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Abstract

We investigate the vanishing viscosity limit for Hamilton-Jacobi PDE with non-
convex Hamiltonians, and present a new method to augment the standard viscosity
solution approach. The main idea is to introduce a solution σε of the adjoint of the
formal linearization, and then to integrate by parts with respect to the density σε.
This procedure leads to a natural phase space kinetic formulation and also a new
compensated compactness technique.

1 Introduction

The Crandall-Lions theory of viscosity solutions for Hamilton-Jacobi partial differential equa-
tions provides fundamental existence, uniqueness and stability theorems, even for Hamilto-
nians H that are nonconvex. To date however there has been little progress understanding of
the precise nature of the vanishing viscosity limiting process and of the gradient shock struc-
ture for viscosity solutions, except when H is convex (or concave). This paper introduces
some new tools for these problems, most importantly a nonlinear adjoint technique.

1.1 Basic equations. Given a smooth Hamiltonian H : Rn → R and smooth initial
data g : Rn → R, we consider the corresponding initial-value problem for the regularized
Hamilton–Jacobi equation:

(1.1)

{
uεt +H(Duε) = ε∆uε in Rn × (0,∞)

uε = g on Rn × {t = 0}.

Here we write Duε = Dxu
ε for the gradient in the variable x = (x1, . . . , xn).
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Given next a time t1 > 0 and a Radon probability measure α on Rn, we introduce this
terminal value problem, the adjoint of the linearization of (1.1):

(1.2)

{
−σεt − div(σεDH(Duε)) = ε∆σε in Rn × [0, t1)

σε = α on Rn × {t = t1}.

Our plan is to use the solutions σε = σε,α of the adjoint problem (1.2), for various choices of
the terminal conditions α, to extract information about the limiting behavior of uε as ε→ 0.

Our introducing the PDE (1.2) is directly inspired by weak KAM theory (see [E2]),
but there is in fact a rich history of similar ideas arising in the optimal control of ODE
(in the Pontryagin maximum principle) and of PDE. J–L Lions’s book [LJ] provides many
PDE examples. In these contexts the solutions of certain differential equations involving
adjoints of linearizations can be interpreted as Lagrange multipliers. Our approach is however
more directly motivated by a desire to go beyond the usual maximum principle, sup-norm
techniques embodied in the theory of viscosity solutions: see for instance Bardi–Capuzzo
Dolcetta [B-CD]. We want rather to develop integration by parts methods, which turn out
to be available provided we integrate against the density σε.

I thank E. Barron, Y. Brenier, M. Christ, C. Dafermos, R. Jensen and H. Zhao for
providing me with references and suggestions. I am particularly grateful to I. Strub for
explaining to me uses of the adjoint method for the optimal control of PDE. I also thank
the referee for carefully reading this paper and making many useful suggestions.

Generalizations of the methods in this paper to static Hamilton-Jacobi type PDE on
bounded domains will appear in Tran [Tr]. Let me call attention also to the interesting paper
[G-K-T-T] by Glimm et al, which is one of the few in the literature devoted to understanding
gradient shock structure of solutions for nonconvex H in many space dimensions.

Notation. We will denote a typical point of Rn+1 as q = (p, pn+1) for p ∈ Rn, p =
(p1, . . . , pn), and pn+1 ∈ R. We will also write ∇w = (Dw,wt) = (wx1 , . . . , wxn , wt) for the
full gradient of a function w = w(x, t). More generally, we use “D” to denote the gradient
of a function of the n variables x, and “∇” to denote the gradient of a function of the n+ 1
variables (x, t). We write H = H(p) and g = g(x).

1.2 Standard estimates, convergence to viscosity solution. For simplicity, we
assume throughout that

g : Rn → R is a smooth function with compact support.

Let us first record the elementary estimates that for each time t1 > 0:

(1.3) sup
Rn×[0,t1]

|uε|, |Duε|, |uεt | ≤ C and σε ≥ 0,

∫
Rn

σε dx = 1 (0 ≤ t < t1).
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(Our observing that σε ≥ 0 is the only use of the maximum principle in this paper.) Fur-
thermore, uε → u locally uniformly, where u is the unique viscosity solution of the Hamilton-
Jacobi equation

(1.4)

{
ut +H(Du) = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}.

Since u is Lipschitz continuous, u is differentiable almost everywhere with respect to (n+1)-
dimensional Lebesgue measure; and in addition

(1.5) ut(x, t) +H(Du(x, t)) = 0

at each point (x, t) where u is differentiable.

We note that the viscosity solution approach, although amazingly successful, leaves open
many questions, both as to the structure of possible singularities of u and also the fine details
of the convergence uε → u. For instance, although the PDE (1.5) holds almost everywhere,
we do not know in general whether Duε → Du almost everywhere. The techniques of this
paper provide some new understanding about these issues.

2 A second derivative estimate

The following second derivative estimate will be very useful later:

THEOREM 2.1 There exists a constant C, independent of ε > 0, such that

(2.1) ε

∫ t1

0

∫
Rn

(|D2uε|2 + |Duεt |2)σεdxdt ≤ C.

We are using the notation |D2uε|2 := uεxixj
uεxixj

and |Duεt |2 := uεxit
uεxit

, the implicit summa-
tion for i, j = 1, . . . , n. In the estimate (2.1), σε = σε,α is the solution of (1.2) corresponding
to any given Borel probability measure α on Rn.

Proof. Let wε = 1
2
(|Duε|2 + |uεt |2). Then

wεt +DH(Duε) ·Dwε = ε∆wε − ε(|D2uε|2 + |Duεt |2).

We multiply by σε and integrate by parts, using (1.2) to deduce

ε

∫ t1

0

∫
Rn

(|D2uε|2 + |Duεt |2)σε dxdt+

∫
Rn

wε(x, t1) dα =

∫
Rn

wε(x, 0)σε(x, 0) dx.

Since wε(x, 0) is bounded independently of ε, this and (1.3) imply (2.1). �

To illustrate the usefulness of (2.1), we present a quick new proof of an estimate for the
rate of convergence of uε to u.
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THEOREM 2.2 We have the estimate

(2.2) sup
Rn×[0,t1]

∣∣∣∣∂uε∂ε
∣∣∣∣ ≤ C

(
t1
ε

) 1
2

.

Consequently,

(2.3) sup
Rn×[0,t1]

|uε − u| ≤ C(t1ε)
1
2 .

Proof. 1. According to standard parabolic estimates, the function uε is smooth in the
parameter ε away from ε = 0. We therefore can differentiate (1.1) with respect to ε:

uεεt +DH(Duε) ·Duεε = ε∆uεε + ∆uε,

the subscript ε denoting the partial derivative.
Select any time t1 > 0 and any point x1 ∈ Rn, and then let σε solve the adjoint PDE

(1.2), with the terminal condition that α = δx1 . We multiply the foregoing PDE by σε and
integrate, to discover that

uεε(x1, t1) =

∫ t1

0

∫
Rn

∆uεσε dxdt.

There is no term corresponding to time t = 0, since uεε = gε ≡ 0 there. Consequently our
inequalities (2.1) and (1.3) and Cauchy-Schwarz imply

|uεε(x1, t1)| ≤
∫ t1

0

∫
Rn

|∆uε|σε dxdt ≤ C

(
t1
ε

) 1
2

.

2. The foregoing estimate is useful since ε−
1
2 is integrable near ε = 0. Indeed, we deduce

for all x ∈ Rn, t > 0 that
|uε1(x, t)− uε2(x, t)| ≤ C(tε1)

1
2

provided 0 < ε2 < ε1 and 0 ≤ t ≤ t1. Let ε2 → 0 to derive (2.3). �

Estimate (2.3), which shows that the full sequence {uε}0≤ε≤1 converges uniformly, is
originally due to W. Fleming, whose clever papers [F1], [F2] employ stochastic game theory.
Crandall and Lions used viscosity solution techniques to provide a simpler proof in [C-L].
(We can also derive an estimate similar to (2.2) by applying the conventional maximum

principle to the function vε := ε
1
2uεε + |Duε|2 − λt.)
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3 Measures on phase space

In this section we employ the densities σε to introduce a natural phase space “kinetic” for-
mulation for the Hamilton-Jacobi equation (1.4). This undertaking is inspired by the kinetic
formulations for conservation laws developed by Lions, Perthame and Tadmor [L-P-T1],
[L-P-T2], although the technical differences are many. See also Perthame’s book [P], and
refer to §7 below for some discussion contrasting our approach with theirs.

3.1 Existence of the measures µ, σ. First, we introduce a measure µ on “phase
space” that records the dynamics in both the “physical space” variables x and t and the
“momentum” variables q. The measure σ will then be the projection of µ onto physical
space.

Approximating a point mass by the average over a cylinder. Hereafter we focus
attention upon some given point (x1, t1) ∈ Rn × (0,∞). We will be particularly interested
in the adjoint PDE (1.2) with α = δx1 at time t1, and will sometimes (as in §2) use this as
the terminal condition.

