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Abstract. We recount here some preliminary attempts to devise quantum analogues of

certain aspects of Mather’s theory of minimizing measures [M1-2, M-F], augmented by the

PDE theory from Fathi [F1,2] and from [E-G1]. This earlier work provides us with a Lipschitz

continuous function u solving the eikonal equation a.e. and a probability measure σ solving

a related transport equation.

We present some elementary formal identities relating certain quantum states ψ and u, σ.

We show also how to build out of u, σ an approximate solution of the stationary Schrödinger

eigenvalue problem, although the error estimates for this construction are not very good.

1. Introduction.

This paper records a few observations and comments concerning the possible implica-
tions for quantum mechanics of Fathi’s “weak KAM” theory from [F1-2] and the recent
paper [E-G1], which discusses connections between the “effective Hamiltonian” introduced
by Lions–Papanicolaou–Varadhan [L-P-V], Mather’s theory of action minimizing measures
[M1-2, M-F], and Hamiltonian dynamics. See also Weinan E [EW] for more on these ap-
proaches.

We will discuss the Hamiltonian

(1.1) H(p, x) :=
1
2
|p|2 + V (x),

defined for momentum variables p ∈ Rn and position variables x ∈ Tn, where Tn denotes
the flat torus in Rn. The smooth potential V is Tn-periodic. The corresponding stationary
Schrödinger equation is

(1.2) Ĥψ = −�
2

2
∆ψ + V ψ = Eψ in Rn,

E denoting the energy level and � Planck’s constant.
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The basic structure available from the references cited above for the case of the Hamil-
tonian (1.1) is this. Fix a vector P ∈ Rn. Then there exists a Tn-periodic, Lipschitz
continuous function v : Rn → R solving the cell problem

|P + Dv|2
2

+ V (x) = H̄(P ) in Rn

in the viscosity sense. The term H̄(P ) on the right-hand side defines a convex function,
the effective Hamiltonian H̄ : Rn → R, as introduced by Lions–Papanicolaou–Varadhan
[L-P-V]. We define

(1.3) u := P · x + v,

to transform this PDE into the form

(1.4)
|Du|2

2
+ V (x) = H̄(P ) in Rn.

This is the eikonal equation. Furthermore we have a nonnegative Radon probability mea-
sure σ defined on Tn, called the Mather measure, satisfying

(1.5) div(σDu) = 0 in Rn

in the weak sense. This is a stationary form of a transport equation.

The primary question introduced in this paper asks to what extent we can utilize u and
σ, satisfying (1.3)−(1.5), to glean information about Bloch wave solutions of Schrödinger’s
equation (1.2). The formal connection is that if we write

ψ = a ei s/�,

then

(1.6)
|Ds|2

2
+ V = E +

�
2

2
∆a

a

and

(1.7) div(a2Ds) = 0.

The interesting problem, for which this paper provides some very minor progress, is of
course to find rigorous statements consistent with the formal similarities between between
(1.5) and (1.7) and between (1.4) and (1.6) for small �. The following sections discuss two
different approaches to this issue.

In §2, I derive two elementary identities connecting the quantities u, σ, s and a as above.
These formulas record by how much the quantum state ψ fails to minimize the classical
action.
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In §3 following, we take the function u and the measure σ and manufacture from them
a quasimode, that is, an approximate solution of (1.2) for the energy level E = H̄(P ).
However, we can only estimate the error term to be O(�) in L2, which as M. Zworski
tactfully pointed out to me is not very good: It is not difficult by other means to build
approximations with the same error bound. I provide these computations mostly in hopes
of interesting the real experts in this problem.

The papers [E-G2] and Gomes [G1-3] present some further developments of the PDE
theory from [E-G1], and a good introduction to Mather’s theory is Contreras–Iturriaga
[C-I]. We also note here that our functions H̄, L̄ are equivalent to Mather’s α, β: see the
appendix to [E-G2].

2. Quantum analogues of action minimizers.

This section records two formal identities relating our solutions u, σ of the eikonal and
transport PDE, with a solution of the stationary Schrödinger equation.

2.1 Notation. Define the usual Hamiltonian operator

Ĥ = −�
2

2
∆ + V

and assume that ψ is an eigenstate, normalized so that
∫
Tn |ψ|2dx = 1:

(2.1) −�
2

2
∆ψ + V ψ = Eψ in Tn.

