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Abstract. We extend to time-dependent Hamiltonians some of the PDE methods from our

previous paper [E-G1], and in particular the theory of “effective Hamiltonians” introduced by

Lions, Papanicolaou and Varadhan [L-P-V]. These PDE techniques augment the variational

approach of Mather [Mt1-4, M-F] and the weak KAM methods of Fathi [F1-5].

We also provide a weak interpretation of adiabatic invariance of the action and suggest a

formula for the Berry–Hannay geometric phase in terms of an effective Hamiltonian.

1. Introduction.

We continue our investigation from [E-G1], employing nonlinear PDE methods to aug-
ment the variational approach of Mather [Mt1-4, M-F] and the weak KAM methods of
Fathi [F1-5] in the study of Hamiltonian equations with many degrees of freedom. This
paper treats Hamiltonians H = H(p, x, t) which depend upon time.

In this first section we outline the basic issues arising as we try to extend our earlier
methods to time–dependent Hamiltonians, most notably the differences between asymp-
totic limits of trajectories with “fast” versus “slow” variations in time. These comments
provide an overview of the entire paper.

In §2 we explain how to construct the effective Hamiltonian Ĥ in the case that H is
periodic in both x and t, and along the way we build a viscosity solution w of an appropriate
Hamilton–Jacobi cell problem. Section 3 demonstrates how Ĥ and the related Lagrangian
L̂ govern asymptotics of Hamiltonian dynamics with fast, periodic variations in both space
and time.

Section 4 introduces dynamics with fast, periodic variations in space, but slow variations
in time. The rescaled limit is now controlled by {H̄(·, t)}t≥0, the overbar denoting the
effective Hamiltonian computed from fast variations in the variable x only, as in [E-G1].

An interesting problem is to understand the relationships between Ĥ and {H̄(·, t)}t≥0,
in other words between averaging in x, t together and averaging in x alone for each fixed
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time. Our results here are not very definitive, but for the reader’s convenience we record
some relationships for integrable systems under a strong assumption about the averaging.
This leads to the Berry–Hannay phase correction, a formal expression for which in terms
of Ĥ we propose in §6.

Much of what follows appears in somewhat different form in the second author’s thesis
[G1]. We have in this and our previous paper largely rederived using nonlinear PDE
techniques earlier results from dynamics, due to Mather, Mañé, Fathi and others. The
appendix clarifies some of the connections between our work (and notation) and theirs.

We are very grateful to A. Fathi for pointing out some errors in an earlier version of
this paper.

1.1. Changing variables in x and t.

We begin by taking H : Rn × Rn × R → R, H = H(p, x, t), to be a smooth time–
dependent Hamiltonian, for which we consider the corresponding flow

(1.1)
{

ẋ = DpH(p,x, t)
ṗ = −DxH(p,x, t).

The dynamics (1.1) transform to read

(1.2)

{
Ẋ = DĤ(P)

Ṗ = 0,

under the canonical change of variables

(1.3) (p, x)→ (P, X),

provided

(1.4)
{

p = Dxu(P, x, t)
X = DP u(P, x, t),

and the generating function u = u(P, x, t) satisfies the Hamilton–Jacobi PDE

(1.5) ut + H(Dxu, x, t) = Ĥ(P ) in Rn × R.

The term Ĥ on the right hand side is at this point in the discussion just some given
function of P only, which does not depend on X. This change of coordinates usually fails
in practice, since the PDE (1.5) does not often have a smooth solution and, even if it does,
the transformation (1.3), (1.4) is not usually valid globally.
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On the other hand, we can under reasonable assumptions on H build a weak solution
of (1.5) for a suitably defined function Ĥ. This we show in §2 below, following Lions–
Papanicolaou–Varadhan [L-P-V]. The key hypothesis will be that H is Tn-periodic in the
space variable x, where Tn denotes the unit cube in Rn with opposite faces identified, and
furthermore that H is [0, 1]-periodic in the time variable t.

It turns out that given P ∈ Rn there exists a unique real number λ for which the cell
problem {

wt + H(P + Dxw, x, t) = λ in Rn × R
(x, t) 	→ w is Tn+1–periodic

has a solution, where Tn+1 := T
n × [0, 1]. We define Ĥ(P ) := λ, to rewrite the foregoing

as

(1.6)
{

wt + H(P + Dxw, x, t) = Ĥ(P ) in Rn × R
(x, t) 	→ w is Tn+1–periodic.

And so if we also set

(1.7) u(P, x, t) := P · x + w(P, x, t),

we recover (1.5).

The overall goal now is to study the effective or averaged Hamiltonian Ĥ, so defined,
and to try to understand how Ĥ and u encode information about the dynamics (1.1).
This we at least partially accomplish by turning our attention exclusively to Hamiltonians
which are uniformly convex in the momenta.

To understand the basic issues, let us for the moment change from the Hamiltonian
viewpoint and so let L = L(q, x, t) denote the corresponding Lagrangian. We consider
curves x(·) which are absolutely minimizing for the action. This means that

(1.8)
∫ T

0

L(ẋ,x, t) dt ≤
∫ T

0

L(ẏ,y, t) dt

for each time T > 0 and each Lipschitz curve y(·) with x(0) = y(0), x(T ) = y(T ). The
corresponding momentum is

p := DqL(ẋ,x, t),

and (x(·),p(·)) solve the system of ODE (1.1).
We propose now to rescale in time, defining

(1.9) xε(t) := εx
(

t

ε

)
, pε := p

(
t

ε

)
;
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then

(1.10)
{

ẋε = DpH
(
pε,

xε

ε , t
ε

)
ṗε = − 1

εDxH
(
pε,

xε

ε , t
ε

)
.

We study the oscillations in pε(·) and xε(·) (mod Tn) as ε→ 0 and demonstrate in §2,3 how
these are governed by certain Young measures, whose structure in turn can be described,
at least in part, in terms of Ĥ and u. Note that we have rescaled so that (1.10) entails
fast, periodic changes in the time variable.

1.2. Slow variations in time.

It turns out to be interesting as well to consider slow variations in time. For this, take
ε > 0 and assume the curve xε(·) is an ε-absolute minimizer of the action, meaning

(1.11)
∫ T

0

L(ẋε,xε, εt) dt ≤
∫ T

0

L(ẏ,y, εt) dt

for each T > 0 and each curve y(·) with xε(0) = y(0), xε(T ) = y(T ).
Define pε := DqL(ẋε,xε, εt), and rescale:

(1.12) xε(t) := εxε

(
t

ε

)
, pε(t) := pε

(
t

ε

)
.

Then

(1.13)
{

ẋε = DpH
(
pε,

xε

ε , t
)

ṗε = − 1
εDxH

(
pε,

xε

ε , t
)
.

Unlike the system (1.10), the time variable is now changing on only an O(1)–scale.
The foregoing is the setting for the classical physical principle of the adiabatic invariance

of the action. (See for instance Arnold [A] or Goldstein [Gd]; Crawford [Cr] provides several
worked examples.) The idea is to switch variables according to (1.3), (1.4), where we now
redefine

(1.14) u(P, x, t) := P · x + v(P, x, t);

and for each time t, v solves the cell problem

(1.15)
{

H(P + Dxv, x, t) = H̄(P, t) in Rn

x 	→ v is T
n-periodic.
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The notation H̄(P, t) thus means the effective Hamiltonian had by “averaging” H in the
spatial variables only, t held fixed. This is an entirely different procedure from averaging
in space and time together, as in (1.6).

We now introduce the very strong assumption that we can invert (1.3), (1.4), (1.14), to
solve for X, P as smooth functions of x, p, t. We can then define the action-angle variables

(1.16)




Pε(t) := P
(
pε(t),

xε(t)
ε , t

)
Xε(t) := X

(
pε(t),

xε(t)
ε , t

)
.

The principle of adiabatic invariance of the action suggests that

(1.16) Pε(·)→ P,

uniformly on compact subsets of [0,∞), for some constant vector P ∈ Rn. Now this is
certainly not really true in general: We usually cannot even define Pε(·), since we cannot
invert (1.4) to solve for P = P (p, x, t). We will however see in §4 that we can in fact
associate a vector P with the rescaled dynamics (1.13), thereby establishing at least a
weak form of the adiabatic invariance in this setting. The key hypothesis, we repeat, is
that the curve x(·) is a minimizer of the action.