However, since we also want to study the limiting behavior of ∇uε near this point, we will
also need to approximate the point mass at (x1, t1) by averages over the space-time cylinders

(3.1) C(x1, t1, r) := B(x1, r)× [t1, t1 + r]

for small r > 0. So fix r > 0 and let σεs,r denote the solution of (1.2) with terminal data the
function

(3.2) αr :=
1

|B(x1, r)|
χ

B(x1,r)
.

at time s, where t1 ≤ s ≤ t1 + r. Next average with respect to s:

(3.3) σεr(x, t) :=
1

r

∫ t1+r

t1

σεs,r(x, t) ds

for (x, t) ∈ Rn × [0, t1); and observe that σεr solves the adjoint PDE (1.2). Set

(3.4) rj :=
1

j
.

THEOREM 3.1 (i) There exists a subsequence εm → 0 and for each j = 1, . . . a nonneg-
ative Radon measure µrj on Rn × [0, t1]× Rn+1 satisfying

(3.5) lim
εm→∞

∫ t1

0

∫
Rn

Φ(x, t,∇uεm)σεm
rj
dxdt =

∫ t1

0

∫
Rn

∫
Rn+1

Φ(x, t, q) dµrj
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for j = 1, . . . and all continuous, bounded functions Φ.

(ii) There exists a subsequence {rm} of {rj} and a nonnegative measure µ = µx1 on
Rn × [0, t1]× Rn+1 such that

(3.6) lim
rm→0

∫ t1

0

∫
Rn

∫
Rn+1

Φ(x, t, q) dµrm =

∫ t1

0

∫
Rn

∫
Rn+1

Φ(x, t, q) dµ

for all continuous, bounded functions Φ.

Proof. Fix r1. Let {Φl}∞l=1 be a countable dense subset of C([0, t1] × Rn × Rn+1). Using a
standard diagonal argument we extract a subsequence εk → 0 such that the limit

φl := lim
εk→0

∫ t1

0

∫
R

Φl(x, t,∇uεk)σεk
r1
dxdt

exists for l = 1, . . . . The mapping Φl 7→ φl is linear, and we have the estimate

|φl| ≤ C sup |Φl| (l = 1, . . . ).

The Riesz Representation Theorem provides the existence of a Radon measure µr1 satisfying
(3.6) for the given radius r1. Continuing and again using the diagonal argument, we extract
a further subsequence {εm} for which (3.6) holds for all rj.

The second assertion is a consequence of the weak compactness of measures with uni-
formly bounded mass. �

Notation. We hereafter always take

µ := µx1 , σ := projx,tµ

unless otherwise stated, where projx,tµ means the projection of µ onto Rn × [0, t1].

We now show that we can “slice” the measure σ at each time.

LEMMA 3.2 For all bounded continuous φ = φ(x, t) we can write

(3.7)

∫ t1

0

∫
Rn

φ(x, t) dσ =

∫ t1

0

∫
Rn

φ(x, t) dγtdt

where γt(·) is a Radon probability measure on Rn.
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Proof. According to the basic estimates (1.3), the projection of σ onto the time interal [0, t1]
is one-dimensional Lebesgue measure L1. Then for example Theorem 10 in Chapter 1 of
[E1] implies the decomposition (3.7). �

In view of the Lemma, we write

(3.8) dσ = dγtdt.

Similarly, for each r = rj we have the decomposition

(3.9) dσr = dγr,tdt

for σr = projx,tµr.

Next we show that the measure γt is defined for every time 0 ≤ t ≤ t1:

THEOREM 3.3 (i) The mapping t 7→ γt is continuous into the space M of probability
measures on Rn, taken with the weak topology. In particular, γt is defined for each time
0 ≤ t ≤ t1.

A similar statement holds for γr,t for each r = rj.

(ii) For each time 0 ≤ t ≤ t1 and r = rj, we have

(3.10) σεr(·, t) ⇀ γr,t weakly in M

as ε = εm → 0.

(iii) Furthermore, for each time 0 ≤ t ≤ t1

(3.11) γr,t ⇀ γt weakly in M

as r = rm → 0.

Proof. 1. The basic estimates (1.3) show for each smooth φ = φ(x) that

(3.12)

∣∣∣∣ ddt
∫

Rn

φσεr dx

∣∣∣∣ ≤ C||Dφ||L∞ + εC||D2φ||L∞ .

Fix r = rj. Selecting then a smooth function φ, a time 0 ≤ t < t1 and a small h > 0, we
have ∣∣∣∣∫

Rn

φσεr(x, t) dx−
1

h

∫ t+h

t

∫
Rn

φσεr(x, s) dxds

∣∣∣∣ ≤ Ch,

for C = C(φ). Consequently the decomposition (3.9) gives

(3.13) lim sup
εm→0

∣∣∣∣∫
Rn

φσεm
r (x, t) dx− 1

h

∫ t+h

t

∫
Rn

φ dγr,sds

∣∣∣∣ ≤ Ch
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for all h > 0. Therefore

(3.14)

∫
Rn

φσεm
r (x, t) dx→

∫
Rn

φ dγr,t

for L1-a.e. time t.
This limit holds for a given smooth function φ. We select now a countable collection of

smooth functions {φl}∞l=1, dense in the space of bounded continuous functions, so that (3.14)
holds for each φ = φl and almost every time. Since the functions σεm

r (·, t) are nonnegative
and bounded in L1, owing to (1.3), the limit (3.14) then holds as well for each continuous φ.
Thus σεm

r (·, t) converges weakly in M to γr,t for almost every time 0 ≤ t ≤ t1.

Furthermore, the estimate (3.12) implies that the mappings t 7→ σεr are uniformly Lips-
chitz continuous into (C2)∗, the dual space of C2. Consequently we can if necessary redefine
γr,t on a subset of the time interval [0, t1] of Lebesgue measure zero, to ensure that t 7→ γr,t is
Lipschitz continuous into (C2)∗, and consequently continuous into M, taken with the weak
topology. Then sending h → 0 in (3.13) shows that σεm

r (·, t) converges to γr,t in (C2)∗, and
so also M, for each time 0 ≤ t ≤ t1. This proves assertion (ii) and the second part of (i).

3. Now (3.13) and (3.14) imply∣∣∣∣∫
Rn

φ dγr,t −
1

h

∫ t+h

t

∫
Rn

φ dγr,sds

∣∣∣∣ ≤ Ch.

Therefore (3.8) gives

lim sup
rm→0

∣∣∣∣∫
Rn

φ dγrm,t −
1

h

∫ t+h

t

∫
Rn

φ dγsds

∣∣∣∣ ≤ Ch

Since the mappings t 7→ γrm,t are uniformly Lipschitz continuous into (C2)∗, we can argue
as above to deduce assertions (i) and (iii). �

Next we slice µ:

THEOREM 3.4 For all continuous Φ = Φ(x, t, q) we can write

(3.15)

∫ t1

0

∫
Rn

∫
Rn+1

Φ(x, t, q) dµ =

∫ t1

0

∫
Rn

∫
Rn+1

Φ(x, t, q) dνx,t(q) dσ

where νx,t(·) is a Radon probability measure on Rn+1.

This follows again from Theorem 10 in Chapter 1 of [E1], the proof of which invokes the
theory of derivates from §2.9 in Federer [Fr]. The probability measures νx,t are analogs of
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the Young measures introduced by L. Tartar in compensated compactness theory, with the
difference that now the background measure is σ and not Lebesgue measure.

We will later use the notation

Φ(x, t) :=

∫
Rn+1

Φ(q, x, t) dνx,t,

to denote the average with respect to νx,t. Note also that in view of (1.3) the support of
each νx,t lies within some fixed ball in Rn+1

3.2 The support of the measure µ and σ. In this and the next section we begin
our investigation as to the structure of the measure µ = µx1 . We start by examining the
support of µ.

Notation. Let us hereafter write

Σ := {q ∈ Rn+1 | pn+1 +H(p) = 0}

for the hypersurface in Rn+1 that is the graph of −H.

THEOREM 3.5 (i) For σ-almost all points (x, t), we have

(3.16) spt νx,t ⊆ Σ.

(ii) Furthermore,

(3.17) sptσ ⊆ {|x− x1| ≤M(t1 − t)}.

for times 0 ≤ t ≤ t1, where M := sup{|DH(Duε)|}.
(iii) In particular,

(3.18) lim
t→t1−

γt = δx1 as measures on Rn.

The second assertion is that the support of σ lies within a cone with vertex (x1, t1): this
illustrates finite speed of propagation.

Proof. 1. The estimate (2.1) holds for each σεs,r and hence also for the average σεr defined by
(3.3). Therefore (1.1) implies∫ t1

0

∫
Rn

(uεt +H(Duε))2σεr dxdt = ε2

∫ t1

0

∫
Rn

(∆uε)2σεr dxdt ≤ Cε.

Select r = rj, and let ε = εm → 0. Then let rm → 0:∫ t1

0

∫
Rn

∫
Rn+1

(pn+1 +H(p))2 dµ = 0.
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This gives (3.16).

2. Let φ : R → R be smooth and satisfy φ(z) = 0 for z ≤ 0, φ(z) > 0 for z > 0, φ′ ≥ 0.
Put

ζ(x, t) := φ(|x− x1|+M(t− t1)− δ),

for a small number δ > 0. Then

d

dt

∫
Rn

ζσεr dx =

∫
Rn

(ζt +Dζ ·DH(Duε)− ε∆ζ)σεr dx

=

∫
Rn

(M +
x− x1

|x− x1|
·DH(Duε))φ′σεr dx+O(ε)

≥ O(ε).

