y)− tĤ(Dg(y)),

the point y = y(x, t) given by (3.12). Since x−y
t

= DĤ(Dg(y)), we therefore have

u(x, t) = g(y) + tL̂(x−y
t

) ≥ inf
z∈Rn

{
g(z) + tL̂(x−z

t
)
}

= û(x, t),

according to the Hopf–Law formula (1.6). �

The set Σ2 ⊆ Σ. Next, we define

(3.15) Σ2 := Σ ∩ co(Σ− Σ1).
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Σ2

Σ1q+

Σ1

q
_

Figure 3: The sets Σ1 and Σ2

The important property is that if q+ = ∇u(x, t) belongs to a smooth part of Σ2, then the
tangent plane at q+ intersects Σ only at other points q− that belong to Σ1: see Figure 3. We
henceforth assume that all such points q− in fact lie within uniformly convex portions of Σ1.

The geometric consequence in physical space is that a straight backwards characteristic
starting at (x, t) either (i) will extend all the way back to the starting time t = 0, or else
(ii) will tangentially hit an envelope shock at the point (x1, t1) with 0 < t1 < t. In the
latter case, the state q− = ∇u−(x1, t1) belongs to the set Σ1 and consequently, the backward
characteristic from that point must extend all the way to t = 0, according to Theorem
(3.3). Thus, if ∇u(x, t) ∈ Σ2, then there exists a piecewise-linear backwards characteristic
extending to t = 0 with at most two pieces.

We can in principle extend the foregoing analysis to identify subsets Σk ⊂ Σ for k = 2, . . . ,
with the property that if ∇u(x, t) ∈ Σk, then there exists a piecewise-linear backwards
characteristic extending to t = 0 with at most k pieces.

4 Formulas for equivocal curves and surfaces

A. Melikyan’s book [M] introduces generalized characteristics for Hamilton–Jacobi type PDE
and in particular uses solutions of these ODE to deduce information about the properties of
what this paper calls equivocal surfaces. We present now some new and simple derivations,
with attention paid to the geometric and analytic properties of equivocal curves (n = 1) and
surfaces (n ≥ 2).

4.1 One space dimension. Consider first the case n = 1.

(4.1)

{
ut +H(ux) = 0 in R× (0,∞)

u = g on R× {t = 0},

which case is equivalent to studying scalar conservation laws: see for instance Ballou [Ba1,
Ba2], Dafermos [D].
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We assume that the curve Γ = {x = s(t)} is an equivocal curve, as drawn in Figure 1.
We therefore have the ODE

(4.2) ṡ(t) = H ′(u+x (s(t), t)),

where we denote by ∇u+ = ∇u+(s(t), t) and ∇u− = ∇u−(s(t), t) the right- and left-hand
values of the gradient ∇u = (ux, ut) along the curve at time t. Figure 4 illustrates typical
locations of q± := ∇u±, and the line segment connecting q+ and q− is tangent to the
curve Σ at q+, since we have a contact discontinuity there. We think of u− as providing
“incoming” information to Γ, whereas u+ is “outgoing”. For definiteness, we assume that
locally u−x < u+x , as drawn.

Blow up of u+
xx along Γ. A goal of this section is to augment (4.2) by computing as

well s̈. This does not follow from just naively differentiating (4.2), since the geometric form
of Γ as an envelope of the outgoing characteristics (see Figure 1) forces u+xx to be unbounded
near Γ, as we demonstrate next.

Given a point (s(t), t) ∈ Γ and a small time τ > t, let

r(τ) := s(t) + (τ − t)H ′(u+x (s(t), t));

so that (r(τ), τ) lies on the tangent line to Γ passing through (s(t), t).

LEMMA 4.1 Assume s̈(t) 6= 0. Then

(4.3) uxx(r(τ), τ) =
1

(τ − t)H ′′(u+x (s(t), t))
;

and therefore if H ′′(u+x (s(t), t)) 6= 0, we have |uxx(r(τ), τ)| → ∞ as τ → t+.

Proof. Select a small h > 0 and define

r(τ, h) := s(t+ h) + (τ − t− h)H ′(u+x (s(t+ h), t+ h)).