We suppose we can write ψ in the WKB form

(2.2) ψ = a ei s/�,

with real, smooth amplitude a and phase s. Then

(2.3)
|Ds|2

2
+ V = E +

�
2

2
∆a

a
,

(2.4) div(a2Ds) = 0.

We will assume as well that

a2Ds =
�

i
Dψ ψ̄ is periodic.

Next define

(2.5) Q :=
∫
Tn

Ds a2dx =
∫
Tn

j dx,
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the average of the quantum flux j := �

2i (Dψ ψ̄−Dψ̄ ψ). We introduce also the Lagrangian
operator

L̂ = −�
2

2
∆− V

and define the quantum action

(2.6) 〈ψ|L̂|ψ〉 :=
∫
Tn

�
2

2
|Dψ|2 − V |ψ|2 dx =

∫
Tn

�
2

2
|Da|2 +

|Ds|2
2

a2 − V a2dx.

Fix now any P ∈ Rn and recall from above the eikonal equation

(2.7)
|Du|2

2
+ V = H̄(P ),

where u = P · x + v and v is periodic. As noted before, the convex function H̄ is the
effective Hamiltonian, the convex dual of which is the effective Lagrangian L̄.

We want to derive some identities relating these various quantum and classical objects.

2.2 Minimization of the quantum action.

Lemma 2.1. For each P ∈ Rn we have the equality

(2.8) 〈ψ|L̂|ψ〉 − L̄(Q) + H̄(P ) + L̄(Q)−P ·Q =
�

2

2

∫
Tn

|Da|2dx + 1
2

∫
Tn

|Du−Ds|2 a2dx.

In particular, if we take P ∈ ∂L̄(Q), then

(2.9) 〈ψ|L̂|ψ〉 − L̄(Q) =
�

2

2

∫
Tn

|Da|2 dx + 1
2

∫
Tn

|Du−Ds|2 a2dx.

Proof. The left-hand side of (2.8) equals

〈ψ|L̂|ψ〉+ H̄(P )− P ·Q =
∫
Tn

�
2

2
|Da|2 +

|Ds|2
2

a2 − V a2dx

+
∫
Tn

( |Du|2
2

+ V )a2dx−
∫
Tn

P ·Ds a2dx,

where we used (2.5),(2.7). This expression equals

�
2

2

∫
Tn

|Da|2dx + 1
2

∫
Tn

(|Du|2 + |Ds|2)a2dx−
∫
Tn

(P + Dv) ·Ds a2dx,

since v, a2Ds are periodic and div(a2Ds) = 0. The foregoing then reads

�
2

2

∫
Tn

|Da|2dx + 1
2

∫
Tn

|Du−Ds|2a2 dx,
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since Du = P + Dv. �

Interpretation. The naive WKB approximation is certainly false in general, and we
can understand the right-hand sides of formulas (2.8), (2.9) as recording quantitatively the
failure of the PDE (1.4), (1.5) to approximate (1.6), (1.7).

The left-hand sides of (2.8), (2.9) record by how much the quantum action of ψ differs
from the minimum of the classical action. Indeed according to Mather’s theory, L̄(Q) is
the minimum of the action

A[µ] :=
∫
Rn

∫
Tn

1
2
|p|2 − V (x) dµ.

taken among all flow–invariant probability measures µ on the classical phase space Rn×Tn,
with given rotation vector

Q :=
∫
Rn

∫
Tn

p dµ.

To understand the quantum analogue of this, we first recall that since H̄(P ) + L̄(Q) ≥
P · Q, with equality if and only if P ∈ ∂L̄(Q), this should be our optimal choice for P .
Then (2.9) asserts firstly that

L̄(Q) ≤ 〈ψ|L̂|ψ〉
for all quantum states ψ satisfying (2.1), now for the given average flux

Q =
∫
Tn

j dx.

So the classical minimum of the action is a lower bound for the quantum action. Secondly,
equality holds in the limit � → 0 if and only if the naive WKB approximation is valid,
in the sense that the right-hand side of (2.9) goes to zero. The really interesting issue
would be to understand under what, if any, circumstances both sides of (2.9) vanish as
�→ 0. �

2.3 An identity for a periodic phase. Now assume in addition to (2.1)–(2.4) that we
can write the phase s in the form

s = P · x + r

where r is periodic. Under this strong hypothesis on the structure of the phase, we can
derive a second formal identity:

Lemma 2.2. We have

(2.10) 1
2

∫
Tn

|Du−Ds|2 a2 dx + E =
�

2

2

∫
Tn

|Da|2 dx + H̄(P ).