Integrating and let r = rj. Sending ε = εm → 0 and then r = rm → 0, we deduce that for
each time 0 ≤ t ≤ t1 ∫

Rn

φ(|x− x1|+M(t− t1)− δ) dγt = 0.

That this holds for each δ > 0 implies (3.17). The assertion (3.18) follows, since each γt is a
probability measure. �

3.3 Evolution equations for µ and σ. Next we derive the dynamics for the measure
µ and for its projection σ.

THEOREM 3.6 There exists a symmetric, nonnegative definite (n + 1) × (n + 1) matrix
of Borel measures M = ((mkl)) on Rn × [0, t1]× Rn+1 such that

(3.19) µt +DH(p) ·Dxµ = −(mkl)pkpl
.

The phase space transport equation (3.19) is our kinetic formulation of the Hamilton-
Jacobi PDE (1.4). We call M the matrix of dissipation measures. Note that M depends
upon the point x1 and the terminal time t1. The implicit summation in (3.19) is for k, l =
1, . . . , n+ 1.

Proof. 1. First we observe that on account of the estimate (2.1), the expressions

ε

∫ t1

0

∫
Rn

Ψ(x, t,∇uε)uεxixk
uεxjxk

σεr dxdt

and

ε

∫ t1

0

∫
Rn

Ψ(x, t,∇uε)uεtxk
uεtxk

σεr dxdt
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for each i, j = 1, . . . , n, are bounded if Ψ is bounded. As in the proof of Theorem 3.1, we
may assume, upon passing if necessary to a further subsequences of ε = εm → 0, r = rm → 0
and reindexing, that

(3.20) ε

∫ t1

0

∫
Rn

Ψ(x, t,∇uε)uεxixk
uεxixl

σεr dxdt→
∫ t1

0

∫
Rn

∫
Rn+1

Ψ dmkl

and

(3.21) ε

∫ t1

0

∫
Rn

Ψ(x, t,∇uε)uεtxi
uεtxi

σεr dxdt→
∫ t1

0

∫
Rn

∫
Rn+1

Ψ dmn+1,n+1

for all bounded, continuous Ψ and for appropriate measuresmkl(k, l = 1, . . . , n) andmn+1,n+1.
Similarly, for k = 1, . . . , n we have

(3.22) ε

∫ t1

0

∫
Rn

Ψ(x, t,∇uε)uεxkxi
uεtxi

σεr dxdt→
∫ t1

0

∫
Rn

∫
Rn+1

Ψ dmk,n+1

The matrix of measures M = ((mkl)) is nonnegative and symmetric, owing to the form of
the left-hand sides of the previous three equalities.

2. Now let Φ = Φ(x, t, q) be smooth and have compact support in Rn × (0, t1) × Rn+1.
Put

wε(x, t) := Φ(x, t,∇uε).
Then

(3.23) wεt +DH(Duε) ·Dwε − ε∆wε = Φt +DH(Duε) ·DxΦ

− ε(Φpkpl
uεxkxi

uεxlxi
+ 2Φpkpn+1u

ε
xkxi

uεtxi
+ Φpn+1pn+1u

ε
txi
uεtxi

) + Eε.

where

(3.24) Eε := ε(∆xΦ + 2Φxipk
uεxixk

+ 2Φxipn+1u
ε
xit

).

In these formulas Φ is evaluated at (x, t,∇uε).
3. Next we multiply (3.23) by σεr and integrate by parts, using (1.2) to simplify:∫ t1

0

∫
Rn

(−Φt −DxΦ ·DH(Duε))σεr dxdt

+ ε

∫ t1

0

∫
Rn

(Φpkpl
uεxkxi

uεxlxi
+ 2Φpkpn+1u

ε
xkxi

uεtxk
+ Φpn+1pn+1u

ε
txk
uεtxk

)σεr dxdt

=

∫ t1

0

∫
Rn

Eεσεr dxdt.
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We estimate that∣∣∣∣∫ t1

0

∫
Rn

Eεσεr dxdt

∣∣∣∣ ≤ Cε+ Cε

∫ t1

0

∫
Rn

(|D2uε|+ |Duεt |)σεr dxdt ≤ Cε+ Cε
1
2 .

according to (2.1). Letting ε = εm → 0, r = rm → 0 and recalling (3.20)–(3.22), we discover

(3.25)

∫ t1

0

∫
Rn

∫
Rn+1

(−Φt −DxΦ ·DH(p)) dµ+

∫ t1

0

∫
Rn

∫
Rn+1

Φpkpl
dmkl = 0,

where now Φ is evaluated at (x, t, q) and the implicit summation is for k, l = 1, . . . , n + 1.
As Φ is arbitrary, we see that µ is a weak solution of the evolution equation (3.19). �

An alternate way to end the proof would be to observe that the left hand side of (3.19)
is a distribution with bounded support that is nonpositive when acting on functions convex
in q. According then to Lions [L], it has the form given on the right hand side of (3.19). M.
Christ [C] has shown me a different, elegant proof of this.

Deriving dynamics for σ is much simpler:

THEOREM 3.7 We have

(3.26) σt + div(σDH) = 0 in Rn × [0, t1).

Proof. Let ζ = ζ(x, t) be smooth, with compact support. According to (1.2),∫ t1

0

∫
Rn

ζtσ
ε
r + σεrDH(Duε) ·Dζ dxdt = ε

∫ t1

0

∫
Rn

∆ζσεr dxdt.

Let ε = εm → 0, r = rm → 0:∫ t1

0

∫
Rn

ζtdσ +

∫ t1

0

∫
Rn

∫
Rn+1

DH(p) ·Dζ dµ = 0.

This implies (3.26). �

3.4 Limit from below for the measure µ. It is not at all clear where the mapping
(x, t) 7→ νx,t is continuous. But we can show that a certain limit from below exists at the
terminal point (x1, t1).

THEOREM 3.8 (i) There exists a Radon probability measure ν− = ν−x1,t1 on Rn+1 such
that the limit

(3.27) lim
t→t−1

∫
Rn

∫
Rn+1

Φ(x, t, q) dνx,tdγt =

∫
Rn+1

Φ(x1, t1, q) dν
−

exists for all continuous Φ.
(ii) Furthermore,

(3.28) spt ν− ⊆ Σ.
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Strictly speaking, the expression on the left side of (3.27) is defined only for L1-a.e. time
t. So we really mean that the limit exists as t→ t−1 , possibly omitting a set of measure zero.

Proof. 1. Suppose first that Φ = Φ(q) is smooth and convex in the variable q. Let ζ = ζ(t)
be smooth and nonnegative, with compact support in (0, t1). Then according to (3.25),∫ t1

0

∫
Rn

∫
Rn+1

ζ ′Φ =

∫ t1

0

∫
Rn

∫
Rn+1

ζΦpkpl
dmkl ≥ 0.

This is true for all ζ as above, and therefore for almost all 0 < s < r < t1∫
Rn

∫
Rn+1

Φ dνr,xdγr ≤
∫

Rn

∫
Rn+1

Φ dνs,xdγs.

Thus t 7→
∫

Rn

∫
Rn+1 Φ dνt,xdγt is nonincreasing, for times t restricted to a subset of [0, t1) of

full measure, and consequently has a limit as t → t−1 . If Φ = Φ(q) is not convex in q, we
write Φ = Φ1 − Φ2, where Φ1 and Φ2 are convex, to deduce that the limit on the left of
(3.27) exists in this case also.

2. By approximation, the limit on the left of (3.27) exists for all continuous Φ = Φ(x, t, q)
and is a bounded linear functional of Φ. Therefore the limit is represented by integration
against a probability measure. In view of (3.18), this measure is a Dirac mass at (x1, t1)
times a probability measure ν− on Rn+1.

3. The assertion (3.28) follows from (3.27) and (3.16). �

3.5 A formula for ∇u. Our next goal is deriving a representation formula for the
gradient ∇u(x1, t1), provided it exists, in terms of the measure ν−. We have introduced the
approximations introduced by (3.2) and (3.3) to make this possible.

THEOREM 3.9 Suppose that u is differentiable at (x1, t1) and that (x1, t1) is a Lebesgue
point for ∇u in Rn × (0,∞). Then

(3.29) ∇u(x1, t1) =

∫
Rn+1

q dν−.

So ∇u(x1, t1) is the center of mass of the measure ν− in Rn+1.

Proof. 1. We first claim that

(3.30) Du(x1, t1) =

∫
Rn

Dg(x) dγ0

and

(3.31) ut(x1, t1) = −
∫

Rn

H(Dg(x)) dγ0.
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where we recall that dσ = dγtdt. In other words, ∇u(x1, t1) is the average of the gradient of
the initial data with respect to the probability measure γ0.

To prove (3.30), put wε := uεxk
and note that

wεt +DH(Duε) ·Dwε = ε∆wε.