Then (r(τ, h), τ) lies on the tangent line to Γ passing through (s(t+ h), t+ h) and so

r(τ, h) = s(t+ h) + (τ − t− h)H ′(ux(r(τ, h), τ)),

since ∇u is constant along this tangent line. Differentiate in h and then set h = 0:

rh(τ, 0) = ṡ(t)−H ′(u+x (s(t), t)) + (τ − t)H ′′(ux(r(τ), τ))uxx(r(τ), τ)rh(τ, 0).

Then (4.2) implies rh(τ, 0)((τ − t)H ′′(u+x (s(t), t))uxx(r(τ), τ)− 1) = 0. Since s̈(t) 6= 0 implies
rh(τ, 0) 6= 0, we obtain (4.3). �
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Figure 4: Left and right states on Σ

We remark that the blow up of u+xx is also obvious since the initial-value problem for
ODE (4.2), starting at a point on Γ, has two distinct solutions, one tracing out the equivocal
curve and the other following the straight characteristic leaving Γ tangentially.

Computing s̈. Since we cannot just differentiate (4.2), we must proceed indirectly.

THEOREM 4.2 (i) We have

(4.4)
d

dt
∇u+(s(t), t) = γ(t)(∇u+(s(t), t)−∇u−(s(t), t))

for

(4.5) γ =
u−xx(H

′(u+x )−H ′(u−x ))2

H ′′(u+x )(u+x − u−x )2
,

u±x and u−xx evaluated at (s(t), t).

(ii) Furthermore,

(4.6) s̈ =
u−xx(H

′(u+x )−H ′(u−x ))2

u+x − u−x
,

u±x and u−xx evaluated at (s(t), t).

Since u+x > u−x and s̈ ≤ 0, it follows that u−xx ≤ 0 along Γ, as drawn in Figure 1. This is
consistent with the comment following Theorem 3.2 that equivocal surfaces cannot arise for
convex initial data. See also Theorem 4.4.
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Proof. 1. Define K(q) = p2 + H(p1) for q = (p1, p2); so that Σ = {K = 0} and ∇K is
perpendicular to Σ. Then

(4.7) ∇K(∇u+(s(t), t)) · (∇u+(s(t), t)−∇u−(s(t), t)) = 0,

since we have a contact discontinuity. Differentiating the identity K(∇u+(s(t), t)) = 0, we
see furthermore that

∇K(∇u+(s(t), t)) · d
dt
∇u+(s(t), t) = 0.

In view of the contact discontinuity identity (4.7) and since we are in the two-dimensional
(x, t) plane, it follows that d

dt
∇u+ is parallel to ∇u+ −∇u−.

2. Observe next that locally along Γ, ∇u− and ∇u+ are functionally related, depending
only upon the geometry of the surface Σ. We there can locally define a function ψ that maps
each point u−x to the corresponding u+x . Then

(4.8) ψ(u−x ) = u+x

along Γ.
Since the line segment connecting (p,−H(p)) ∈ Σ to (ψ(p),−H(ψ(p))) ∈ Σ is tangent to

Σ at the latter point, we have (ψ(p)− p)H ′(ψ(p)) = H(ψ(p))−H(p). Differentiate:

(4.9) H ′′(ψ(p))ψ′(p) =
H ′(ψ(p))−H ′(p)

ψ(p)− p
.

Now compute

s̈ =
d

dt
H ′(u+x ) =

d

dt
H ′(ψ(u−x )) = H ′′(ψ(u−x ))ψ′(u−x )(u−xxṡ+ u−xt)

=
H ′(u+x )−H ′(u−x )

u+x − u−x
(u−xxṡ+ u−xt) =

H ′(u+x )−H ′(u−x )

u+x − u−x
u−xx(H

′(u+x )−H ′(u−x )).

This proves (4.6).