Remark. We can further interpret all this in light of homogenization theory for non-
linear first–order PDE, as in Lions–Papanicolaou–Varadhan [L-P-V]. If we look at this
initial-value problem for the Hamilton–Jacobi PDE with rapidly oscillating coefficients

(1.17)
{

uε
t + H

(
Dxuε, x

ε , t
)

= 0 in Rn × (0,∞)
uε = g on Rn × {t = 0}

and let ε→ 0, the solution uε converges to the solution u of

(1.18)
{

ut + H̄(Dxu, t) = 0 in Rn × (0,∞)
u = g on Rn × {t = 0}.

Now the function uε can be computed in terms of characteristic ODE, which for the case
at hand are precisely (1.13). We can consequently informally state that

the homogenization of (1.17) into (1.18) is a consequence of the
adiabatic invariance of the action for minimizing trajectories,

since the characteristics of the viscosity solution of (1.17) are in fact minimizers, at least on
an O(1)-time scale. A similar comment holds for PDE of the form uε

t + H
(
Dxuε, x

ε , x, t
)
.

�
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1.3. Geometric correction to the angle.

The asymptotics as ε → 0 of the angle variables Xε(·) are more subtle. A calculation
of Hannay [H] and Berry [B] suggests that

(1.19) Ẋε(t)−
1
ε
DP H̄(Pε(t), t)→ DK(P ),

with a “corrector” K(P ) computed in terms of v: see §5.3.

We provide a formal interpretation of K in light of the effective Hamiltonians introduced
before. For this we first modify the space-time averaging problem (1.6), now to find for
each δ > 0 a unique real number λ = Ĥ(P, δ) for which the cell problem

(1.20)
{

δwδ
t + H(P + Dxwδ, x, t) = Ĥ(P, δ) in Rn × R

(x, t) 	→ w is Tn+1–periodic

has a viscosity solution. Then, as we will show in §6,

(1.21) lim
δ→0

Ĥ(P, δ) =
∫ 1

0

H̄(P, t) dt.

We furthermore establish some inequalities for difference quotients of Ĥ, which in turn
suggest the formula

(1.22)
∂Ĥ

∂δ
(P, 0) = K(P ).

In this formal sense the Berry–Hannay phase factor is “hidden” within the effective Hamil-
tonian Ĥ.

2. Averaging in space and time.

In this section we discuss the construction and properties of the effective Hamiltonian
Ĥ. Our results are mostly not new and involve ideas found for instance in Fathi [F1].
However we have found no precise reference in the literature.
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2.1. The Hamiltonian and Lagrangian.

Hypotheses on the Hamiltonian. Suppose hereafter that the smooth function H :
R

n × Rn × R→ R, H = H(p, x, t), satisfies these conditions:

(i) periodicity in x and t:

(2.1)
{

For each p ∈ Rn, the mapping
(x, t) 	→ H(p, x, t) is Tn+1-periodic.

(ii) strict convexity:

(2.2)




There exist constants Γ, γ > 0 such that

γ|ξ|2 ≤
∑n

i,j=1
∂2H

∂pi∂pj
(p, x, t)ξiξj ≤ Γ|ξ|2

for each p, x, ξ ∈ Rn, t ∈ R.

(iii) gradient bound in x:

(2.3)




There exists a constant C such that
|DxH(p, x, t)| ≤ C(1 + |p|)

for all p, x ∈ Rn, t ∈ R.

The Lagrangian. We define the corresponding Lagrangian L : Rn × Rn × R → R,
L = L(q, x, t), by

L(q, x, t) := sup
p

(p · q −H(p, x, t)).

Then

(2.4) (x, t) 	→ L(q, x, t) is Tn+1-periodic,

and

(2.5)




there exist constants Γ, γ > 0 such that

γ|ξ|2 ≤
∑n

i,j=1
∂2L

∂qi∂qj
(q, x, t)ξiξj ≤ Γ|ξ|2

for each q, x, ξ ∈ Rn, t ∈ R.
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2.2. Averaging in x and t.

We prove first that the cell problem (1.6) is solvable, in an appropriately weak sense.

Theorem 2.1. (i) For each P ∈ Rn there exists a unique real number, denoted Ĥ(P ),
such that the cell problem

(2.6)
{

wt + H(P + Dxw, x, t) = Ĥ(P ) in Rn × R
(x, t) 	→ w is Tn+1–periodic

has a Lipschitz continuous viscosity solution w.
(ii) In addition, there exists a constant α such that

(2.7) D2w ≤ αI in Rn × R

in the distribution sense.

Assertion (2.7) means that w is semiconcave jointly in the variables x and t. We call
Ĥ : Rn → R so defined the effective or averaged Hamiltonian.

Remarks Observe carefully that Ĥ results from our “averaging” H with respect to
both the space variables x and the time variable t. As noted before, we write

H̄(·, t)

to denote the averaged Hamiltonian with respect to the space variable x only, for each
fixed time t. One of our objectives is understanding the relationships between Ĥ and
{H̄(·, t)}0≤t≤1. �

Proof. 1. Existence. Let X = C(Tn) denote the space of Tn-periodic, continuous functions,
with the max-norm. We hereafter fix P ∈ Rn. Given g ∈ X, we consider then the initial–
value problem

(2.8)
{

vt + H(P + Dxv, x, t) = 0 in Rn × (0,∞)
v = g on Rn × {t = 0},

which has the unique, Tn-periodic viscosity solution

(2.9) v(x, t) = inf
{∫ t

0

L(ẋ,x, s)− P · ẋ ds + g(x(0))
}

,

the infimum taken over all Lipschitz continuous functions x : [0, t]→ R
n with x(t) = x.

Define then the nonlinear operator T : X → X by

(2.10) T [g](x) := v(x, 1)−min
Tn

v(·, 1) (x ∈ Tn).
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2. We next develop some estimates for v(·, 1), in terms of ||g||L∞ . First of all, we can
take x(t) ≡ x in (2.9), to deduce

(2.11) v(x, 1) ≤
∫ 1

0

L(0, x, s) ds + g(x)

for x ∈ Tn. On the other hand, since

L(ẋ,x, s) ≥ L(0,x, s) + DqL(0,x, s) · ẋ +
γ

2
|ẋ|2,

we have
v(x, 1) ≥ −C − ||g||L∞ .

This and (2.11) imply

(2.12) |v(x, 1)| ≤ C(1 + ||g||L∞) for all x ∈ Tn.

3. Next we show v(·, 1) is Lipschitz continuous. According to (2.9), we have

(2.13) v(x, 1) =
∫ 1

0

L(ẋ,x, s)− P · ẋ ds + g(x(0)),

for some Lipschitz continuous curve x : [0, 1] → R
n with x(1) = x. We estimate the

essential supremum of |ẋ| by first noting from the foregoing that
∫ 1

0
L(ẋ,x, s)− P · ẋ ds is

bounded in terms of ||g||L∞ . Since L grows quadratically in the variable q, we deduce that
|ẋ(t0)| ≤ M at some time 0 < t0 < 1, where M denotes a constant computable in terms
of known quantities. Therefore the momentum

p(t0) := DqL(ẋ(t0),x(t0), t0)

is bounded. The Hamiltonian equation for all p, x ∈ Rn, t ∈ R. estimate (2.3), and Gron-
wall’s inequality now imply that p, and thus |ẋ|, are essentially bounded on [0, 1], with
estimates depending only upon ||g||L∞ .