Multiply by σεs,r and integrate by parts, to find∫
Rn

uεxk
(x, s)αr dx =

∫
−
B(x1,r)

uεxk
(x, s) dx =

∫
Rn

gxk
σεs,r(x, 0) dx,

the slash through the integral sign denoting an average. Next, average with respect to
t1 ≤ s ≤ t1 + r: ∫

−
C(x1,t1,r)

uεxk
(x, s) dxds =

∫
Rn

gxk
σεr(x, 0) dx.

Put r = rj, let ε = εm → 0 and note that uεxk
⇀ uxk

weakly in L2
loc(Rn × (0,∞)), since

uε → u locally uniformly. Thus (3.10) implies∫
−
C(x1,t1,rj)

uxk
(x, s) dxds =

∫
Rn

gxk
dγrj ,0.

Now let rm → 0, remembering that (x1, t1) is a Lebesgue point for Du and recalling from
(3.11) that γrm,0 converges weakly to γ0. This proves (3.30).

2. Similarly, we have∫
−
C(x1,t1,r)

ut(x, s) dxds =

∫
Rn

(−H(Dg(x)) + ε∆g)σεr(x, 0) dx;

and this formula in the limit ε = εm → 0, r = rm → 0 implies (3.31).

3. Now select a smooth function ζ = ζ(t) such that ζ(0) = 1, ζ(t1) = 0. Then

d

dt

∫
Rn

ζ∇uεσεr dx =

∫
Rn

ζ ′∇uεσεr dx.

We integrate, and then take a sequence of smooth functions ζk approximating the function ζ
satisfying ζ ≡ 1 on [0, t1 − h], ζ(t1) = 0, with ζ linear on [t1 − h, t1]. We obtain the identity∫

Rn

∇uε(x, 0)σεr(x, 0) dx =
1

h

∫ t1

t1−h

∫
Rn

∇uεσεr dxdt.

Let ε = εm → 0 and then r = rm → 0:∫
Rn

∇u(x, 0) dγ0 =
1

h

∫ t1

t1−h

∫
Rn

∫
Rn+1

q dµ.

According to the formulas (3.30) and (3.31), the term on the left equals ∇u(x1, t1). Hence
when we now send h→ 0 and recall Theorem 3.8, the identity (3.29) follows. �
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4 Special cases

In this section we discuss various special cases.

4.1 When σ is a point mass at t = 0. A particularly easy situtation occurs when
the measure σ is a Dirac mass at time 0.

THEOREM 4.1 Assume for some point x0 ∈ Rn that

(4.1) γ0 = δx0 .

Then
(i) q = (Dg(x0),−H(Dg(x0)) µ-a.e.,
(ii) M ≡ 0,
(iii) x1 = x0 + t1DH(Dg(x0)), and
(iv) the support of σ is the line segment

(4.2) {x0 + tDH(Dg(x0)) | 0 ≤ t ≤ t1}.

We interpret this as saying that the characteristic for the Hamilton-Jacobi PDE (1.4) starting
at x0 at t = 0 does not hit a shock before time t1. This characteristic is the straight line
(4.2).

Proof. Let Φ(q) := 1
2
(|p−Dg(x0)|2 + |pn+1 +H(Dg(x0))|2). Since Φ is convex, for each time

0 ≤ s ≤ t1 we have

ε

∫ s

0

∫
Rn

|D2uε|2 + |Duεt |2σεr dxdt

+
1

2

∫
Rn

|Duε(x, s)−Dg(x0)|2 + |uεt(x, s) +H(Dg(x0))|2σεr(x, s) dx

≤ 1

2

∫
Rn

|Duε(x, 0)−Dg(x0)|2 + |uεt(x, 0) +H(Dg(x0))|2σεr(x, 0) dx

=
1

2

∫
Rn

|Dg(x)−Dg(x0)|2 + |ε∆g(x)−H(Dg(x)) +H(Dg(x0))|2σεr(x, 0) dx.

Sending ε = εm → 0, r = rm → 0, and recalling (4.1), we see that the term on the right goes
to zero. It follows that

(4.3)

∫ t1

0

∫
Rn

∫
Rn+1

|p−Dg(x0)|2 + |pn+1 +H(Dg(x0))|2 dµ = 0.

Since also ε
∫ t1

0

∫
Rn |D2uε|2 + |Duεt |2σεr dxdt→ 0, (3.20)–(3.22) imply M = Mγ ≡ 0.
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In view of (4.3)

DH =

∫
Rn+1

DH(p) dνx,t = DH(Dg(x0)).

Thus the evolution equation (3.26) for σ gives

σt + div(σDH(Dg(x0))) = 0 in Rn × [0, t1);

and so x1 = x0 + t1DH(Dg(x0)). �

4.2 H uniformly convex. Assume next H is uniformly convex:

(4.4) D2H ≥ θI

for some constant θ > 0.
As a further illustration of our methods, we present first a simple new proof of a standard

one-sided second derivative estimate:

THEOREM 4.2 Assume that H satisfies (4.4). Then there exists a constant C such that

(4.5) uεξξ(x, t) ≤
C

t

for all x ∈ Rn, t > 0 and all ε > 0 and |ξ| = 1.

We likewise have the simpler bound

(4.6) uεξξ ≤ C

if g is C2.

Proof. Differentiate the PDE (1.1) twice with respect to ξ, to find

(uεξξ)t +Hpk
(Duε)(uεξξ)xk

+Hpkpl
(Duε)uεxkξ

uεxlξ
= ε∆uεξξ.

Let σε solve (1.2) with the terminal condition α = δx1 at time t1. We multiply the foregoing
PDE by t2σε and integrate:

t21u
ε
ξξ(x1, t1) +

∫ t1

0

∫
Rn

t2Hpkpl
(Duε)uεxkξ

uεxlξ
σε dxdt = 2

∫ t1

0

∫
Rn

tuεξξσ
ε dxdt.

We use (4.4) to further calculate that

t21u
ε
ξξ(x1, t1) + θ

∫ t1

0

∫
Rn

t2|D2uε|2σε dxdt ≤ C

∫ t1

0

∫
Rn

t|D2uε|σε dxdt

≤ θ

∫ t1

0

∫
Rn

t2|D2uε|2σε dxdt+
C

θ

∫ t1

0

∫
Rn

σε dxdt

≤ θ

∫ t1

0

∫
Rn

t2|D2uε|2σε dxdt+
C

θ
t1.

�
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THEOREM 4.3 Assume that H satisfies the uniform convexity condition (4.4). Suppose
the terminal measure α has a smooth density. Then we have the estimate

(4.7)

∫ t1

0

∫
Rn

(|D2uε|2 + |Duεt |2)σε dxdt ≤ C,

for a constant C independent of ε. Consequently

M ≡ 0.

In particular our program of introducing the adjoint PDE (1.2) and the dissipation measures
M is not especially interesting if H is convex. But we will see later that for nonconvex H,
M can be nontrivial even for times 0 ≤ t < t1.

Proof. 1. Differentiate the PDE (1.1) twice with respect to xj and sum on j:

(∆uε)t +Hpk
(Duε)(∆uε)xk

+Hpkpl
(Duε)uεxkxj

uεxlxj
= ε∆(∆uε).

Multiply by σε and integrate:∫ t1

0

∫
Rn

Hpkpl
(Duε)uεxkxj

uεxlxj
σε dxdt+

∫
Rn

∆uε dα =

∫
Rn

∆gσε(x, 0) dx.

In view of (4.4) and our hypotheses on g and α, we derive the inequality∫ t1

0

∫
Rn

|D2uε|2σε dxdt ≤ C.

2. We next differentiate (1.1) twice with respect to t, and as above derive the identity

(4.8)

∫ t1

0

∫
Rn

Hpkpl
(Duε)uεxkt

uεxlt
σε dxdt+

∫
Rn

uεtt(x, t1) dγ =

∫
Rn

uεtt(x, 0)σε(x, 0) dx.

Now uεtt = −DH(Duε)Duεt + ε∆uεt . Since α has a smooth density, we calculate at time t1
that ∫

Rn

uεtt dα = −
∫

Rn

DH(Duε)Duεt dα +O(ε)

= −
∫

Rn

DH(Duε)D(uεt + λ) dα +O(ε)

=

∫
Rn

Hpkpl
uεxkxl

(uεt + λ) dα +O(1)
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Now according to (4.6) and the convexity of H, Hpkpl
uεxkxl

≤ C Thus if we select the constant
λ above so that uεt + λ ≤ 0, we have∫

Rn

Hpkpl
uεxkxl

(uεt + λ) dα ≥ −C.

Then (4.8) and (4.4) provide the estimate∫ t1

0

∫
Rn

|Duεt |2σε dxdt ≤ C.

�

4.3 H homogeneous. For this subsection this we assume that H is positively homoge-
neous of degree one:

(4.9) H(λp) = λH(p) (p ∈ Rn, λ > 0).

This implies

(4.10) DH(p) · p = H(p).

THEOREM 4.4 Suppose that H satisfies the homogeneity condition (4.9) and that α = δx1.
Then

(4.11) spt σ ⊆ {(x, t) | u(x, t) = u(x1, t1)},
and so σ is supported within a level set of u.