3. Differentiating ṡ = H ′(u+x ) and using the first component of the vector equation (4.4)
gives s̈ = γH ′′(u+x )(u+x − u−x ). This and (4.6) give (4.5). �

4.2 Higher dimensions. We move now to n ≥ 2. The Hamilton–Jacobi PDE is
therefore

(4.10) ut +H(Du) = 0 in Rn × (0,∞);

and as before we write ∇u = (Du, ut), Du = Dxu.
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Figure 5: Path of a singular characteristic

Hereafter we let Γ denote an equivocal surface, which we think of as a smooth hypersurface
locally parameterized as a graph in the time direction: Γ = {(x, t) ∈ Rn×(0,∞) | t = σ(x)}.
We suppose that u is continuous across Γ, but its gradient is discontinuous. Denote by ∇u−
and ∇u+ the values of the gradient from below and from above. Then ∇u+−∇u− is normal
to Γ.

For this higher dimensional (n ≥ 2) problem, we adopt a fundamentally different view-
point from that above. We now regard the values of the solution u− on the “incoming” side
to be known and ask how to connect the lower states ∇u− to upper states ∇u+ along Γ.
This is not an issue for n = 1, at least locally when the geometry is as sketched in Figure 4,
since given q− = ∇u− there is locally a unique choice of q+ = ∇u+. This is not so however
for n ≥ 2.

Inspired by Melikyan [M], we instead introduce the singular characteristic equations

(4.11)

{
ṡ(t) = DH(p(t))

ṗ(t) = γ(t)(p(t)−Du−(s(t), t)),

where

(4.12) γ =
(DH(p)−DH(Du−))TD2u−(DH(p)−DH(Du−))

(p−Du−)TD2H(p)(p−Du−)
,

Du− and D2u− evaluated at (s(t), t).

Given a point (x0, t0) ∈ Γ, we assume we can at least for small times t ≥ t0 solve the
ODE (4.11), (4.12) with the initial conditions

(4.13) s(t0) = x0, p(t0) = p0,
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the vector p0 ∈ Rn selected to satisfy

(4.14) (p0 −Du−(x0, t0)) ·DH(p0) = H(p0)−H(Du−(x0, t0))

and

(4.15) p0 6= Du−(x0, t0)), (p0 −Du−(x0, t0))
TD2H(p0)(p0 −Du−(x0, t0)) 6= 0.

We further assume that the equivocal surface Γ to be made up of trajectories of the vector
ODE: see Figure 5. The idea is that by solving the singular characteristic ODE we can
compute p, which is a candidate for Du+(s, t). However there are many subtleties here: see
the comments after the proof of the following assertion.

THEOREM 4.3 We have

(4.16) (p(t)−Du−(s(t), t)) ·DH(p(t)) = H(p(t))−H(Du−(s(t), t))

for times t ≥ t0 for which (4.11), (4.12) has a solution.

Proof. 1. It is convenient to calculate in n+ 1 variables; and so we introduce the functions

r(t) := (s(t), t), q(t) := (p(t), qn+1(t)).

As before we write K(q) = pn+1 + H(p) for q = (p, pn+1). Then ∇K(q) = (DH(p), 1); and
consequently the first equation in (4.11) becomes

(4.17) ṙ = ∇K(q).

We also extend the second ODE to (4.11) to read

(4.18) q̇ = γ(q−∇u−(r)).

For the initial condition we take q(t0) = q0 := (p0,−H(p0)). Then K(q0) = 0 and

(4.19)
(q0 −∇u−(x0, t0)) · ∇K(q0)

= (p0 −Du−(x0, t0)) ·DH(p0)−H(p0) +H(Du−(x0, t0)) = 0

according to (4.16), since u−t +H(Du−) = 0.

2. Introduce finally the expressions{
a(t) := K(q(t))

b(t) := (q(t)−∇u−(r(t))) · ∇K(q(t)).
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We will show that both of these functions vanish identically; this implies (4.16).

Firstly, owing to (4.18) we have

(4.20) ȧ = γ∇K(q) · (q−∇u−(r)) = γb.

Secondly,

ḃ = (q̇−∇2u−(r)ṙ) · ∇K(q) + (q−∇u−(r)) · ∇2K(q)q̇

= ȧ−∇K(q)T∇2u−(r)∇K(q)

+ γ(q−∇u−(r))T∇2K(q)(q−∇u−(r))

= ȧ,

provided

(4.21) γ =
∇K(q)T∇2u−(r)∇K(q)

(q−∇u−(r))T∇2K(q)(q−∇u−(r))
.