Now for any other point y, we have

(2.14) v(y, 1) = inf
{∫ 1

0

L(ẏ,y, s)− P · ẏ ds + g(y(0))
}

,

the infimum taken over Lipschitz curves y(·) with y(1) = y. Set

y(s) := x(s) + s(y − x) (0 ≤ s ≤ 1)

in (2.14), and write w := y − x. Then

(2.15)
v(y, 1)− v(x, 1) ≤

∫ 1

0

L(ẋ + w,x + sw, s)− L(ẋ,x, s) + P · w ds

≤ C|w| = C|x− y|.
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The same estimate holds with the points x and y interchanged. Therefore

(2.16) |v(x, 1)− v(y, 1)| ≤ C|x− y| for all x, y ∈ Tn.

for some constant C depending on ||g||L∞ .
4. Next we show that the operator T defined in Step 1 has a fixed point. First of all,

standard comparison results for viscosity solutions show that the time-one map g 	→ w(·, 1)
is a contraction in the max-norm. Consequently

‖T [g]− T [ĝ]‖ ≤ 2‖g − ĝ‖.

Therefore T : X → X is continuous. In light of estimate (2.16), T is a compact mapping
as well.

Finally, fix 0 ≤ σ ≤ 1 and suppose gσ is a fixed point of the operator σT [·]; that is,

(2.17) σ
(
vσ(x, 1)−min

Tn
vσ(·, 1)

)
= gσ(x) (x ∈ Tn),

where

(2.18)
{

vσ
t + H(P + Dxvσ, x, t) = 0 in Rn × (0,∞)

vσ = gσ on Rn × {t = 0}.

According to (2.17),

(2.19) gσ ≥ 0, gσ(x0) = 0 for some point x0 ∈ Tn.

The solution of (2.18) is

vσ(x, t) = inf
{∫ t

0

L(ẋ,x, s)− P · ẋ ds + gσ(x(0))
}

,

the infimum taken over all Lipschitz continuous functions x : [0, t] → R
n with x(t) = x.

We take x(s) :=
(
1− s

t

)
x0 + s

t x for 0 ≤ s ≤ t, to deduce

(2.20)
vσ(x, t) ≤

∫ t

0

L

(
x− x0

t
, (1− s

t
)x0 +

s

t
x, s

)
− P · (x− x0)

t
ds

≤ C

(
1 +
|x− x0|2

t

)

for x ∈ Tn, 0 ≤ t ≤ 1. On the other hand, since gσ ≥ 0 we see that

vσ(x, t) ≥ inf
{∫ t

0

L(ẋ,x, s)− P · ẋ ds

}
.
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Recalling the strict convexity of L, we deduce

vσ(x, t) ≥ −Ct

for x ∈ Tn, 0 ≤ t ≤ 1. Combining this with (2.20) yields

(2.21) |vσ(x, t)| ≤ C

t
(x ∈ Rn, 0 ≤ t ≤ 1).

Consequently (2.21) in turn implies

(2.22) max
Tn
|gσ| ≤ C (0 ≤ σ ≤ 1).

5. In summary, the operator T : X → X is continuous, compact, and we have the
a priori estimate (2.22) for any fixed point of σT [·], where 0 ≤ σ ≤ 1. Consequently
Schaeffer’s Theorem (cf. [E2]) implies that T possesses at least one fixed point:

T [g] = g.

This means that v(x, 1)−minTn v(·, 1) = g(x) for each point x ∈ Tn, where

{
vt + H(P + Dxv, x, t) = 0 in Rn × (0,∞)

v = g on Rn × {t = 0}.

Finally define {
Ĥ(P ) := −minTn v(·, 1),

w(x, t) := v(x, t) + tĤ(P ).

Then
wt + H(P + Dxw, x, t) = Ĥ(P ) in Rn × (0,∞)

and (x, t) 	→ w is Tn+1-periodic.
6. Uniqueness. Uniqueness of the constant λ = Ĥ(P ) in (2.7) follows from an argument

due to Lions–Papanicolaou–Varadhan[L-P-V]. Suppose

{
wt + H(P + Dxw, x, t) = λ in Rn × R
(x, t) 	→ w is Tn+1–periodic

and {
vt + H(P + Dxv, x, t) = µ in Rn × R
(x, t) 	→ v is Tn+1–periodic.

We may assume λ > µ, and also—upon adding if necessary a constant to v—that

(2.23) v > w in Rn × R.
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But for sufficiently small ε > 0,

wt + H(P + Dxw, x, t) + εw > vt + H(P + Dxv, x, t) + εv in Rn × R,

in the sense of viscosity solutions. The comparison principle for viscosity solutions however
then implies

w ≥ v in Rn × R,

in contradiction to (2.23).
7. Semiconcavity in x and t. Finally we show semiconcavity in space and time. By

periodicity, it suffices to consider the time t = 1. Recall

v(x, 1) =
∫ 1

0

L(ẋ,x, s)− P · ẋ ds + g(x(0)),

for some Lipschitz curve x(·) with x(1) = x. Take any vector z and real number h, with
|h| < 1. Then

v(x + z, 1 + h) ≤
∫ 1+h

0

L(ẏ,y, s)− P · ẏ ds + g(x(0)),

for y(s) := x( s
1+h ) + s

1+hz. Similarly,

v(x− z, 1− h) ≤
∫ 1−h

0

L(ż, z, s)− P · ż ds + g(x(0)),

for z(s) := x( s
1−h )− s

1−hz. Then

v(x + z,1 + h)− 2v(x, 1) + v(x− z, 1− h)

≤
∫ 1+h

0

L(
1

1 + h
ẋ(

s

1 + h
) +

1
1 + h

z,x(
s

1 + h
) +

s

1 + h
z, s) ds

− 2
∫ 1

0

L(ẋ(s),x(s), s) ds

+
∫ 1−h

0

L(
1

1− h
ẋ(

s

1− h
)− 1

1− h
z,x(

s

1− h
)− s

1− h
z, s) ds

=
∫ 1

0

(1 + h)L(
1

1 + h
ẋ(s) +

1
1 + h

z,x(s) + sz, (1 + h)s)

− 2L(ẋ(s),x(s), s) + (1− h)L(
1

1− h
ẋ(s)− 1

1− h
z,x(s)− sz, (1− h)s) ds.

12



This last expression equals∫ 1

0

L(ẋ(s)− h

1 + h
ẋ(s) +

1
1 + h

z,x(s) + sz, (1 + h)s)

− 2L(ẋ(s),x(s), s) + L(ẋ(s) +
h

1− h
ẋ(s)− 1

1− h
z,x(s)− sz, (1− h)s) ds

+ h

∫ 1

0

L(ẋ(s)− h

1 + h
ẋ(s) +

1
1 + h

z,x(s) + sz, (1 + h)s)

− L(ẋ(s) +
h

1− h
ẋ(s)− 1

1− h
z,x(s)− sz, (1− h)s) ds

≤ C(|z|2 + h2).

Thus v, and so also the function w, are semiconcave in x, t. �

Remarks. Much of this proof is based upon ideas in Fathi [F-1], whom we thank for
help. Our hypothesis (2.3), rewritten in terms of the Lagrangian, says that

|DxL(q, x, t)| ≤ C(1 + |DqL(q, x, t)|)

for all q, x ∈ Rn, t ∈ R. As Fathi pointed out to us, this is a standard condition to ensure
that the minimization problems (e.g. (2.9)) have Lipschitz continuous minimizers. We
could replace (2.3) by the assumption that

(2.27) |Ht(p, x, t)| ≤ C(1 + |p|2)

for all p, x ∈ Rn, t ∈ R. Since

d

dt
H(p,x, t) = Ht(p,x, t),

estimate (2.27), the strict convexity of H, and Gronwall’s inequality again provide Lipschitz
bounds.

See Jauslin–Kreiss–Moser [J-K-M] and Weinan E [EW2] for a special case of n = 1.
The approach in these papers is to consider the corresponding conservation law. The
arguments above are also strongly related to those in the general theory of nonlinear
“additive eigenvalue” problems; see for instance Nussbaum [N], Chou–Duffin [C-D], etc.
Similar ideas are in Concordel [C1]. �

We define then the effective Lagrangian

(2.28) L̂(Q) := sup
P

(P ·Q− Ĥ(P ))

for Q ∈ Rn. The functions Ĥ and L̂ are both convex and finite-valued, with superlinear
growth:

lim
|P |→∞

Ĥ(P )
|P | = +∞, lim

|Q|→∞

L̂(Q)
|Q| = +∞.

The convexity of Ĥ can be shown using for instance the method in [E3].
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3. Fast variations in time.