Proof. Let us first subtract (2.3) from (2.7), to find

|Du|2
2
− |Ds|2

2
= H̄(P )− E − �

2

2
∆a

a
.
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We rewrite:
1
2 |Du−Ds|2 + Ds · (Du−Ds) = H̄(P )− E − �

2

2
∆a

a
,

and then multiply by a2 and integrate:

1
2

∫
Tn

|Du−Ds|2a2 dx +
∫
Tn

D(u− s) ·Ds a2 dx = H̄(P )− E +
�

2

2

∫
Tn

|Da|2 dx.

But D(u− s) = D(v − r) and v, r are periodic. Hence
∫
Tn D(u− s) ·Dsa2 dx = 0. �

3. Building approximate solutions.

We recall that the Lipschitz function u solves the eikonal equation (1.4) and the prob-
ability measure σ satisfies (1.5). Then formally the function

(3.1) ψ := σ
1
2 e

iu
�

solves (1.2) up to an error term of order O(�2), for E = H̄(P ). This however makes no
sense at all, since u is only Lipschitz continuous and σ is merely a measure: The square
root in (3.1) is undefined and ψ is not smooth enough to insert into the left-hand side of
the PDE (1.2). We will, naively, try to repair these defects by mollifying.

3.1. Mollifiers. Take ζ : Rn → R is a smooth function, satisfying

(3.2) ζ ≥ 0, spt ζ = B(0, 1), ζ(z) = ζ(|z|).

Write
η(z) := cζ4(z),

the constant c > 0 adjusted so that
∫

B(0,1)
η dz = 1. Fix ε > 0 and define ηε(z) := 1

εn η
(

z
ε

)
.

Lemma 3.1. We have the estimates

(3.3) |Dη| ≤ Cη
3
4 , |D2η| ≤ Cη

1
2 .

Proof. Compute |Dη| = c4ζ3|Dζ| ≤ Cζ3 ≤ Cη
3
4 ; and similarly

|D2η| ≤ Cζ2|Dζ|2 + Cζ3|D2ζ| ≤ Cζ2 ≤ Cη
1
2 .

�
The paper [EG1] contains the proof of
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Lemma 3.2. The gradient Du(x) exists for each point x ∈ spt(σ), and

(3.4) |Du(y)−Du(x)| ≤ C|x− y|

for a.e. point y ∈ Tn and each x ∈ spt(σ).

Next we define uε = ηε ∗ u and σε = ηε ∗ σ; that is,

(3.5) uε(x) =
∫
Rn

ηε(x− y)u(y)dy =
1
εn

∫
B(x,ε)

η
(x− y

ε

)
u(y)dy

and

(3.6) σε(x) =
∫
Rn

ηε(x− y)dσ(y) =
1
εn

∫
B(x,ε)

η
(x− y

ε

)
dσ(y).

We need next to control how well the smoothed functions uε solve the eikonal equation,
at least near spt(σ).

Lemma 3.3. For each point x ∈ Tn,

(3.7) | |Duε(x)|2
2

+ V (x)− H̄(P )| ≤ C(ε2 + dist(x, spt(σ))2).

Proof. We have

(3.8) Duε(x) =
∫
Rn

ηε(x− y)Du(y)dy.

Also
|Du(y)|2

2
+ V (y) = H̄(P )

for a.e. point y ∈ B(x, ε). Therefore

|Duε(x)|2
2

+ V (x)− H̄(P ) =
|Duε(x)|2

2
+ V (x)− |Du(y)|2

2
− V (y)

= Duε(x) · (Duε(x)−Du(y))− 1
2 |Duε(x)−Du(y)|2 + V (x)− V (y).