Proof. According to (4.10) we have

uεt +DH(Duε) ·Duε = ε∆uε,

and therefore

(4.12) vεt +DH(Duε) ·Dvε = ε∆vε − εψ′′(uε)|Duε|2

for vε := Ψ(uε). Multiplying (4.12) by σεr , integrating and as usual sending ε = εm → 0, r =
rm → 0 gives

Ψ(u(x1, t1)) =

∫
Rn

Ψ(u(x, t)) dγt

for each time 0 ≤ t ≤ t1. Let α 6= u(x1, t1). Replacing Ψ by a sequence Ψk such that

Ψk(z)→

{
1 z = α

0 z 6= α,

we deduce ∫
Rn∩{u(·,t)=α}

dγt = 0.

for each 0 ≤ t ≤ t1. �

18



5 Compensated compactness

We next modify the compensated compactness technique of F. Murat and L. Tartar to the
case at hand, to derive some integral formulas that will turn out to contain information
about the structure of the measure µ.

Suppose that Φ = Φ(q) is smooth. Put

ρεr := ε(Φpkpl
(∇uε)uεxkxi

uεxlxi
+ 2Φpkpn+1(∇uε)uεxkxi

uεtxi
+ Φpn+1pn+1(∇uε)uεtxi

uεtxi
)σεr .

Then (2.1) implies ∫ t1

0

∫
Rn

|ρεr| dxdt ≤ C,

the constant C independent of ε and r. We may consequently assume, passing as necessary
to further subsequences, that as ε = εm → 0 and then r = rm → 0

(5.1) ρεr ⇀ ρ weakly in the sense of measures,

for some signed Borel measure ρ on Rn × [0, t1].

5.1 Integral formulas.

THEOREM 5.1 (i) We have the identity

(5.2)

∫ t1

0

∫
Rn

ζ(pn+1Φ + piHpi
Φ) dσ = −

∫ t1

0

∫
Rn

u(ζtΦ + ζxi
Hpi

Φ) dσ +

∫ t1

0

∫
Rn

ζu dρ,

for all smooth functions ζ = ζ(x, t) with compact support in Rn × (0, t1).
(i) For all smooth functions η = η(x, t) with compact support, we have the further formula

(5.3)

∫ t1

0

∫
Rn

ηtΦ + ηxi
Hpi

Φ dσ =

∫ t1

0

∫
Rn

η dρ.

Proof. 1. Put
wε := Φ(∇uε).

Then

wεt +DH ·Dwε = ε∆wε − ε(Φpkpl
uεxkxi

uεxlxi
+ 2Φpkpn+1u

ε
xkxi

uεtxi
+ Φpn+1pn+1u

ε
txi
uεtxi

);

and the PDE (1.2) implies

(5.4) (wεσεr)t + (Hpi
wεσεr)xi

= ε(σεr∆w
ε − wε∆σεr)− ρεr = ε(σεrw

ε
xi
− wεσer,xi

)xi
− ρεr.
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2. We multiply the previous identity by uεζ and integrate:∫ t1

0

∫
Rn

ζ(uεt + uεxi
Hpi

)wεσεr dxdt = −
∫ t1

0

∫
Rn

uε(ζt + ζxi
Hpi

)wεσεr dxdt

+ ε

∫ t1

0

∫
Rn

(ζuε)xi
(σεrw

ε
xi
− wεσεr,xi

) dxdt+

∫ t1

0

∫
Rn

ζuερεr dxdt.

Denote the term on the left by Aεr and the three terms on the right by Bε
r , C

ε
r , D

ε
r:

Aεr = Bε
r + Cε

r +Dε
r.

Recalling Theorem 3.1, we see that as ε = εm → 0, and then r = rm → 0:

Aεr →
∫ t1

0

∫
Rn

∫
Rn+1

ζ(pn+1 + piHpi
)Φ(q) dµ =

∫ t1

0

∫
Rn

ζ(pn+1Φ + piHpi
Φ) dσ.

Likewise,

Bε
r → −

∫ t1

0

∫
Rn

u(ζtΦ + ζxi
Hpi

Φ) dσ,

since uε → u locally uniformly. Furthermore (5.1) implies

Dε
r →

∫ t1

0

∫
Rn

ζu dρ.

3. Next, we claim that

(5.5) Cε
r → 0.

To confirm this, note first that

ε

∫ t1

0

∫
Rn

|(ζuε)xi
σεrw

ε
xi
| dxdt ≤ εC

∫ t1

0

∫
Rn

(|D2uε|+ |Duεt |)σεr dxdt ≤ Cε1/2

according to the estimate (2.1). Also,

ε

∣∣∣∣∫ t1

0

∫
Rn

(ζuε)xi
wεσεr,xi

dxdt

∣∣∣∣ = ε

∣∣∣∣∫ t1

0

∫
Rn

((ζuε)xi
wε)xi

σεr dxdt

∣∣∣∣ ≤ Cε1/2.

This proves (5.5).

4. To prove (5.3), multiply the identity (5.4) by η, integrate by parts, and let ε = εm →
0, r = rm → 0. �
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Discussion. At this point, if we knew that u were smooth on the support of σ, we could
put η = uζ in (5.3) and combine with (5.2), to deduce∫ t1

0

∫
Rn

ζ(pn+1Φ + piHpi
Φ) dσ =

∫ t1

0

∫
Rn

ζ(utΦ + uxi
Hpi

Φ) dσ.

This identity is valid for all smooth ζ and Φ, and consequently

(5.6) pn+1 + piHpi
(p) = ut(x, t) + uxi

(x, t)Hpi
(p) µ-almost everywhere.

However since u is only Lipschitz continuous, we must work harder to extract useful infor-
mation from (5.2) and (5.3).

5.2 Compensated compactness at the point (x1, t1). We can in fact deduce formula
(5.6) at the terminal point if u is differentiable there:

THEOREM 5.2 Suppose u is differentiable at (x1, t1). Then

(5.7) pn+1 + piHpi
(p) = ut(x1, t1) + uxi

(x1, t1)Hpi
(p) ν−-almost everywhere.

This formula says geometrically that for almost every point q in the support of ν−,
∇u(x1, t1) lies in the tangent plane to the hypersurface Σ = {pn+1 + H(p) = 0} at q. We
discuss later how to use this information.

Proof. Let
φ(x, t) := Du(x1, t1) · (x− x1) + ut(x1, t1)(t− t1) + u(x1, t1).

denote the linear approximation to u at (x1, t1). Put η = φζ in (5.3):∫ t1

0

∫
Rn

(φζt + ζut(x1, t1))Φ + (φζxi
+ ζuxi

(x1, t1))Hpi
Φ dσ =

∫ t1

0

∫
Rn

φζ dρ.

Combine with (5.2) to find:∫ t1

0

∫
Rn

ζ(pn+1Φ + piHpi
Φ) dσ =

∫ t1

0

∫
Rn

ζ(ut(x1, t1)Φ + uxi
(x1, t1)Hpi

Φ) dσ

+

∫ t1

0

∫
Rn

u− φ dρ+

∫ t1

0

∫
Rn

(φ− u)(ζtΦ + ζxi
Hpi

Φ) dσ.

Next, select a small number h > 0 and put ζ(x, t) = a(t)b(x), where a(t1) = 0, a ≡ 0 on
[0, t1 − h] and b ≡ 1 on the support of σ:

(5.8)

∫ t1

t1−h

∫
Rn

a(pn+1Φ + piHpi
Φ) dσ =

∫ t1

t1−h

∫
Rn

a(ut(x1, t1)Φ + uxi
(x1, t1)Hpi

Φ) dσ

+

∫ t1

t1−h

∫
Rn

a(u− φ) dρ+

∫ t1

t1−h

∫
Rn

(φ− u)a′Φ dσ.
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Now pick smooth a(t) = ah(t) so that

1

h

∫ t1

t1−h
ah(t) dt = 1, |ah| ≤ C, |a′h| ≤

C

h

for some constant C. Then ∣∣∣∣∫ t1

t1−h

∫
Rn

ah(u− φ) dρ

∣∣∣∣ = o(h),

since u is differentiable at (x1, t1); and likewise∣∣∣∣∫ t1

t1−h

∫
Rn

(φ− u)a′hΦ dσ

∣∣∣∣ ≤ o(h)

h

∫ t1

t1−h

∫
Rn

dσ = o(h).

We divide (5.8) by h and let h→ 0, recalling Theorem 3.8 to conclude that∫
Rn+1

(pn+1 + piHpi
)Φ dν− =

∫
Rn+1

(ut(x1, t1) + uxi
(x1, t1)Hpi

)Φ dν−.

The validity of this identity for all Φ implies (5.7). �

Remark: compensated compactness for conservation laws versus Hamilton–
Jacobi PDE. Theorems 5.1 and 5.2 together comprise a new application of the Div-Curl
Lemma to Hamilton-Jacobi PDE. It is interesting to compare and contrast our approach with
the more customary div-curl methods for conservation laws, due to Tartar, Murat, DiPerna,
Chen, etc: see for instance Tartar [T] or [E1]. The latter seem inherently to require that
we work in n = 1 space dimension, since only then does the divergence identity ut + vx = 0
imply u = wx, v = −wt for some potential w. (But see Bagnerini–Rascle–Tadmor [B-R-T].)
By contrast our techniques are rather more natural, since we have an obvious candidate for
a curl–free vector field even in n > 1 dimensions, namely ∇uε.