Assuming this for the moment, we see that ḃ = ȧ = γb, according to (4.20). So b ≡ 0 since
(4.19) implies b(t0) = 0. Then a ≡ 0, as a(t0) = 0.

3. It remains to show that (4.21) agrees with (4.12). Now ∇K = (DH, 1) and

∇2K =

(
D2H 0

0 0

)
, ∇2u− =

(
D2u− Du−t
Du−t u−tt

)
.

Therefore

(q−∇u−(r))T∇2K(q)(q−∇u−(r)) = (p−Du−(r))TD2H(p)(p−Du−(r)).

In addition, u−t +H(Du−) = 0, and consequently

u−tt +DH(Du−)Du−t = 0, Du−t +DH(Du−)D2u− = 0.

Thus

∇K(q)T∇2u−∇K(q) = DH(p)TD2u−DH(p) + 2Du−t DH(p) + u−tt

= (DH(p)−DH(Du−))TD2u−(DH(p)−DH(Du−)).

These identities give (4.12). �

Remarks. (i) The system of ODE (4.11), (4.12) are a special case of (1.105) in Melikyan
[M], with simpler notation. It follows that

(4.22) s̈ = γD2H(Du+)(Du+ −Du−),
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where

(4.23) Du+(s(t), t) = p(t),

in accord with (4.6).

(ii) An observation of P. Bernhard [B], recounted in Lewin [L, Lemma 10.6.2], is that for
the value u = u(x) of a two-person, zero sum differential game we have

(4.24)
d

dt
Du+(s) = γ(Du+(s)−Du−(s))

for some scalar function γ, when there trajectory of the curve s solving the ODE ṡ =
DH(Du+(s)) lies along an equivocal surface. This is consistent with the singular character-
istic equations (4.11), with the difference that in (4.24) the outgoing state Du+ is assumed
known. The derivation seems to require that u+ be C2 all the way up to the equivocal surface
Γ, and this is perhaps an issue in light of Lemma 4.1 above. �

We can in addition determine the signs of the terms in the expression (4.12) for γ:

THEOREM 4.4 Under the identification (4.23), we have

(4.25) (Du+ −Du−)TD2H(Du+)(Du+ −Du−) ≥ 0

and

(4.26) (DH(Du+)−DH(Du−))TD2u−(DH(Du+)−DH(Du−)) ≤ 0,

Du± and D2u− evaluated at (s(t), t).

These are special cases of Melikyan [M, Lemma 2.3]. The second inequality (4.26) follows
from Melikyan’s [M, Theorem 1.6] on the solvability of irregular, noncharacteristic problems
for nonlinear first-order PDE.

The geometric meaning of these inequalities is fairly clear. Indeed, (4.25) holds since the
line segment [Du−, Du+] lies above the surface Σ, which is the graph of −H, and is tangent
to the surface at Du+. According to (4.22) and (4.12), inequality (4.26) records the fact that
in Figure 5 the inner product of s̈ with the normal vector Du+ −Du− is nonpositive.

5 Barriers

This section does not fit within our overall theme of envelope constructions, but instead
provides some new observations about barriers (= surfaces of discontinuity) for viscosity
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Figure 6: Barrier and smooth approximation

solutions of Hamilton–Jacobi type PDE. We will refer back to these insights in the subsequent
discussion of differential games and HJI equations.

We assume for this section that uε = uε(x) solves

(5.1) −ε∆uε +H(Duε, x) = 0 in U .

We assume hereafter that uε converges uniformly to u outside each open neighborhood of
the smooth barrier hypersurface B. Suppose also that u is smooth on each side of B, but is
discontinuous across B. Finally, let ν denote the unit normal to B pointing towards the side
where u is larger: see Figure 6. Write u+ to denote u in the region into which ν points, and
u− for u in the region from which ν points. We suppose that u+ and u− are smooth from
each side, up to the barrier B. Lastly, we will suppose we can locally smoothly extend u±

beyond Γ and assume that

(5.2) uε ≤ u+ + o(1), uε ≥ u− − o(1)

near zero.

The recession function associated with a Hamiltonian H = H(p, x) is

(5.3) K(p, x) := lim
λ→∞

H(q + λp, x)

λ
,

provided this limit exists uniformly for p, q in compact sets.