Multiply by ηε(x− y) and integrate with respect to y:

|Duε(x)|2
2

+ V (x)− H̄(P )

= − 1
2

∫
Rn

ηε(x− y)|Duε(x)−Du(y)|2dy

+
∫
Rn

ηε(x− y)[V (x) + DV (x) · (y − x)− V (y)]dy,
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where we used (3.8) and the radiality of η. Consequently

(3.9)

| |Duε(x)|2
2

+ V (x)− H̄(P )|

≤ Cε2 + 1
2

∫
Rn

ηε(x− y)|
∫
Rn

ηε(x− z)(Du(z)−Du(y))dz|2dy

≤ Cε2 +
C

ε2n

∫
B(x,ε)

∫
B(x,ε)

|Du(z)−Du(y)|2dzdy

Take x ∈ spt(σ), |x− x∗| = dist(x, spt(σ)). Then according to Lemma 3.2,

1
ε2n

∫
B(x,ε)

∫
B(x,ε)

|Du(z)−Du(y)|2dzdy ≤ C

εn

∫
B(x,ε)

|Du(y)−Du(x∗)|2dy

≤ C

εn

∫
B(x,ε)

|y − x∗|2dy ≤ C(ε2 + dist(x, spt(σ))2).

We use this estimate in (3.9) to finish the proof of (3.7). �
We must also control the size of the Laplacian applied to uε:

Lemma 3.4. For each point x ∈ Tn, we have the bound

|∆uε(x)| ≤ C + C
dist(x, spt(σ))

ε
.

Proof. Observe that

∆uε(x) =
1

εn+1

∫
B(x,ε)

Dη
(x− y

ε

)
·Du(y)dy

=
1

εn+1

∫
B(x,ε)

Dη
(x− y

ε

)
· (Du(y)−Du(x∗))dy,

where x∗ ∈ spt(σ), |x− x∗| = dist(x, spt(σ)). Thus

|∆uε(x)| ≤ C

εn+1

∫
B(x,ε)

|y − x∗|dy ≤ C + C
dist(x, spt(σ))

ε
.

�
3.2. Approximate solutions. We hereafter set

(3.10) ε = �
1
2

and define
ψε(x) := (σε(x))

1
2 e

iuε(x)
� (x ∈ Tn).
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Theorem 3.1. We have

(3.11) ψε ∈ H2(Tn),
∫
Tn

|ψε|2 dx = 1,

and

(3.12) −�
2

2
∆ψε + V ψε = H̄(P )ψε + eε,

where the error term eε satisfies the estimate

(3.13) ‖eε‖L2(Tn) ≤ C�.

Proof. 1. Let 0 < λ ≤ ε4 = �2 and define

(3.14) ψε,λ := (σε + λ)
1
2 eiuε/�.

Set ψ = ψε,λ. We then compute

−�
2

2
∆ψ + V ψ − H̄(P )ψ = A + B + C,

for

(3.15) A :=
( |Duε|2

2
+ V − H̄(P )

)
ψ,

(3.16) B := − i�

2

(
div((σε + λ)Duε)

σε + λ

)
ψ,

(3.17) C := −�
2

2

(
∆σε

σε + λ
− 1

4

|Dσε|2
(σε + λ)2

)
ψ.

We must estimate the L2-norm of each term.

Estimate of A. We have

∫
Tn

|A|2dx =
∫
Tn

∣∣∣∣ |Duε|2
2

+ V − H̄(P )
∣∣∣∣
2

(σε + λ)dx

≤ Cλ +
∫
Tn

∫
Rn

∣∣∣∣ |Duε(x)|2
2

+ V (x)− H̄(P )
∣∣∣∣
2

ηε(x− y) dσ(y)dx

≤ C�2 + C

∫
2Tn

∫
Tn

(ε4 + dist(x, spt(σ))4)ηε(x− y) dxdσ(y),
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according to Lemma 3.3. Since ηε(x− y) = 0 if |x− y| ≥ ε, we deduce

(3.18)
∫
Tn

|A|2dx ≤ C�2.

Estimate of B. Recalling (3.14), we compute

(3.19)

∫
Tn

|B|2dx ≤ C�2

∫
Tn

|div((σε + λ)Duε)|2
σε + λ

dx

≤ C�2

∫
Tn

λ2|∆uε|2
σε + λ

dx + C�2

∫
Tn

|div(σεDuε)|2
σε + λ

dx

=: B1 + B2.

We next recall Lemma 3.4, to estimate that

(3.20) B1 ≤ C�2λ

∫
Tn

|∆uε|2dx ≤ C�2 λ

ε2
≤ C�2.

We also have div(σDu) = 0, and so

div(
∫
B(x,ε)

ηε(x− y)Du(y) dσ(y)) = 0.