This section, which extends slightly some methods of [E-G1], uses our weak solution of
the time-dependent corrector problem (2.7) to study the structure of a measure on phase
space that records the long time asymptotics of minimizing trajectories.

Definition. A Lipschitz continuous curve x : [0,∞)→ R
n is a (one-sided) absolute mini-

mizer if

(3.1)
∫ T

0

L(ẋ,x, t) dt ≤
∫ T

0

L(ẏ,y, t) dt

for each time T > 0 and each Lipschitz curve y(·) such that x(0) = y(0), x(T ) = y(T ).

Remark. Note that we are simply assuming x(·) to be Lipschitz continuous globally
in time. If the Hamiltonian does not depend upon t, the invariance of the Hamiltonian
implies a global bound on |ẋ|. �

Given an absolute minimizer, we set

(3.2) p(t) := DqL(ẋ(t),x(t), t);

so that

(3.3)
{

ẋ = DpH(p,x, t)
ṗ = −DxH(p,x, t)

for t ≥ 0. Next rescale:

xε(t) := εx
(

t

ε

)
, pε(t) := p

(
t

ε

)
.

Then

(3.4)
{

ẋε = DpH
(
pε,

xε

ε , t
ε

)
ṗε = − 1

εDxH
(
pε,

xε

ε , t
ε

)
.

Next we introduce measures on phase space to record oscillations of these dynamics as
ε→ 0:

Theorem 3.1. There exists a sequence εk → 0 and for a.e. t > 0 a Radon probability
measure µt on Rn × Tn+1 such that

(3.5) Φ
(
pεk

(t),
xεk

(t)
εk

,
t

εk

)
⇀ Φ̄(t) =

∫
Rn

∫
Tn+1

Φ(p, x, s) dµt

for each bounded, continuous function Φ : Rn × Rn × R → R, Φ = Φ(p, x, s), for which
(x, s) 	→ Φ is Tn+1–periodic.

This assertion follows as in [E-G1].
14



Lemma 3.2. (i) The support of the measures {µt}t≥0 is bounded, uniformly in t.
(ii) For each C1 function Φ as above,

(3.6)
∫
Rn

∫
Tn+1

Φs + {H, Φ} dµt = 0

for a.e. t ≥ 0, where
{H, Φ} := DpH ·DxΦ−DxH ·DpΦ

is the Poisson bracket.

Proof. Statement (i) is a consequence of the bounds on |ẋ|, and thus |pεk
|. Furthermore,

d

dt
Φ

(
pε,

xε

ε
,
t

ε

)
= DpΦ · ṗε + DxΦ · ẋε

ε
+

1
ε
Φs

=
1
ε
(Φs + {H, Φ}).

Take ζ : [0, T ]→ R to be smooth, with compact support. Then

∫ T

0

(Φs + {H, Φ})
(
pε,

xε

ε
,
t

ε

)
ζ dt = −

∫ T

0

εζ̇Φ
(
pε,

xε

ε
,
t

ε

)
dt.

Send ε = εk → 0. �

We may assume, passing if necessary to a further subsequence, that

(3.7) xεk
→ X

uniformly on compact subsets of [0,∞), where X(·) is a Lipschitz continuous curve, X(0) =
0. Then Ẋ(t) = Q(t), for

(3.8) Q(t) :=
∫
Rn

∫
Tn+1

DpH(p, x, s) dµt.

Theorem 3.3. (i) For a.e. t ≥ 0 we have

(3.9) L̂(Q(t)) =
∫
Rn

∫
Tn+1

L(DpH(p, x, s), x, s) dµt.

(ii) Furthermore, there exists a vector P ∈ Rn such that

(3.10) P ∈ ∂L̂(Q(t)), Q(t) ∈ ∂Ĥ(P ) for a.e. t ≥ 0.

Remarks. (i) We call P the action vector for the rescaled trajectories {xε(·)}ε>0.
15



(ii) The second assertion above can be rewritten{
Ẋ ∈ ∂Ĥ(P)

Ṗ = 0
for a.e. t ≥ 0,

and this formulation should be compared with (1.2). �

Outline of proof. 1. Firstly, define

Sε(x, y, t) := inf
{∫ t

0

L
(
ẋ,

x
ε
,
s

ε

)
ds | x(t) = x, x(0) = y

}
,

for x, y ∈ Rn, t > 0. Then

Sε(x, y, t)→ tL̂

(
x− y

t

)
as ε→ 0,

uniformly on compact subsets of Rn × Rn × (0,∞), as shown by Lions–Papanicolaou–
Varadhan [L-P-V, §IV]. (See also Weinan E [EW1], Braides–Defranceschi [B-D, §16.2].)

Let yε := xε(0) = εx(0)→ 0. Thus

Sεk
(x, yεk

, t)→ tL̂
(x

t

)
(x ∈ Rn, t > 0),

uniformly on compact subsets. But

Sε(xε(t), yε, t) =
∫ t

0

L
(
ẋε,

xε

ε
,
s

ε

)
ds,

since the curve xε(·) is an absolute minimizer. Consequently

Sεk
(xεk

(t), yεk
, t)→ tL̂

(
X(t)

t

)
.

2. Differentiating in time, it then follows that

L

(
ẋεk

,
xεk

εk
,

t

εk

)
⇀

d

dt

(
tL̂

(
X
t

))
,

the half-arrow denoting weak convergence. Now

d

dt

(
tL̂

(
X
t

))
∈ L̂

(
X
t

)
+ ∂L̂

(
X
t

) (
Ẋ− X

t

)
≤ L̂(Ẋ),

by convexity. Since ẋε = DpH
(
pε,

xε

ε , t
ε

)
, we deduce that∫

Rn

∫
Tn+1

L(DpH, x, s) dµt ≤ L̂(Ẋ(t))

16



for a.e. t > 0.
On the other hand, we have

∫ T

0

L̂(Ẋ) dt ≤ lim inf
∫ T

0

L

(
ẋε,

xε

ε
,
t

ε

)
dt,

and so

L̂(Ẋ(t)) ≤
∫
Rn

∫
Tn+1

L(DpH, x, s) dµt

for a.e. t.
3. In particular,

d

dt

(
tL̂

(
X(t)

t

))
= L̂(Ẋ(t)) = L̂(Q(t)) a.e.;

and consequently

1
T

∫ T

0

L̂(Q(t)) dt =
1
T

∫ T

0

d

dt

(
tL̂

(
X(t)

t

))
dt

= L̂

(
X(T )

T

)

= L̂

(
1
T

∫ T

0

Q(t) dt

)
.

This identity, valid for each time T > 0, implies that {Q(t)}t≥0 lies a supporting domain
of L̂. This means that

P ∈ ∂L̂(Q(t)) for a.e. t ≥ 0

for some vector P ∈ Rn. Equivalently, Q(t) ∈ ∂Ĥ(P ) for a.e. t ≥ 0. �

Henceforth we consider any one of the measures µ = µt, and denote by ρ the projection
of µ onto the x, s-variables. We also write Q = Q(t), and take P ∈ ∂L̂(Q), as above.

Next let w = w(P, x, t) be any viscosity solution of the cell PDE

(3.11)
{

wt + H(P + Dxw, x, t) = Ĥ(P ) in Rn × R
(x, t) 	→ w is Tn+1–periodic,

and, as before, set

(3.12) u(P, x, t) := x · P + w(P, x, t).

17



Theorem 3.4. (i) The function u is differentiable in (x, t) ρ–a.e.
(ii) We have

p = Dxu(P, x, t) µ–a.e.

Outline of proof. We follow [E-G1], to which the interested reader may refer for more
details in the case that H, L do not depend on time.

Set uε := ηε ∗ u, where ηε is a radial convolution kernel in the variables x, t. Since the
PDE ut + H(Dxu, x, t) = Ĥ(P ) holds pointwise a.e., we have

(3.13) βε(x, t) + uε
t (x, t) + H(Dxuε(x, t), x, t) ≤ Ĥ(P ) + Cε

for each (x, t) ∈ Tn+1, where

βε(x, t) :=
γ

2

∫
Rn+1

ηε(x− y, t− s)|Dxu(y, s)−Dxuε(x, t)|2 dyds.