But our conclusion (5.7) is not so strong as that for conservation laws, as it is only a
single algebraic/geometric relation among variables in n+ 1 dimensions.

5.3 Almost everywhere convergence of ∇uε.

Conditions ensuring ν− is a point mass. As noted above, the identity (5.7) implies
that for almost every point q in the support of ν−, ∇u(x1, t1) lies in the tangent plane to
the surface Σ = {pn+1 +H(p) = 0} at q. In addition, from (1.5) we know that

(5.9) ∇u(x1, t1) ∈ Σ;

and from (3.28) that

(5.10) spt ν− ⊆ Σ.
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Figure 1: Geometry of the support of ν−.

Also, according to Theorem 3.9,

(5.11) ∇u(x1, t1) =

∫
Rn+1

q dν−,

provided we assume also that (x1, t1) is also a Lebesgue point for ∇u.

Now if the mapping p 7→ H(p) is either strictly convex or strictly concave, conditions
(5.9)–(5.11) alone imply that ν− = δ∇u(x1,t1). The point is that adding in our new geometric
condition (5.7) leads to the same conclusion for certain nonconvex Hamiltonians.

Example. For instance, suppose the surface Σ has the shape illustrated in Figure 1,
for n = 1. If ∇u(x1, t1) lies on the part of the curve illustrated, our condition (5.7) implies
that the only other possible points belonging to the support of ν− are q1 and q2, as drawn.
Thus spt ν− ⊆ {∇u(x1, t1), q1, q2}. However ∇u(x1, t1) is then an extreme point of the closed
convex hull of spt ν−, and consequently (5.11) implies ν− = δ∇u(x1,t1). The same conclusion
follows, even more easily, if ∇u(x1, t1) lies on the left or right parts of Σ.

This argument applies also for certain nonconvex Hamiltonians in n > 1 variables, for
example H(p) = (|p|2 − 1)2, but certainly fails for other examples.

Pointwise convergence of ∇uε. A fundamental open problem is to determine condi-
tions precise conditions on the Hamiltonian H implying that ν− is a point mass and therefore
that ∇uε → ∇u almost everywhere. Inspired by the previous example, we provide a partial
answer to this question.

Define
Λ ⊆ Σ
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to consist of those points q∗ = (p∗1, . . . , p
∗
n+1) ∈ Σ with the property that q∗ is an extreme

point of the set

co{q = (p1, . . . , pn+1) ∈ Σ | pn+1 + piHpi
(p) = p∗n+1 + p∗iHpi

(p)},

where “ co ” denotes the closed, convex hull.
For instance, Λ = Σ if H is uniformly convex or concave, and also Λ = Σ in the example

illustrated in Figure 1.

THEOREM 5.3 If Λ = Σ, then

(5.12) ∇uε → ∇u almost everywhere.

Proof. 1. Since {∇uε} is bounded, there exists a subsequence εj → 0 and for almost every
point (x, t) a Radon probability measure ρx,t on Rn+1 such that

(5.13)

∫
C(x1,t1,r)

Φ(∇uεj (x, t)) dxdt→
∫
C(x1,t1,r)

∫
Rn+1

Φ(q) dρx,tdxdt

for all cylinders C(x1, t1, r) ⊂ Rn × [0,∞) and all continuous functions Φ. These are the
usual Young measures for the weak convergence ∇uε ⇀ ∇u.

We may suppose that all the sequences {εm} discussed earlier are subsequences of the
given sequence {εj} for which (5.13) holds.

2. Almost every point (x1, t1) is a Lebesgue point for the functions (x, t) 7→
∫

Rn+1 Φ(q) dρx,t
for every Φ. At such a point ∇u(x1, t1) exists. Then if Φ is convex and t1 ≤ s ≤ t1 + r, we
have ∫

−
B(x1,r)

Φ(∇uε(x, s)) dx =

∫
Rn

Φ(∇uε(x, s))αr(x) dx ≤
∫

Rn

Φ(∇uε(x, t))σεr,s dx

for each time 0 ≤ t < t1. Average with respect to s:∫
−
C(x1,t1,r)

Φ(∇uε) dxds ≤
∫

Rn

Φ(∇uε(x, t))σεr dx.

Consequently, if α = α(t) is a smooth, nonnegative function with integral one on the
interval [t1 − h, t1], we have∫

−
C(x1,t1,rj)

∫
Rn+1

Φ(q) dρx,sdxds = lim
εm→0

∫
−
C(x1,t1,rj)

Φ(∇uεm) dxds

≤ lim
εm→0

∫ t1

t1−h

∫
Rn

αΦ(∇uεm(x, t))σεm
rj
dxdt

=

∫ t1

t1−h

∫
Rn

∫
Rn+1

αΦ dµrj .
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Remember that (x1, t1) is a Lebesgue point for the function (x, t) 7→
∫

Rn+1 Φ(q) dρx,t and
send r = rm → 0: ∫

Rn+1

Φ(q) dρx1,t1 ≤
∫ t1

t1−h

∫
Rn

∫
Rn+1

αΦ dµ.

This inequality is valid for all functions α as above, and so∫
Rn+1

Φ(q) dρx1,t1 ≤
1

h

∫ t1

t1−h

∫
Rn

∫
Rn+1

Φ dµ.

Finally, send h→ 0 and recall (3.27), to discover that

(5.14)

∫
Rn+1

Φ(q) dρx1,t1 ≤
∫

Rn+1

Φ(q) dν−.

2. Now Theorem 3.9 tells us that

(5.15) q∗ := ∇u(x1, t1) =

∫
Rn+1

q dν−;

and furthermore pn+1 + piHpi
(p) = p∗n+1 + p∗iHpi

(p) for points q ∈ spt ν−. Since q∗ ∈ Λ = Σ,
q∗ is an extreme point of the closed convex hull of sptµ. But because (5.15) asserts that q∗

is also the center of mass of ν−, it follows that ν− = δq∗ .

Our taking Φ(q) = |q − q∗|2 in (5.14) lets us now deduce that ρx1,t1 = δq∗ also. This
conclusion, valid for almost all points (x1, t1), implies ∇uε → ∇u almost everywhere. �

5.4 Compensated compactness for times 0 ≤ t < t1. Our integral identities
also contain information for times 0 ≤ t < t1. Since u need not be smooth, we need
to introduce some approximations. Assume therefore that {uδ}0<δ<1 is some collection of
smooth functions satisfying

(5.16) max
Rn×[0,t1]

|Duδ, uδt | ≤ C, max
Rn×[0,t1]

|uδ − u| = o(1),

and

(5.17) uδxi
⇀ βi (i = 1, . . . , n), uδt ⇀ βn+1 weakly in L2(dσ)

as δ → 0, for some vector field β = (β1, . . . , βn+1).

THEOREM 5.4 We have

(5.18) pn+1 + piHpi
(p) = βn+1(x, t) + βi(x, t)Hpi

(p) µ-almost everywhere.
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So for almost every point q in the support of νx,t, β(x, t) lies in the tangent plane to the
surface Σ at q. Even if we know nothing about the location of β(x, t), we can still deduce
that the tangent planes to Σ corresponding to points in spt νx,t must all intersect at at least
one point.

Proof. Put η = uδζ in (5.3):∫ t1

0

∫
Rn

(uδζt + ζuδt )Φ + (uδζxi
+ ζuδxi

)Hpi
Φ dσ =

∫ t1

0

∫
Rn

uδζ dρ.

Subtract from (5.2) and recall (5.16), to discover∫ t1

0

∫
Rn

ζ(pn+1Φ + piHpi
Φ) dσ =

∫ t1

0

∫
Rn

ζ(uδtΦ + uδxi
Hpi

Φ) dσ + o(1).

Sending δ → 0 and remembering the weak convergence (5.17), we find∫ t1

0

∫
Rn

ζ(pn+1Φ + piHpi
Φ) dσ =

∫ t1

0

∫
Rn

ζ(βn+1Φ + βiHpi
Φ) dσ.

That this identity is valid for all ζ and Φ implies (5.18). �

One interesting possibility is that some part of the measure σ is singular and is supported
on a smooth shock hypersurface Γ, across which ∇u is discontinuous. See Figure 6 below.
We suppose that u is smooth on each side of Γ, and let ∇u± denote the limits on ∇u on
each side of the shock surface

THEOREM 5.5 For σ-almost every point (x, t) ∈ Γ, we have

(5.19) pn+1 + piHpi
(p) = u±t (x, t) + u±xi

(x, t)Hpi
(p) νx,t-almost everywhere.

So for almost every point q in the support of νx,t, both the points ∇u+(x, t) and ∇u−(x, t)
lie in the tangent plane to the surface pn+1 + H(p) = 0 at q. Note additionally that both
points ∇u±(x, t) also lie on this surface. A particular case is that spt νx,t is a point mass,
at either ∇u+(x, t) or ∇u−(x, t). Then (5.19) implies that the former corresponds to a right
contact discontinuity, corresponding to the geometry illustrated in Figure 2. The latter case
gives a left contact discontinuity. In this sense our compensated compactness arguments
“predict” the onset of contact discontinuities.