THEOREM 5.1 Let x ∈ B. Then under the foregoing conditions, we have
(i)

(5.4)

{
H(Du+ + λν, x) ≤ 0

H(Du− + λν, x) ≥ 0
for all λ ≥ 0.
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(ii) In particular,

(5.5) DpH(Du+, x) · ν ≤ 0, DpH(Du−, x) · ν ≥ 0;

and if the recession function K exists,

(5.6) K(ν, x) = 0.

While the inequalities (5.4) are a rigorous deduction, it would be difficult to verify the
hypotheses about the behavior of the functions uε near B. It is therefore probably best in
practice to regard (5.4) as heuristics.

The identity (5.6) for differential games is Isaacs’ observation that a “barrier is a semiper-
meable surface”: see [I, page 204]. The inequalities (5.4) seem to be new and provide more
geometric information. The idea of the proof that since u is discontinuous along the surface
B and the smooth functions uε converge nicely to u, we can touch the graph of uε near B
from above and below by smooth functions that tilt strongly in the ν direction.

See Rapaport [R] for more about barriers from the viewpoint of viscosity solutions.

Proof. 1. We may assume without loss that x = 0 and ν = en; consequently the barrier
surface near 0 can be written as the graph {xn = γ(x′)} of a smooth function γ of the
variables x′ = (x1, . . . , xn−1). We for definiteness take u+(0) = 0, u−(0) = −1. Redefining H
if necessary, we can suppose also that Du+(0) = 0. Then near 0 we have

(5.7)

{
u+(x) = O(|x|2) for xn > γ(x′)

u−(x) = −1 + a · x+O(|x|2) for xn < γ(x′),

where a := Du−(0).

Fix a small number r > 0 and then put s := C1r
2, the constant C1 selected so large that{

x ∈ B(0, r) ∩ {xn ≥ s} implies xn > γ(x′)

x ∈ B(0, r) ∩ {xn ≤ −s} implies xn < γ(x′).

Fix any λ > 0, and introduce then the comparison function

φ(x) = λxn + α|x|2,

the constant α > 0 to be adjusted later.

2. We claim that for sufficiently small ε > 0,

(5.8) uε − φ attains its maximum at a point xε in the interior of B(0, r).
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To see this, we observe from (5.7) that

(uε − φ)(2sen) = (u+ − φ)(2sen) + (uε − u+)(2sen)

≥ −O(s2)− 2λs− 4αs2 − o(1)

= −2λC1r
2 −O(r4)− o(1)

=: γε,

where o(1) = |(uε − u+)(2sen)| → 0 as ε→ 0, with r > 0 fixed.

Now (5.7) implies

max
∂B(0,r)∩{xn≥s}

(uε − φ) ≤ C2r
2 − αr2 + o(1) < γε,

provided we select α > 3λC1 + C2 and take first r and then ε sufficiently small. In this
formula we write o(1) = max∂B(0,r)∩{xn≥s} |uε − u+| → 0 as ε → 0, for each r. The second
line of (5.7) implies

max
∂B(0,r)∩{xn≤−s}

(uε − φ) ≤ −1 +O(r) + o(1) < γε,

again for small r and ε. Finally, we see from (5.2) that

max
∂B(0,r)∩{−s≤xn≤s}

(uε − φ) ≤ o(1) + C2r
2 + λC1r

2 − αr2 < γε,

again provided α > 3λC1 + C2 and r, ε are small. The foregoing calculations show that
(uε − φ)(2sen) > max∂B(0,r)(u

ε − φ) and so the assertion (5.8) is proved.

3. Owing to (5.8) and the PDE (5.1), we have

−ε∆φ(xε) +H(Dφ(xε), xε) ≤ 0.

Thus −2ε+H(λen + 2αxε, xε) ≤ 0. Let ε→ 0 and then r → 0, to deduce

H(λen, 0) ≤ 0.

This is the first inequality in (5.4), since x = 0, ν = en, Du
+(0) = 0. The second inequality

follows similarly upon our touching the graph of uε from below by a smooth function.