Using the strict convexity of H with respect to the variable p, we deduce

γ

2

∫
Rn

∫
Tn+1

|Dxuε(x, s)− p|2 dµ

≤
∫
Rn

∫
Tn+1

H(Dxuε(x, s), x, s)−H(p, x, s)−DpH(p, x, s) · (Dxuε(x, s)− p) dµ.

Now Dxuε = P + Dxwε, uε
t = wε

t , where wε = ηε ∗ w is periodic. Furthermore∫
Rn

∫
Tn+1

wε
t + DpH ·Dxwε dµ = 0,

according to (3.6). This observation and (3.13) imply

γ

2

∫
Rn

∫
Tn+1
|Dxuε − p|2 dµ +

∫
Tn+1

βε dρ

≤ Ĥ(P )−
∫
Rn

∫
Tn+1

H + DpH · (P − p) dµ + Cε.

Observe that L̂(Q) + Ĥ(P ) = P · Q, L(DpH, x, s) + H(p, x, s) = DpH · p, and recall
Q =

∫
Rn

∫
Tn+1 DpH dµ. Substituting above, we find

γ

2

∫
Rn

∫
Tn+1

|Dxuε − p|2 dµ +
∫
Tn+1

βε dρ

≤ −L̂(Q) +
∫
Rn

∫
Tn+1

L(DpH, x, s) dµ + Cε = Cε,

according to Theorem 3.3.
18



Since u is semiconcave, this estimate proves that u is differentiable in x at ρ a.e. point.
Now define for ρ–every point (x, t) ∈ Tn+1

(3.14) ut(x, t) := Ĥ(P )−H(Dxu(x, t), x, t).

We will now demonstrate that u is differentiable in t at (x, t), with derivative given above.
Indeed,∫

Rn+1
ηε(x− y, t− s)(ut(y, s)− ut(x, t))2 dyds

≤
∫
Rn+1

ηε(x− y, t− s)|H(Dxu(y, s), y, s)−H(Dxu(x, t), x, t)|2 dyds

≤ C

∫
Rn+1

ηε(x− y, t− s)|Dxu(y, s)−Dxu(x, t)|2 dyds + Cε2.

The last term in (3.14) is o(1) as ε→ 0. But then ut is approximately continuous at (x, t).
Since u is semiconcave, this means that u is differentiable in t there. �

Remark. In general

(3.15)
∫
Rn

∫
Tn+1

H(p, x, s) dµ �= Ĥ(P ),

in contrast to the autonomous case: see [E-G1] and also Dias Carneiro [DC]. The corre-
sponding formula with the Lagrangians is true, however: remember (3.9). �

4. Slow variations in time.

In this section we modify some of the foregoing calculations to cover the situation that
the time dependence of H is slowly varying.

Definition. Fix ε > 0. A Lipschitz continuous curve xε(·) : [0,∞)→ R
n is an ε-absolute

minimizer provided

(4.1)
∫ T

0

L(ẋε,xε, εt) dt ≤
∫ T

0

L(ẏ,y, εt) dt

for each T > 0 and each Lipschitz continuous curve y(·) such that xε(0) = y(0), xε(T ) =
y(T ).

Note carefully the slow variations in the time variables here. Given xε(·) as above, we
define

(4.2) pε(t) = DqL(ẋε,xε, εt);
19



so that

(4.3)
{

ẋε = DpH(pε,xε, εt)
ṗε = −DxH(pε,xε, εt).

In this setting, the Hamiltonian changes only by an amount O(1) during time periods
of length O( 1

ε ). We therefore rescale, to effect an O(1)–change in the Hamiltonian on an
O(1)–time scale:

xε(t) := εxε

(
t

ε

)
, pε(t) = pε

(
t

ε

)
.

Then

(4.4)
{

ẋε = DpH
(
pε,

xε

ε , t
)

ṗε = − 1
εDxH

(
pε,

xε

ε , t
)
.

Remark. Since d
dtH

(
pε,

xε

ε , t
)

= Ht

(
pε,

xε

ε , t
)
, we have the bounds

max
0≤t≤T

|pε| ≤ C for each time T > 0.

�

Theorem 4.1. There exists a sequence εk → 0 and for a.e. t > 0 a Radon probability
measure νt on Rn × Tn such that

(4.5) Φ
(
pεk

(t),
xε(t)
εk

, t

)
⇀ Φ̄(t) =

∫
Rn

∫
Tn

Φ(p, x, t) dνt

for each bounded continuous function Φ : Rn × Rn × R → R, Φ = Φ(p, x, t), for which
x 	→ Φ is Tn-periodic.

Lemma 4.2. (i). The support of the measures {νt}t≥0 is bounded, uniformly in t.
(ii). For each C1 function Φ as above

(4.6)
∫
Rn

∫
Tn

{H, Φ} dνt = 0

for a.e. t ≥ 0.

The proof is similar to that of Lemma 3.2 before.
We may assume

(4.7) xεk
→ X

uniformly on compact subsets of [0,∞). Consequently Ẋ(t) = Q(t), for

(4.8) Q(t) :=
∫
Rn

∫
Tn

DpH(p, x, t) dνt.
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Theorem 4.3. (i) We have

(4.9) L̄(Q(t), t) =
∫
Rn

∫
Tn

L(DpH, x, t) dνt.

(ii) In addition, there exists P ∈ Rn such that

(4.10) P ∈ ∂L̄(Q(t), t), Q(t) ∈ ∂H̄(P, t) for a.e. t.

Remarks. (i) P is again an action vector, and the nontrivial point is that P does not
depend on t. We will in §5.2 below interpret assertion (ii) as a weak formulation of the
physical principle of adiabatic invariance of the action.

(ii) The second statement above can be rewritten

{
Ẋ ∈ ∂H̄(P, t)

Ṗ = 0
for a.e. t ≥ 0.

Again, compare this with (1.2). �

Outline of proof. 1. Write

Sε(x, y, t) := inf
{∫ t

0

L
(
ẋ,

x
ε
, s

)
ds | x(t) = x, x(0) = y

}
,

for x, y ∈ Rn, t > 0. Then

Sε(x, y, t)→ min
{∫ t

0

L̄(Ẏ, s) ds | Y(t) = x, Y(0) = y

}
as ε→ 0,

uniformly on compact subsets of Rn×Rn×(0,∞). This follows as in Lions–Papanicolaou–
Varadhan [L-P-V, §IV], Weinan E [EW1], etc.

Let yε := xε(0) = εx(0)→ 0. Then

Sε(xε(t), yε, t) =
∫ t

0

L
(
ẋε,

xε

ε
, s

)
ds,

since the curve xε(·) is an absolute minimizer. Consequently

Sεk
(xεk

(t), yεk
, t)→ min

{∫ t

0

L̄(Ẏ, s) ds | Y(t) = X(t), Y(0) = 0
}

for each time t ≥ 0.
2. The term on the left hand side above is less than or equal to

∫ t

0
L̄(Ẋ, s) ds. Conse-

quently the weak limit of

L

(
ẋεk

,
xεk

εk
, t

)
− L̄(Ẋ, t)
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is less than or equal to zero. It follows that∫
Rn

∫
Tn

L(DpH, x, t) dνt ≤ L̄(Ẋ(t), t)

for a.e. t > 0.
On the other hand, we have

∫ T

0

L̄(Ẋ, t) dt ≤ lim inf
ε→0

∫ T

0

L
(
ẋε,

xε

ε
, t

)
dt,

and so
L̄(Ẋ(t), t) ≤

∫
Rn

∫
Tn

L(DpH, x, t) dνt

for a.e. t.
3. In particular, for each time T > 0

∫ T

0

L̄(Ẋ, t) dt ≤
∫ T

0

L̄(Ẏ, t) dt,

for each Lipschitz continuous curve Y satisfying Y(0) = X(0) = 0, Y(T ) = X(T ).
It follows from the Pontryagin Maximum Principle (see, for instance, Clarke [Cl, page

169]) that there exists a Lipschitz continous function P(·) such that

{
Ẋ ∈ ∂H̄(P, t)

Ṗ = 0
for a.e. t ≥ 0.