Proof. Let ν denote a unit normal vector field to Γ in Rn+1, and think of ν as pointing in
the “right hand” direction: see Figure 6 in §7 below. Smoothly extend ν off of Γ.

Put uδ := u(x ± δν, t). Then uδ → u locally uniformly and ∇uδ → ∇u± on Γ. Apply
formula (5.18). �
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Figure 2: ∇u± at a right contact discontinuity

6 Dissipation and contact discontinuities

6.1 Contact discontinuities in n = 1 dimension. In this section we work out an
interpretation of the matrix of dissipation measures for the special case of a piecewise smooth
solution u of (1.4) in n = 1 spatial dimension. We henceforth assume the geometry of the
characteristics and shocks illustrated in Figure 3. This picture corresponds to illustrations
found in several papers about shock structure for scalar conservation laws with nonconvex
flux functions in n = 1 space dimension: see the articles by Dafermos [D], Ballou [Ba],
Marson [M], etc and also Y. Zheng’s book [Z] .

We assume that the shock wave Γ = {x = s(t)} is a smooth right contact discontinuity,
as drawn. We denote by q+ = q+(t) and q− = q−(t) the right- and left-hand values of the
gradient ∇u = (ux, ut) along Γ at time t1. The geometric locations of q± are illustrated in
Figure 4, the dashed line connecting q+ and q− being tangent to the curve Σ at q+, since
the latter is a contact discontinuity.

Next let Φ : R2 → R be a smooth function and set

φ(t) :=

∫
R

Φ(∇u) dσ.

According to Theorem 3.19 we have

(6.1) φ̇ = −
∫

R

∫
R2

Φpkpl
(q) dmkl.

Our intention is to express the abstract expression on the right explicitly in terms of the
geometry of the contact discontinuity and the graph of H, from Figures 3 and 4. (That the
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Figure 3: A right contact discontinuity curve for ∇u

 

Figure 4: Left and right states for a right contact discontinuity
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graph Σ = {pn+1 + H(p) = 0} lies below the segment connecting q± follows from viscosity
solution admissibility conditions: see [C-E-L].)

For definiteness, suppose γ = δx1 and the point (x1, t1) lies above the shock, as illustrated
in Figure 3. We for the moment think of the measure σ as evolving backwards in time, and
is thus a point mass along the characteristic until it intersects the shock Γ at some time
0 < t∗ < t1. We further assume that for each time t ≤ t∗, σ decomposes into a point mass
of magnitude σ+(t) at x = s(t) along the shock Γ and an absolutely continuous part with
smooth density σ− to the left of the shock. Then

(6.2) φ(t) =

∫ s(t)

−∞
Φ(∇u)σ− dx+ Φ(q+(t))σ+(t).

We want to calculate φ̇ and also to understand how σ± and q± evolve for times t ≤ t∗.

THEOREM 6.1 Under the foregoing assumptions,

(6.3) φ̇ = −
(
Φ(q+) +∇Φ(q+) · (q− − q+)− Φ(q−)

)
(H ′(p+)−H ′(p−))σ−.

Furthermore,

(6.4) σ̇+ = (H ′(p−)−H ′(p+))σ−,

and

(6.5) q̇+σ+ = (q− − q+)σ̇+.

In these formulas, σ− = σ−(t) denotes the left hand limit of the density σ−(x, t) at
x = s(t), along the shock curve Γ. Observe that the right hand side of (6.3) is not preserved
under an interchange of q− and q+: this asymmetry occurs since we have a right contact
discontinuity and not a left contact discontinuity. We will see also that (6.4) and (6.5) are
infinitesimal versions of the conservation of the mass of σ and the conservation of integral
of q with respect to σ.

Interpretations. (i) Since H ′(p−) > H ′(p+) and σ− ≥ 0, we see in particular that if Φ
is convex, then φ̇ ≤ 0, as of course (6.1) predicts. Also (6.4) implies

σ̇+ ≥ 0.

We understand this to mean that as time goes forward, more and more of the mass of the
measure σ coalesces onto the shock, brought there along the characteristics from the left
that collide with the shock.

(ii) Formula (6.3) implies also that the rate of dissipation is cubic in the shock strength
|q+ − q−|.
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(iii) Comparing (6.3) with (6.1), we see that the matrix M of dissipation measures is
supported along the line segment connecting q+ and q−.

Proof. 1. Differentiate (6.2) with respect to t1:

φ̇ = Φ(q−)σ−ṡ+

∫ s(t)

−∞
(Φ(∇u)σ−)t dx+∇Φ(q+) · q̇+σ+ + Φ(q+)σ̇+

= Φ(q−)σ−ṡ−
∫ s(t)

−∞
(H ′(ux)Φ(∇u)σ−)x dx+∇Φ(q+) · q̇+σ+ + Φ(q+)σ̇+

= Φ(q−)σ−ṡ−H ′(p−)Φ(q−)σ− +∇Φ(q+) · q̇+σ+ + Φ(q+)σ̇+,

where q± = (p±1 , p
±
2 ) = (p±, p±2 ). Since ṡ = H ′(p+) along the contact discontinuity, we

therefore deduce that

(6.6) φ̇ = Φ(q−)(H ′(p+)−H ′(p−))σ− +∇Φ(q+) · q̇+σ+ + Φ(q+)σ̇+.

2. Next we prove (6.4). To see this, recall that
∫

R dσ = 1 for each time, and therefore∫ s(t)

r(h,t)

σ− dx = σ+(t+ h)− σ+(t)

for small h > 0, for the point

r(h, t) := s(t+ h)− hH ′(p−(t+ h)).

See Figure 5. Our differentiating with respect to h and putting h = 0 gives

(H ′(p−)− ṡ)σ− = σ̇+.

This implies (6.4), since ṡ = H ′(p+).

3. Now insert (6.4) into (6.6):

(6.7) φ̇ = (Φ(q+)− Φ(q−))σ̇+ +∇Φ(q+) · q̇+σ+.

The final observation is that, according to (6.1), if we put Φ(q) = q, the left hand side of
(6.7) is identically zero:

0 = (q+ − q−)σ̇+ + q̇+σ+.

This is (6.5).
We plug this identity back into (6.7) and recall (6.4), ending up with the stated formula

(6.3). �
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Figure 5: Characteristics intersecting the shock during [t, t+ h]

6.2 Contact discontinuities in n > 1 dimensions. Next we extend the previous
calculations to the case of a smooth contact discontinuity Γ in higher dimensions, on both
sides of which u is smooth.

We write Γ(t) := Γ ∩ (Rn × {t}) for the shock at time t ≥ 0, and assume Γ(t) to be a
smooth hypersurface in Rn. Let ν denote a unit normal vector field to Γ in Rn+1; and for
each time let n denote a corresponding unit normal vector field to Γ(t) in Rn. We regard ν
as pointing in the “right hand” direction, along which u has a contact discontinuity. Write
S(t) for the region in Rn to the “left” of Γ(t): see Figure 6.

We introduce as well the functions q± = (p±, p±n+1) to denote the left and right hand
limits of ∇u along Γ. Since we have a contact discontinuity from the right, the normal
velocity v of Γ(t) with respect to the direction n is

(6.8) v = DH(p+) · n.

Furthermore,

(6.9) ν = (ν̂, νn+1) =
1

(1 + v2)1/2
(n,−v).

Finally, we will suppose that the measure σ decomposes into one part supported along
Γ(t), with smooth density σ+ with respect to (n− 1)-dimensional Hausdorff measure Hn−1,
and another part supported in S(t), with smooth density σ− with respect to n-dimensional
Lebesgue measure.

Given then a smooth function Φ : Rn+1 → R, we put

(6.10) φ(t) :=

∫
Rn

Φ(∇u) dσ =

∫
S(t)

Φ(∇u)σ− dx+

∫
Γ(t)

Φ(q+)σ+ dHn−1,

and recall that

(6.11) φ̇ = −
∫

Rn

∫
Rn+1

Φpkpl
(q) dmkl.

31



Figure 6: A discontinuity surface for ∇u

Once again we wish to understand the right hand side of (6.11) explicitly in terms of the
geometry of Γ and the graph of H.

THEOREM 6.2 We have

(6.12) φ̇ = −
∫

Γ(t)

(
Φ(q+) +∇Φ(q+) · (q− − q+)− Φ(q−)

)
(DH(p+)−DH(p−))·nσ− dHn−1.

The formula (6.12) is a higher dimensional analog of (6.3). As before we see that the
rate of dissipation is cubic in the shock strength |q+ − q−|.

Proof. 1. We begin by recording for smooth functions f = f(x, t) the kinematic formula

(6.13)
d

dt

∫
Γ(t)

f dHn−1 =

∫
Γ(t)

Df
Dt
− fvH dHn−1,

where H denotes the mean curvature of Γ(t) and

Df
Dt

:= ft + vDf · n.
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We employ (6.13) in differentiating (6.10) with respect to t1:

(6.14) φ̇ =

∫
Γ(t)

Φ(q−)σ−v dHn−1 +

∫
S(t)

(Φ(∇u)σ−)t dx

+

∫
Γ(t)

∇Φ(q+) · Dq+
Dt
σ+ + Φ(q+)Dσ

+

Dt
− Φ(q+)σ+vH dHn−1.