4. Since H(D+u(x), x) = 0, (5.4) implies

DpH(Du+, x) · ν = lim
λ→0+

H(Du+ + λν, x)−H(Du+, x)

λ
≤ 0;

and the other inequality in (5.5) is similar. Owing to (5.4) and (5.3), we have{
K(ν, x) = limλ→∞

H(Du++λν,x)
λ

≤ 0,

K(ν, x) = limλ→∞
H(Du−+λν,x)

λ
≥ 0.

�
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6 Differential games

The books of Isaacs [I], Friedman [F] and Lewin [L] on two-person, zero-sum differential
games (see also Cardaliaguet [C] and Basar–Olsder [B-O]) provide many truly fascinating
examples illustrating the complexity of the singular structure of solutions to nonlinear first-
order PDE. The concrete problems in these books however present many mathematical
difficulties, the origins of which we can roughly classify as follows: (i) the Hamiltonians
H = H(p, x) are always nonconvex in p; (ii) the Hamiltonians are mostly not C1; (iii)
the Hamiltonians are often not coercive (that is, the algebraic identity H(p, x) = 0 does
not imply p is bounded); and (iv) the PDE often involve unclear or unspecified boundary
conditions. This section revisits some of these issues, in light of the foregoing theory.

6.1 Notation for differential games. We introduce now the rudiments of the viscosity
solution interpretation of two-person zero-sum differential game theory: see Cardaliaguet [C]
or [E-S] for more explanation. Let us consider the dynamics

(6.1)

{
ẋ = f(x, α, β) (0 ≤ t ≤ τ)

x(0) = x,

where α : [0, τ ]→ A is the control for the maximizing player and β : [0, τ ]→ B is the control
for the minimizing player. The associated payoff is

(6.2)

∫ τ

0

r(x, α, β) dt+ g(x(τ)).

We hereafter assume the minimax condition that

(6.3) min
b∈B

max
a∈A
{f(x, a, b) · p+ r(x, a, b)} = max

a∈A
min
b∈B
{f(x, a, b) · p+ r(x, a, b)}

for all x, p.
Let u denote the corresponding value function, which, if continuous, solves the Hamilton–

Jacobi–Isaacs (HJI) equation

(6.4) H(Du, x) = 0

in the viscosity sense, for the game theory Hamiltonian

(6.5) H(p, x) = −min
b∈B

max
a∈A
{f(x, a, b) · p+ r(x, a, b)}.

The minus sign here is to make the PDE (6.4) consistent with standard viscosity solution
interpretations. See [E-S] for precise definitions and explanations of all this.
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6.2 Equivocal surfaces. In this section we discuss the connections between the mea-
sures γx,t introduced in Section 2 and the advent of equivocal surfaces. In PDE terms,
we see that if the measure γx,t is not a point mass, our viscosity solution u has “envelope
shocks”, meaning discontinuity surfaces for the gradient ∇u from which characteristics leave
tangentially going forward in time.

No running payoffs. For differential games with no running payoffs, the Hamiltonian

H(p, x) = max
a∈A

min
b∈B
{f(a, b, x) · p}

is positively homogeneous of degree one, and thus DpH(p, x)·p = H(p, x) for p 6= 0. Theorem
(3.1) therefore applies and we see that the support of the measure γx,t lies in the set {g =
u(x, t)}.

The game theoretic interpretation is that a homogeneous H corresponds to a game with
no running payoff. If the support of γx,t is not a single point, there can be many optimal
trajectories, but they all end up at points y where the payoff g(y) is the same and equals
u(x, t).

Including running payoffs. For differential games with running payoffs, the Hamilto-
nian (6.5) is not homogeneous. But we can as follows add another variable, to reduce to the
previous case. For this, define{

x̃ = (x, xn+1), ũ(x̃, t) = u(x, t) + xn+1

p̃ = (p, pn+1), H̃(p̃) = pn+1H(p/pn+1).

Then H̃ is positively homogeneous and ũ is the unique viscosity solution of

(6.6)

{
ũt + H̃(Dũ) = 0 in Rn+1 × (0,∞)

ũ = g̃ on Rn+1 × {t = 0},

for g̃(ỹ) = g(y) + yn+1.

We introduce also the analog of (2.5):

−σ̃εt − div(σ̃εDH̃(Dũε)) = ε∆σ̃ε.