But then P(·) ≡ P for some P ∈ Rn, with

Q(t) = Ẋ(t) ∈ ∂H̄(P, t) for a.e. t ≥ 0.

Equivalently, P ∈ ∂L̄(Q(t), t) for a.e. t ≥ 0. �

5. Calculations for integrable systems.

The remainder of our paper we largely devote to some interesting heuristic calculations
that indicate connections between our Ĥ and {H̄(·, t)}0≤t≤1 and certain averaging effects.

We begin by providing here, for the reader’s convenience and for later reference, some
formal calculations for integrable Hamiltonians. We henceforth loosely interpret “inte-
grable” to mean those with Hamiltonians for which the cell problem

(5.1)
{

H(P + Dxv, x, t) = H̄(P, t) in Rn

x 	→ v is Tn-periodic
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has a smooth solution v = v(P, x, t) for each time 0 ≤ t ≤ 1, and for which the relations

(5.2)
{

p = Dxu(P, x, t)
X = DP u(P, x, t)

are smoothly, globally invertible, to provide us the change of variables formulas

(5.3)
{

X = X(p, x, t), P = P (p, x, t)
x = x(P, X, t), p = p(P, X, t).

We hereafter write

u = P · x + v.

Note carefully that this differs from the earlier definition (3.12).

In particular, if we were to take the autonomous Hamiltonian H0 := H(·, ·, t0) (for some
fixed time t0) and considered the rescaled dynamics governed by H0:

{
ẋε = DpH

0
(
pε,

xε

ε

)
ṗε = −DxH0

(
pε,

xε

ε

)
,

we could then change variables according to (5.3) (with t0 in place of t), to convert to the
trivial dynamics {

Ẋε = DH̄0(Pε)

Ṗε = 0.

A more interesting issue is understanding to what extent this procedure works for the
slowly time–dependent Hamiltonian Hε = H(·, ·, εt). Remember from §4 that the rescaled
dynamics in this situation read

(5.4)
{

ẋε = DpH
(
pε,

xε

ε , t
)

ṗε = −DxH
(
pε,

xε

ε , t
)
.

Let us also define

(5.5)




Xε(t) := X
(
pε(t),

xε(t)
ε , t

)
Pε(t) := P

(
pε(t),

xε(t)
ε , t

)
.

23



5.1. An assumption about spatial averaging.

We propose to study the limiting behavior of Xε,Pε as ε→ 0. First, as demonstrated
below, Ṗε = O(1) is bounded; and so, passing if necessary to a subsequence, we have

(5.6) Pε → P uniformly on compact subsets of [0,∞),

for some Lipschitz continuous function P : [0,∞)→ R
n.

On the other hand, Ẋε = O
(

1
ε

)
is in general unbounded. Consequently, we expect only

(5.7) Xε ⇀ X

weakly as ε→ 0; and we may further expect that the weak limit (5.7) entails some sort of
spatial averaging.

We will for the remainder of §5 assume that the images of the function Xε became
uniformly distributed with respect to Lebesgue measure, as ε → 0. This seems to be a
standard assumption in much of the physical and mathematical literature, and means
precisely that

(5.8) Φ
(

xε(t)
ε

)
= Φ(x(Pε(t),Xε(t), t)) ⇀

∫
Tn

Φ(x(P(t), X, t)) dX

for each continuous, Tn–periodic function Φ. We transform this hypothesis into a statement
about the Young measure νt, introduced in §4.2. Indeed, setting ε = εk → 0, the left hand
side of (5.8) converges weakly to ∫

Tn

Φ(x) dσt,

where we define σt to be the projection of νt onto the x-variables. Since X = DP u, we are
therefore making the assumption of spatial averaging:

(5.9) dσt = det(D2
xP u) dx

for each time 0 ≤ t ≤ 1 and for u = u(P(t), x, t).

Remark. We pause to check that

ω := det(D2
xP u)

is indeed flow invariant, for each fixed time 0 ≤ t ≤ 1 and P = P(t), where we write

D2
xP u :=




ux1P1 . . . ux1Pn

...
. . .

...
uxnP1 . . . uxnPn


 , D2

Pxu := (D2
xP u)T .
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That is, we claim

(5.10) div(ωDpH(Dxu, x, t)) = 0 for each time 0 ≤ t ≤ 1,

the divergence taken in the x–variables. This accords with (4.6).
To confirm this, let us first differentiate (5.1) in P :

(D2
xP u)T DpH = DpHD2

xP u = DH̄.

Left multiply by the cofactor matrix cof(D2
xP u) and recall the matrix identity (cof A)AT =

(detA)I. Then
ωDpH = cof(D2

xP u)DH̄,

and so
div(ωDpH) = div(cof(D2

xP u)DH̄) = 0.

The last equality holds since H̄ does not depend on x and the columns of cof(D2
xP u) are

divergence-free in x. (See for instance [E2, p. 440].) �

5.2. Adiabatic invariance of the “action” variables.

A first consequence of the averaging hypotheses (5.9) is the adiabatic invariance of the
action:

Lemma 5.1. We have
Ṗε ⇀ 0 as ε→ 0,

and so

(5.11) Pε → P uniformly on compact subsets of [0,∞),

for some constant vector P ∈ Rn.

Proof. 1. We compute

(5.12) Ṗε = DpP ṗε + DxP
ẋε

ε
+ Pt,

for P = (P 1, . . . , Pn) and

DpP :=




P 1
p1

. . . P 1
pn

...
. . .

...
Pn

p1
. . . Pn

pn


 , DxP :=




P 1
x1

. . . P 1
xn

,
...

. . .
...

Pn
x1

. . . Pn
xn


 , Pt = (P 1

t , . . . , Pn
t ).
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Now (5.2) implies

(5.13)
{

I = D2
xP uDpP

O = D2
xP uDxP + D2

xu,

where D2
xP u is defined as before and

D2
xu :=




ux1x1 . . . ux1xn

...
. . .

...
uxnx1 . . . uxnxn


 .

Furthermore, since H(Dxu, x, t) ≡ H̄(P, t), we have

(5.14) DpHD2
xu + DxH = 0.

We combine (5.12)–(5.14), to discover

Ṗε = (D2
xP u)−1

(
ṗε −D2

xu
ẋε

ε

)
+ Pt by (5.13)

= − (D2
xP u)−1

ε
(DxH + DpHD2

xu) + Pt by (5.4) and the symmetry of D2
xu

= Pt by (5.14).

Therefore

(5.15) Ṗεk
(t) = Pt

(
pεk

(t),
xεk

εk
(t), t

)
⇀

∫
Rn

∫
Tn

Pt(p, x, t) dνt.

2. We demonstrate next that the right hand side of (5.15) in fact equals zero. For this,
we first deduce from (5.2) that

O = D2
xP uPt + D2

xtu,

and thus

Pt = −(D2
xP u)−1D2

xtu = −cof(D2
xP u)T

det(D2
xP u)

D2
xtu.

This and our averaging hypotheses (5.9) together imply∫
Rn

∫
Tn

Pt dνt =
∫
Tn

Pt(Dxu, x, t) dσt

= −
∫
Tn

cof(D2
xP u)T D2

xtu dx

=
∫
Tn

div(cof(D2
xP u)T )ut dx = 0,
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for u = u(P(t), x, t). The integration-by-parts in the penultimate step is valid since ut = vt

is periodic in x. �

Remarks. (i) The computations in this proof in particular reproduce the classical
assertion

(5.16) {P k, H} = 0 for k = 1, . . . , n

for each time t. Here P = (P 1, . . . , Pn), P = P (p, x, t).
(ii) The foregoing calculation of course strongly depends upon our having smooth func-

tions u, the averaging hypothesis (5.9), etc. It is therefore worth emphasizing again that
Theorem 4.3,(ii) is valid in general, without these restrictions, and so can perhaps best be
understood as a very weak form of the adiabatic invariance principle. �

5.3. Asymptotics of the “angle” variables.

We turn next to the limiting behavior of the angle variable Xε(·).