Hence

(3.21)

div(σεDuε) = div(
∫
B(x,ε)

ηε(x− y)(Duε(x)−Du(y)) dσ(y))

=
1
εn

∫
B(x,ε)

η
(x− y

ε

)
∆uε(x) dσ(y)

+
1

εn+1

∫
B(x,ε)

Dη
(x− y

ε

)
· (Duε(x)−Du(y)) dσ(y)

=: B3 + B4.

Now

(3.22) |B3| ≤
C

εn

∫
B(x,ε)

η
(x− y

ε

)
dσ(y),

according to Lemma 3.4. Furthermore, Lemma 3.2 implies

(3.23)

|B4| ≤
C

εn+1

∫
B(x,ε)

|Dη|
(x− y

ε

)
|Duε(x)−D(y)| dσ(y)

≤ C

εn

∫
B(x,ε)

|Dη|
(x− y

ε

)
dσ(y).
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Combine (3.21)–(3.23):

|div(σεDuε)| ≤ C

εn

∫
B(x,ε)

η + |Dη| dσ.

Thus

|div(σεDuε)|2
σε + λ

≤ C

ε2n

( ∫
B(x,ε)

η + |Dη|dσ
)2

1
εn

∫
B(x,ε)

η dσ + λ

≤ C

εn

( ∫
B(x,ε)

η
1
2 dσ

)2

∫
B(x,ε)

η dσ + λεn
by Lemma 3.1

≤ C

εn

( ∫
B(x,ε)

η dσ) σ(B(x, ε))∫
B(x,ε)

η dσ + λεn
≤ C

σ(B(x, ε))
εn

,

and therefore

B2 ≤ C�2

∫
Tn

σ(B(x, ε))
εn

dx

=
C�2

εn

∫
Tn

∫
2Tn

χB(0,ε)(x− y)dσ(y)dx ≤ C�2.

This inequality and (3.19), (3.20) imply

(3.24)
∫
Tn

|B|2dx ≤ C�2.

Estimate of C. The definition (3.17) gives

(3.25)
∫
Tn

|C|2dx ≤ C�4

∫
Tn

|∆σε|2
σε + λ

dx + C�4

∫
Tn

|Dσε|4
(σε + λ)3

dx =: C1 + C2.

We note also that
∆σε(x) =

1
εn+2

∫
B(x,ε)

∆η
(x− y

ε

)
dσ(y),

and so

|∆σε|2
σε + λ

≤ C

ε2n+4

( ∫
B(x,ε)

|∆2η|dσ
)2

1
εn

∫
η dσ + λ

≤ C

εn+4

( ∫
B(x,ε)

η
1
2 dσ

)2

∫
B(x,ε)

dσ + λεn
by Lemma 3.1

≤ C

εn+4

( ∫
B(x,ε)

ηdσ
)
σ(B(x, ε))∫

B(x,ε)
ηdσ + λεn

≤ C

ε4
σ(B(x, ε))

εn
.
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Consequently

(3.26) C1 ≤
C�4

ε4

∫
Tn

σ(B(x, ε))
εn

dx ≤ C�2.

Furthermore

Dσε(x) =
1

εn+1

∫
B(x,ε)

Dη
(x− y

ε

)
dσ(y),

and hence

|Dσε|4
(σε + λ)3

≤ C

ε4n+4

( ∫
B(x,ε)

|Dη|dσ)4

( 1
εn

∫
ηdσ + λ)3

≤ C

εn+4

( ∫
B(x,ε)

η
3
4 dσ)4

(
∫

ηdσ + λεn)3

≤ C

εn+4

( ∫
ηdσ)3σ(B(x, ε))

(
∫
B(x,ε)

ηdσ + λεn)3
≤ C

ε4
σ(B(x, ε))

εn
.

As before, we deduce that

C2 ≤
C�4

ε4
= C�2.

This and (3.26) imply

(3.27)
∫
Tn

|C|2dx ≤ C�2.

We combine inequalities (3.18), (3.24) and (3.27), to discover

−�
2

2
∆ψε,λ + V ψε,λ = H̄(P )ψε,λ + eε,λ

where
‖eε,λ‖L2(Tn) ≤ C�.

Now let λ→ 0:

−�
2

2
∆ψε + V ψε = H̄(P )ψε + eε,

with
‖eε‖L2(Tn) ≤ C�.

�
In closing, we repeat that the O(�) estimate here is not satisfactory. It remains an

interesting problem somehow to build from u, σ an approximate solution with an L2-error
of order o(�).
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