In view of the definition of H̃ this PDE reads

(6.7) −σ̃εt − divx(σ̃
εDH(Duε))− (σ̃ε(H(Duε)−DH(Duε) ·Duε))xn+1 = ε∆σ̃ε.

Then as above we have:
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THEOREM 6.1 (i) For Ln+2 almost every point (x̃, t) ∈ Rn+1 × (0,∞),

(6.8) g̃(ỹ) = ũ(x̃, t) for γ̃x̃,t almost every ỹ ∈ Rn+1.

(ii) In particular, for Ln+1 almost every (x, t) ∈ Rn × (0,∞), we have

(6.9) u(x, t) = g(y) + yn+1 for γ̃x,t almost every ỹ ∈ Rn+1.

A largely open question is how better to interpret (6.9) in light of differential game
theory, and in particular to understand yn+1 as recording the total running cost of an optimal
trajectory ending up at the point y. If everything were smooth, we should expect from the
classical theory of characteristics that

(6.10) u(x, t) = g(y) +

∫ t

0

DH(Du(x(s), s)) ·Du(x(s), s)−H(Du(x(s), s)) ds,

where {(x(s), s) | 0 ≤ s ≤ t} parameterizes the optimal trajectory, starting at x at time t.
However (6.10) does not in general have an obvious meaning since we expect there to be
many optimal paths, which are straight lines in regions where u is smooth, but can bend at
and along the equivocal surfaces.

6.3 An example of Isaacs. We conclude with a look at a particular Hamilton-Jacobi-
Isaacs PDE, which is simple looking but nevertheless suffers from all of the difficulties (i)-(iv)
listed at the start of Section 6. This example illustrates several of the ideas discussed before,
in particular the theory for equivocal curves and barriers.

Isaacs in [I, Example 8.4.3] introduces the (unnamed) differential game with the dynamics

(6.11)

{
ẋ = c(y) + cosα

ẏ = 2β + sinα,

where 0 ≤ α ≤ 2π and −1 ≤ β ≤ 1. Here c is a given positive and nondecreasing function of
y. The game is played in the upper half plane U := R2 ∩ {y ≥ 0} and the payoff is the time
τ until the trajectory exits U along the positive x-axis. Hence the running payoff is r ≡ 1.
(See also Basar–Olsder [B-O, page 466].)

HJI equation, barriers, equivocal curve. The corresponding Hamiltonian is

(6.12) H(p, y) = −c(y)p1 − |p|+ 2|p2| − 1;

and the HJI equation for the value function u = u(x, y), the time to exit given we start at
(x, y), reads

(6.13) H(Du, y) = −c(y)ux − |Du|+ 2|uy| − 1 = 0 in U
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in the viscosity sense. We clearly have the boundary condition u = 0 on {x ≥ 0, y = 0}; but
it is unclear what boundary conditions should be required along {x < 0, y = 0}.

Isaacs in [I, p 295] provides a sketch for optimal paths, here roughly redrawn as Figure
7, where B a barrier and ES is an equivocal curve, across which optimal strategies change.
We draw the optimal game theoretic paths as moving in the opposite direction from the
conventional PDE characteristics. We have u = u− = y to the right of B ∪ ES.

B

ES

u = y

Figure 7: Optimal paths, a barrier and an equivocal curve

We provide next a geometric interpretation and justification of this picture, by extracting
information about the left states ∇u+ and right state ∇u− = e2 along ES from the geometry
of the level sets of H for different values of the parameter c = c(y). Let us for simplicity
assume that 0 < c(y) < 1 for 0 ≤ y < 1 and c(y) > 1 for y ≥ 1.

Observe from Figure 8 that for values of c = c(y) < 1 the level curves in the q = (p1, p2)
plane comprise two distinct pieces, each of which is half of a different hyperbola (tilted at
different angles). For c = 1 a asymptote of both hyperbolas is the negative real axis. A
geometric consequence is that for c ≤ 1 we cannot connect the state q− = ∇u− = e2, which
lies on the upper part of the characteristic curve Σ = {H = 0}, to any state q+ lying on
the lower part. For if we could, the line segment [q−, q+] connecting the two states would
have to be tangent to Σ at q+; and this is not possible geometrically. Hence there must be
a barrier B existing for 0 ≤ y ≤ 1.