Lemma 5.2. We have

(5.17) Ẋε(t) =
1
ε
DP H̄(Pε, t) + Xt

(
pε,

xε

ε
, t

)
,

and so

(5.18) Ẋεk
(t)− 1

εk
DP H̄(Pεk

(t), t) ⇀

∫
Rn

∫
Tn

Xt(p, x, t) dνt.

Proof. According to (5.5)

(5.19) Ẋε = DpXṗε + DxX
ẋε

ε
+ Xt.

Also, owing to (5.2),

(5.20)
{

DpX = D2
P uDpP

DxX = D2
P uDxP + (DxP u)T .

We insert (5.20) into (5.19), and recall as well the ODE (5.4):

(5.21)

Ẋε =
D2

P u

ε
(−DpPDxH + DxPDpH)

+
1
ε
(DxP u)T DpH + Xt

=
1
ε
DpHDxP u + Xt,
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since {P, H} = 0, according to (5.16).
Next, differentiate (5.1):

DpHDxP u = DP H̄,

and employ this identity in (5.21). �

The O(1)–term

(5.22)
∫
Rn

∫
Tn

Xt(p, x, t) dνt =
∫
Tn

Xt(Dxu, x, t) dσt

on right hand side of (5.18) is a correction, recording by how much Ẋε fails to equal
1
εDH̄(Pε, t) for small ε. Over the time interval 0 ≤ t ≤ 1, the total correction is

∫ 1

0

∫
Rn

∫
Tn

Xt(p, x, t) dνtdt.

Following Hannay [H] and Berry [B], let us next show

Theorem 5.3. We have

(5.23)
∫ 1

0

∫
Rn

∫
Tn

Xt(p, x, t) dνtdt = DP K(P ),

for

(5.24) K(P ) :=
∫ 1

0

∫
Tn

ut(P, x, t) dσtdt.

Remark. The expression (5.24) is Hannay’s formula. It is usually displayed in the
equivalent form

(5.25) K(P ) = −
∫ 1

0

∫
Tn

p(P, X, t) · xt(P, X, t) dXdt.

�

Proof. 1. Define
w(P, X, t) := u(P, x(P, X, t), t).

Then
wt = Dxu · xt + ut = p · xt + ut,

and thus

(5.26) DP (wt − p · xt) = D2
Ptu + D2

xtuDP x.
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for

D2
Ptu := (uP1t, . . . , uPnt), D2

xtu := (ux1t, . . . , uxnt).

Now X = DP u(P, x, t) = DP u(P (p, x, t), x, t), and consequently

(5.27) Xt = D2
P uPt + D2

Ptu.

2. Since X = DP u(P, x(P, X, t), t), we also have

0 = D2
P u + (D2

xP )T uDP x.

Likewise, p = Dxu(P, x, t) = Dxu(P (p, x, t), x, t) and so

0 = D2
xP uPt + D2

xtu.

Therefore

D2
P uPt = D2

xtuDP x

and so (5.26), (5.27) imply

DP (wt − p · xt) = Xt.

Consequently, since t 	→ w is [0, 1]-periodic,

∫ 1

0

∫
Rn

∫
Tn

Xt(p, x, t) dνtdt =
∫ 1

0

∫
Tn

Xt(p(P, X, t), x(P, X, t), t) dXdt

= −DP

(∫ 1

0

∫
Tn

p(P, X, t) · xt(P, X, t) dXdt

)
.

3. Finally, we observe that

p(P, X, t) · xt(P, X, t) = Dxu(P, x(P, X, t), t) · xt =
d

dt
(u(P, x, t))− ut.

Therefore

∫ 1

0

∫
Rn

∫
Tn

Xt(p, x, t) dνtdt = DP

(∫ 1

0

∫
Tn

ut(P, x(P, X, t), t) dXdt

)

= DP

(∫ 1

0

∫
Tn

ut(P, x, t) dσtdt

)
= DP K(P ).

�
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6. Averaging and the Berry–Hannay correction.

We devote this section to working out some more connections between averaging in the
spatial variables (for each fixed time) versus averaging in spatial and temporal variables
together. These relations appear in certain asymptotic limits.

To start, let us take P ∈ Rn and for each 0 < δ ≤ 1 define

(6.1) Ĥ(P, δ)

to be the unique real number for which the corrector problem

(6.2)
{

δwδ
t + H(P + Dxwδ, x, t) = Ĥ(P, δ) in Rn × R

(x, t) 	→ wδ is Tn+1-periodic,

has a solution wδ = wδ(P, x, t). The existence and uniqueness of Ĥ(P, δ) follows as in §2.2.
Remark. We can interpret the parameter δ as controlling the scaling in time. To see

this, observe that (6.2) can be recast as

(6.3)
{

ŵδ
t + H(P + Dxŵδ, x, δt) = Ĥ(P, δ) in Rn × R

x 	→ ŵδ is Tn-periodic, t 	→ ŵδ is [0, 1
δ ]-periodic,

for ŵδ(P, x, t) := wδ(P, x, δt). �

We will be concerned with the behavior of Ĥ for small δ:

Lemma 6.1. We have

(6.4) lim
δ→0

Ĥ(P, δ) =
∫ 1

0

H̄(P, t) dt (P ∈ Rn).

Proof. 1. At a point (x0, t0) where wδ attains its maximum,

H(P, x0, t0) ≤ Ĥ(P, δ);

and likewise
H(P, x1, t1) ≥ Ĥ(P, δ)

at a point (x1, t1) where wδ attains its minimum. Thus

|Ĥ(P, δ)| ≤ max
Tn+1

|H(P, ·, ·)|.

We may therefore take δk → 0 such that

Ĥ(P, δk)→ λ,
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for some real number λ.
2. Next, define

(6.5) uδ(x, t) := δ
(
wδ

(x

δ
, t

)
− wδ(0, 0)

)
;

then

(6.6) uδ
t + H

(
P + Dxuδ,

x

δ
, t

)
= Ĥ(P, δ) in Rn × R.

Furthermore, as in the proof of Theorem 2.1, we have

max
Rn×R

|uδ|, |Dxuδ|, |uδ
t | ≤ C

for a constant C independent of δ. Taking δ = δk, and passing if needs be to a further
subsequence, we have

(6.7) uδk → u uniformly on Rn × R

and

(6.8) ut + H̄(P + Dxu, t) = λ in Rn × R.

On the other hand, write

(6.9) ũ :=
(∫ 1

0

H̄(P, s) ds

)
t−

∫ t

0

H̄(P, s) ds

and notice

(6.10) ũt + H̄(P + Dxũ, t) =
∫ 1

0

H̄(P, s) ds in Rn × R.

But according to a uniqueness argument similar to that in §2, there exists at most one
constant λ such that (6.8) has a Tn+1–periodic solution. Consequently λ =

∫ 1

0
H̄ds. �

See Gomes [G1] for a different proof.

Notation. In view of (6.4), we hereafter write

(6.11) Ĥ(P, 0) :=
∫ 1

0

H̄(P, s) ds.

We propose next to estimate the first-order behavior of Ĥ(P, δ) for δ near zero. For this
we reintroduce for each time 0 ≤ t ≤ 1 the cell problem

(6.12)
{

H(P + Dxv, x, t) = H̄(P, t) in Rn

x 	→ v is Tn-periodic.
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Also, we define

(6.13) vδ := wδ − 1
δ

∫ t

0

Ĥ(P, 0)− H̄(P, s) ds.

Assume further that we have probability measures ρδ and {σt}0≤t≤1, as in §§3,4. Then,
similarly to (3.6),

(6.14)
∫
Tn+1

δΦt + DpH(P + Dxwδ, x, t) ·DxΦ dρδ = 0

for each C1 function Φ periodic in x, t; and

(6.15)
∫
Tn

DpH(P + Dxv, x, t) ·DxΦ dσt = 0

for each 0 ≤ t ≤ 1 and each Φ periodic in x.

Lemma 6.2. For each δ > 0, we have the bounds

(6.16)
∫ 1

0

∫
Tn

vδ
t dσtdt ≤ Ĥ(P, δ)− Ĥ(P, 0)

δ
≤

∫
Tn+1

vt dρδ.