Furthermore,∫
S(t)

(Φ(∇u)σ−)t dx = −
∫
S(t)

div(DH(Du)Φ(∇u)σ−) dx = −
∫

Γ(t)

Φ(q−)DH(p−)·nσ− dHn−1.

Since v = DH(p+) · n along the contact discontinuity, it follows that

(6.15) φ̇ =

∫
Γ(t)

Φ(q−)(DH(p+)−DH(p−)) · nσ− dHn−1

+

∫
Γ(t)

∇Φ(q+) · Dq+
Dt
σ+ + Φ(q+)Dσ

+

Dt
− Φ(q+)σ+vH dHn−1.

2. Next we prove

(6.16) Dσ+

Dt
− vHσ+ = (DH(p−)−DH(p+)) · nσ−,

a generalization of (6.4).

To do so, first fix a small number h > 0. Then select any small smooth region ∆(t) ⊂ Γ(t).
We evolve ∆(t) into smooth surfaces ∆(s) ⊂ Γ(s) for times t ≤ s ≤ t+h, so that the velocity
of each point along ∂∆(s) is normal to Γ(s). The surfaces {∆(s)}t≤s≤t+h sweep out the region
Σ(t, h) ⊂ Γ illustrated in Figure 7.

Finally, from each point belonging to Σ(t, h), we construct to the “left” the backwards
characteristic with constant slope (DH(p−), 1). These at time t1 give us the region R(t, h) ⊂
Rn drawn in Figure 7. Finally we let Λ(t, h) denote the (n+1)-dimensional solid whose sides
are Σ(t, h), R(t, h) and the unions of the backwards characteristics from ∂Σ(t, h) over the
time interval [t, t+ h].

Since
∫

Rn dσ = 1 for each time,

(6.17)

∫
R(t,h)

σ− dx =

∫
∆(t+h)

σ+ dHn−1 −
∫

∆(t)

σ+ dHn−1.

We need first to rewrite the term on the left. To do so, note that σ−t +div(DH(Du)σ−) = 0
to the left of the shock, and therefore the Divergence Theorem implies∫

R(t,h)

σ− dx =

∫
Σ(t,h)

(νn+1 +DH(p−) · ν̂)σ− dHn.
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Figure 7: The surfaces R(t, h) ⊂ Rn and Σ(t, h) ⊂ Γ

But since ν is perpendicular to Γ and (DH(p+), 1) is tangent,

νn+1 +DH(p+) · ν̂ = 0.

Consequently, owing to (6.9) we have∫
R(t,h)

σ− dx =

∫
Σ(t,h)

(DH(p−)−DH(p+)) · ν̂σ− dHn

=

∫
Σ(t,h)

(DH(p−)−DH(p+)) · n σ−

(1 + v2)1/2
dHn.

We differentiate with respect to h and then set h = 0:

(6.18)
d

dh

∫
R(t,h)

σ− dx

∣∣∣∣
h=0

=

∫
∆(t)

(DH(p−)−DH(p+)) · nσ− dHn−1.

Next we apply the kinematic formula (6.13), with ∆(t) replacing Γ(t), to deduce

(6.19)
d

dt

∫
∆(t)

σ+ dHn−1 =

∫
∆(t)

Dσ+

Dt
− σ+vH dHn−1.

Note that there is no additional term involving an integral along ∂∆(t), since the velocity
there is normal to Γ(t).

Using (6.18) and (6.19) in (6.17), we see that∫
∆(t)

(DH(p−)−DH(p+)) · nσ− dHn−1 =

∫
∆(t)

Dσ+

Dt
− σ+vH dHn−1.
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This implies (6.16), since the region ∆(t) is arbitrary.

3. Formula (6.16) lets us simplify (6.15):

(6.20) φ̇ =

∫
Γ(t)

(Φ(q−)− Φ(q+))(DH(p+)−DH(p−)) · nσ− dHn−1

+

∫
Γ(t)

∇Φ(q+) · Dq+
Dt
σ+ dHn−1.

To go further, we need the final claim that

(6.21) Dq+

Dt
σ+ = (q+ − q−)(DH(p+)−DH(p−)) · nσ−,

which is a higher dimensional variant of (6.5).

We prove this by modifying as follows the calculations from Step 2 in the proof. Since∫
Rn∇udσ is constant in time,

(6.22)

∫
R(t,h)

∇uσ− dx =

∫
∆(t+h)

q+σ+ dHn−1 −
∫

∆(t)

q+σ+ dHn−1.

Because (σ−∇u)t + div(DH(Du)∇uσ−) = 0 in the region to the left of the shock, the
Divergence Theorem implies∫

R(t,h)

∇uσ− dx =

∫
Σ(t,h)

(νn+1 +DH(p−) · ν̂)q−σ− dHn

=

∫
Σ(t,h)

(DH(p−)−DH(p+)) · n q−σ−

(1 + v2)1/2
dHn.

Hence

(6.23)
d

dt

∫
R(t,h)

∇uσ− dx
∣∣∣∣
h=0

=

∫
∆(t)

(DH(p−)−DH(p+)) · nq−σ− dHn−1.

Also,

(6.24)
d

dt

∫
∆(t)

q+σ+ dHn−1 =

∫
∆(t)

q+(Dσ
+

Dt
− σ+vH) + Dq+

Dt
σ+ dHn−1.

Using (6.23), (6.24) and (6.16) in (6.22), we deduce∫
∆(t)

(q− − q+)(DH(p−)−DH(p+)) · nσ− dHn−1 =

∫
∆(t)

Dq+

Dt
σ+ dHn−1.

Since the region ∆(t) is arbitrary, the identity (6.21) follows.

4. We employ (6.21) in (6.20), at last to conclude the proof of (6.12). �
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7 Scalar conservation laws

Our kinetic formulation for Hamilton-Jacobi PDE is inspired by the corresponding ap-
proach to conservation laws due to Lions, Perthame and Tadmor [L-P-T1], [L-P-T2] (see
also Perthame [P]), but our methods when applied to the latter differ. In this section we
sketch out what our techniques give for a scalar conservation law in n space variables.

Given a smooth flux function F : R→ Rn, F = F (z) = (F1(z), . . . , Fn(z)), and g : Rn →
R, g = g(x), we introduce the regularized scalar conservation law

(7.1)

{
uεt + (Fi(u

ε))xi
= ε∆uε in Rn × (0,∞)

uε = g on Rn × {t = 0}.

Given next a probability measure γ on Rn and a time t1 > 0, we introduce the following
terminal value problem

(7.2)

{
−σεt − (F ′i (u

ε)σε)xi
= ε∆σε in Rn × [0, t1)

σε = α on Rn × {t = t1}.

We have the estimates:

(7.3) sup
Rn×[0,∞)

|uε| ≤ C and σε ≥ 0,

∫
Rn

σε dx = 1 (0 ≤ t < T ).

Furthermore, uε → u strongly in Lp, where u is the unique entropy solution of the conserva-
tion law

(7.4)

{
ut + (Fi(u))xi

= 0 in Rn × (0, t1]

u = g on Rn × {t = 0}.

By analogy with Theorem 3.1, there exists a sequence ε = εm → 0 and a non-negative
measure µ on Rn × [0, t1]× R such that

(7.5)

∫ t1

0

∫
Rn

Φ(x, t, uε)σε dxdt→
∫ t1

0

∫
Rn

∫
R

Φ(x, t, z) dµ

for all continuous, bounded functions Φ.

THEOREM 7.1 (i) We have the estimate

(7.6) ε

∫ t1

0

∫
Rn

|Duε|2σεdxdt ≤ C.

(ii) There exists a nonnegative measure m on Rn × [0, t1]× R such that

(7.7) µt + F ′i (z)µxi
= −mzz.
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We call m the dissipation measure. Note that in our approach m depends upon the
measure γ and the terminal time t1. The implicit summation in (7.7) is for i = 1, . . . , n.
The transport equation (7.7) is an analog of (3.19), but is much simpler.

Proof. 1. Let wε = 1
2
(uε)2. Then

wεt + F ′i (u
ε)wεxi

= ε∆wε − ε|Duε|2.

We multiply by σε and integrate by parts:

ε

∫ t1

0

∫
Rn

|Duε|2σε dxdt+

∫
Rn

wε(x, t) dα =

∫
Rn

wε(x, 0)σε(x, 0) dx.

This implies (7.6).

2. Let Φ = Φ(x, t, z) be smooth and have compact support in Rn × (0, t1)× R. Put

wε(x, t) := Φ(x, t, uε).

Then
wεt + F ′i (u

ε)wεxi
= ε∆wε + Φt + F ′i (u

ε)Φxi
− εΦzz|Duε|2 + Eε

for
Eε := ε(∆xΦ + 2Φxizu

ε
xi

).

In these formulas φ is evaluated at (x, t, uε).

We multiply by σε and integrate by parts, using (7.2) to simplify:∫ t1

0

∫
Rn

(−Φt − F ′i (uε)Φxi
)σε dxdt+ ε

∫ t1

0

∫
Rn

Φzz|Duε|2 =

∫ t1

0

∫
Rn

Eεσε dxdt.

Passing to limits as ε = εm → 0 gives the weak formulation of (7.7). �
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Birkhäuser, 2001.

39