The unit normal ν = (ν1, ν2) to the barrier is given by Isaacs’ condition (5.6):

0 = K(ν, y) = −c(y)ν1 − 1 + 2|ν2|.

Notice also from the picture for c = .5 that H(∇u− + λν, y) = H(e2 + λν, y) ≥ 0 for all
λ ≥ 0, as predicted by the barrier inequalities (5.4).
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Isaacs problem

c = 0.50
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Isaacs problem

c = 1.00
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Figure 8: Some characteristic curves H = 0 for c ≤ 1

Isaacs problem

c = 1.50
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Isaacs problem

c = 2.00
−2 −1 0 1 2
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Figure 9: Some characteristic curves H = 0 for c > 1

Once y > 1 and so c(y) > 1, we see from Figure 9 that it is possible to connect the
state q− = ∇u− = e2 to another state q+, namely the point on the negative x-axis, along
which the two pieces of the hyperbolas meet. It is therefore possible to build an equivocal
curve connecting these states, although note that the characteristics do not leave this shock
tangentially. This is possible only since the Hamiltonian H is not C1 and in particular the
set Σ has a corner at q+. See Figure 10, where we have marked for c = 2 velocity vectors for
the characteristics entering and leaving the ES line. These geometric observations provide
some partial insights into Isaacs’ speculations [I, Section 10.8] as to when, and why, equivocal
surfaces may be regarded as continuations of barriers.

A special case. Figure 10 shows the solution in the simple case that c(y) ≡ 2, and so
q− = e2, q

+ = −e1. The dynamics are

(6.14)

{
ẋ = 2 + cosα

ẏ = 2β + sinα,
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Isaacs problem

c = 2.00
−2 −1 0 1 2
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{H>0}

{H<0}
ES

u = y
u = -x

(a,b)

0

Figure 10: Solution for c = 2

the running payoff is r ≡ 1; and the HJI equation is

(6.15) H(Du) = −2ux − |Du|+ 2|uy| − 1 = 0 in U

in the viscosity sense. There is no barrier and the solution is linear on either side of the line
ES = {x+y = 0}. We have drawn as a heavy line the optimal path starting at a point (a, b)
to the left of ES; it moves in the reverse direction of the characteristics (“retrograde” in
Isaacs’ terminology). It is easy to check that the optimal controls for the minimizing player
are β ≡ 1 to the left of ES and β ≡ −1 to the right.

This is simple enough, but a paradox of sorts arises if we smooth the function H, by
defining for small ε > 0

(6.16) Hε(p) := −2p1 − |p|+ 2(p22 + ε2)
1
2 − 1.

The HJI equation is then

(6.17) Hε(Duε) := −2uεx − |Duε|+ 2((uεy)
2 + ε2)

1
2 − 1 = 0.

Since
(q2 + ε2)

1
2 = sup

|b|≤1
{qb+ ε(1− b2)

1
2},

the PDE (6.17) corresponds to the differential game with dynamics (6.14) and running payoff

(6.18) rε := 1− 2ε(1− b2)
1
2 .
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The paradox is that an equivocal curve does not exist for ε > 0. The geometric reason is
that a left state q− close to e2 cannot be joined to a right state q+ close to −e1 for which the
gradient DHε(q+) points downward: see Figure 11. In fact the solution uε has a compressive
shock, and the optimal trajectory starting from a point (a, b) is as drawn in Figure 11. This
trajectory corresponds to the optimal strategy for the minimizing player that is β ≡ −1
until the trajectory hits the negative real axis, followed then by forcing by ẏ = 0. Fully
understanding this phenomenon at the level of the HJI equation remains a challenge for
nonlinear PDE theory.

Smoothed Isaacs problem

c = 2.00, ε= 0.10
−2 −1 0 1 2
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{H<0}

{H>0}
(a,b)

0

Figure 11: The smoothed Hamiltonian for c = 2, ε > 0

My thanks to L. Pachter for giving me a copy of Lewin’s book, to C. Smart for helping
with MATLAB, and to M. Bardi and P. Soravia for explaining some fine points of game
theory to me.
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