Proof. 1. From (6.1), (6.15) we see that

(6.17) δvδ
t + H(P + Dxvδ, x, t) = Ĥ(P, δ)− Ĥ(P, 0) + H̄(P, t),

and so

(6.18) δvδ
t + H(P + Dxvδ, x, t)−H(P + Dxv, x, t) = Ĥ(P, δ)− Ĥ(P, 0)

in the viscosity sense.
Now convexity implies

H(P + Dxvδ, x, t)−H(P + Dxv, x, t)
{ ≤ DpH(P + Dxvδ, x, t) · (Dxvδ −Dxv)

≥ DpH(P + Dxv, x, t) · (Dxvδ −Dxv).

Consequently

Ĥ(P, δ)− Ĥ(P, 0) ≤ δ(vδ − v)t + DpH(P + Dxwδ, x, t) ·Dx(vδ − v) + δvt.

We integrate with respect to the measure ρδ and recall (6.14), thereby proving the second
inequality in (6.16). Likewise

Ĥ(P, δ)− Ĥ(P, 0) ≥ δvδ
t + DpH(P + Dxv, x, t) ·Dx(vδ − v);
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and we integrate with respect to σt, then with respect to t, recalling (6.15). �

Remark. The foregoing estimate suggests that we can recover the Hannay-Berry cor-
rection, discussed in §5, by differentiating Ĥ(P, δ) with respect to δ. We propose therefore
the formal relation

(6.19)
∂Ĥ

∂δ
(P, 0) =

∫ 1

0

∫
Tn

vt dσtdt =
∫ 1

0

∫
Tn

ut dσtdt = K(P ),

although we are not able to make any precise statement as to the general validity of this
identity. It follows of course from (6.16) if

∫ 1

0

∫
Tn vδ

t dσtdt,
∫
Tn+1 vt dρδ →

∫ 1

0

∫
Tn vt dσtdt

as δ → 0.
This formula is potentially interesting, since both Ĥ(P, δ) and Ĥ(P, 0) :=

∫ 1

0
H̄(P, s) ds

exist in general, without the very strong assumptions of integrability and averaging intro-
duced for this and the previous section. It therefore seems worthwhile to try to understand
if and when ∂Ĥ

∂δ (P, 0) exists. These heuristics provide, we hope, a bit of progress in the
overall program of discovering how the effective Hamiltonians record information about
dynamics. �
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Appendix

In this appendix, we attempt to clarifly connections of our work with that of Mather,
Fathi and others. Some key references are Mather [Mt1-4], Mather–Forni [M-F], Fathi
[F1-4], Iturriaga [I], Mañé [Mn], Dias Carneiro [DC], and Weinan E [EW1,2]. See also
Carlsson, Haurie, and Leizarowitz [C-H-L] and Maderna [M]. Contreras–Iturriaga [C-I]
and Fathi [F5] provide lengthly and detailed lecture notes. For simplicity we discuss only
autonomous Hamiltonians and Lagrangians.

Basic notation. The general setting for most of these papers is a complete, compact,
connected manifold M , the tangent space of which is TM . Local coordinates on TM are
written (x, v), for x ∈ M and v ∈ TxM . (In our work, we discuss only the case that
M = T

n, the n-dimensional flat torus, and TM = T
n × Rn. The covering space is then

R
n. We usually write the velocity variable as “q” instead of “v”, to emphasize the duality

with the momentum variable “p”.)
Given also is the Lagrangian L : TM → R, which is a smooth function that in local

coordinates satisfies appropriate convexity and superlinearity hypotheses.

Classical action. To each trajectory x(·) taking values in M and to each time T > 0
is associated the classical action

A[x(·)] :=
∫ T

0

L(x, ẋ) dt,

also sometimes denoted by S.
We may look for trajectories which minimize the action, subject to given and fixed

endpoint conditions. The Euler-Lagrange equations in local coordinates then read

(7.1) − d

dt
(DvL(x, ẋ)) + DxL(x, ẋ) = 0.

Generalized action. Instead of considering minimizing trajectories, Mather intro-
duces measures invariant under the dynamics (7.1), that minimize the action. More pre-
cisely, consider a probability measure µ, supported in TM , that is invariant under the flow
(7.1). The corresponding action of µ is

A[µ] :=
∫

TM

L(x, v) dµ.

To replace the fixed endpoint constraints above, let us associate with each invariant
measure µ an element ρ(µ) of the first homology group H1(M), by setting

< ρ(µ), ω >:=
∫

TM

ω dµ

34



for each ω in the first cohomology group H1(M). (In our case that M = T
n, we can

identify H1(M) = H1(M) = Rn and Q = ρ(µ) is the rotation vector.)

Convex and concave functions. For each γ ∈ H1(M), Mather defines

β(γ) := inf{A[µ] | ρ(µ) = γ};

that is, β(γ) is the infimum of the action over all flow–invariant measures with fixed rotation
number γ. (We identify γ with Q ∈ Rn and set β(γ) = L̄(Q). In other words, Mather’s
function β corresponds to the effective Lagrangian L̄ in the sense of Lions-Papanicolaou-
Varadhan.) Let us call a measure µ with ρ(µ) = γ and A[µ] = β(γ) a minimizing or
Mather measure.

For ω ∈ H1(M), Mather defines as well

Aω[µ] :=
∫

TM

L− ω dµ.

Since ω is a closed one form, the Euler-Lagrange equations for L and L− ω are the same.
(When M = T

n, we can represent ω as some vector P ∈ Rn.) We may also consider for
ω ∈ H1(M) the convex function

α(ω) := − inf{Aω[µ]},

with no constraint on the rotation vector for µ. Then for each γ ∈ H1(M) there exists
ω ∈ H1(M) such that

(7.2) α(ω) + β(γ) =< γ, ω > .

(In the case M = T
n, we set ω = P, γ = Q, α(ω) = H̄(P ), β(γ) = L̄(Q); and then (7.2)

asserts H̄(P ) + L̄(Q) = P ·Q, which in turn means P ∈ ∂L̄(Q), Q ∈ ∂H̄(P ). This is just
the duality between the effective Hamiltonian and Lagrangian.)

Weak KAM theory. In a sequence of papers [F1-4], recounted in the lecture notes
[F5], A. Fathi has developed a weak form of KAM theory, which augments Mather’s work.
These papers largely intersect our work, and we spell out below some of the connections.
We understand the term “weak KAM theory” to mean finding generalized, nonsmooth
solutions in the large for appropriate Hamilton–Jacobi type PDE, for which usual KAM
theory provides smooth solutions in the case of small, nonresonant perturbations.

In [F1] Fahti demonstrates the existence of a constant c and two Lipschitz continuous
functions u± : M → R, solving the PDE

(7.3) H(Dxu±, x) = c a.e.,
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H of course denoting the Hamiltonian derived from L. The constant c is H̄(0). (We note
that in fact

(7.4) H(Dxu+, x) = c in the viscosity sense

and

(7.5) −H(Dxu−, x) = −c in the viscosity sense,

as follows from the variational formulas for u± in [F1]. Assertion (7.5) means that the usual
inequalities in the definition of viscosity solutions are reversed: See for instance Chapter
10 of [E2].)

Define the Mather set M̃0 to be the closure of the union of the supports of all minimizing
measures, that is, those flow invariant probability measures µ satisfying

∫
TM

L(x, v) dµ =
−c. Also let M0 denote the projection of M̃0 into M . Then Fathi notes that u± are
differentiable on M0, and that M̃0 lies on a Lipschitz graph, as follows in part from
earlier work of Mather and of Mañé. Dias Carneiro [DC] proved that the support of any
minimizing measure is contained in a level set of the energy. Our paper [E-G1] recast
and reproved these statements using PDE techniques, the main difference being that we
constructed our version of Mather sets in phase space, i.e. in the variables x and p.

In [F2,3] Fathi establishes many more properties of u±, and in particular shows how to
construct “Peierls barriers” from the collection of functions u±. In [F4] he demonstrates
the convergence as t → ∞ of solutions of vt + H(Dxv, x) = 0 to a stationary solution of
(7.3).
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