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Topics in Mathematics 10B

I Part 1: COMBINATORICS

I Part 2: DISCRETE PROBABILITY THEORY

I Part 3: DYNAMICS

I Part 4: MATRIX ALGEBRA

The first draft of these notes was written by Lior Pachter with the help of
Rob Bayer and Brianna Heggeseth. This current version had benefited
from contributions from Lisha Li and especially Anna Lieb.
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Overview of Part 1: Combinatorics

Combinatorics is the study of arrangements of objects and their
enumeration, and in particular the counting of objects with certain
properties.

We can phrase many counting problems in terms of counting how many
ordered or unordered arrangements of the objects of a set.

Simple examples include counting the number of

I different telephone numbers possible in the US,

I allowable passwords on a computer system, and

I different orders in which runners in a race can finish.
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1. Product and Sum Rules

2. Inclusion-Exclusion Principle

3. Pigeonhole Principle

4. Permutations and Combinations

5. Binomial Coefficients

6. More Counting: Balls into Boxes

7. Algorithms
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Section 1

Product and Sum Rules
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A. The Product Rule

Notation
If A is a finite set, we write

|A|

to denote the number of elements in A.

Example 1.1
If A1,A2, ...,Am are finite sets, their Cartesian product is the set

A1 × A2 × · · · × Am = {(a1, . . . , am) | ak ∈ Ak k = 1, . . .m}.

The number of elements in the Cartesian product of these sets is the
product of the number of elements in each set; that is,

|A1 × A2 × · · · × Am| = |A1| · |A2| · · · |Am|.
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We can generalize the preceding example into a counting principle:

THEOREM (Product Rule)

Suppose that a procedure can be broken down into a sequence of tasks,
T1,T2, ...,Tm.
If each task Ti can be done in ni ways, regardless of how the previous
tasks were done, then there are

n1 · n2 · · · nm

ways to carry out the procedure.
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Example 1.2
The chairs of an auditorium are to be labeled with a letter and with a
positive integer not exceeding 100. What is the largest number of chairs
that can be labeled differently?

I Task 1: assign each chair one of the 26 letters

I Task 2: assign each chair one of the 100 possible integers

There are 26 · 100 = 2600 different ways a chair can be labeled.
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Example 1.3
How many different license plates are available if each plate contains a
sequence of three letters followed by three digits (and no sequences of
letters are prohibited, even if they are obscene).

I Task 1: assign the first space one of the 26 letters

I Task 2: assign the second space one of the 26 letters

I Task 3: assign the third space one of the 26 letters

I Task 4: assign the fourth space one of the 10 possible digits

I Task 5: assign the fifth space one of the 10 possible digits

I Task 6: assign the sixth space one of the 10 possible digits

There are 26 · 26 · 26 · 10 · 10 · 10 = 17,576,000 possible license plates.
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THEOREM

The number of different subsets of a finite set S is

2|S|.

Proof.
Let S be a finite set. List the elements of S in arbitrary order. Imagine
each of these elements could be in the subsets or not in the subset. For
each element, there are 2 options. Thus there are 2|S| different subsets,
and this includes both the empty set ∅ and the entire set S .
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B. The Sum Rule

Example 1.4
If A1,A2, ...,Am are disjoint finite sets, then the number of elements in
the union of these sets is the sum of the number of elements in each set:

|A1 ∪ A2 ∪ · · · ∪ Am| = |A1|+ |A2|+ · · ·+ |Am|

.

(We will later see how to modify this formula if the sets A1,A2, ...,Am

are not disjoint.)
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We can generalize the foregoing example into a general counting
principle:

THEOREM (Sum Rule)

Assume that task can be done either in one of n1 ways, in one of n2

ways, ..., or in one of nm ways, where none of the set of ni ways of doing
the task is the same as any of the nj ways for 1 ≤ i < j ≤ m.

Then the number of ways to do the task is

n1 + n2 + · · ·+ nm.
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Example 1.5
Suppose that either a member of the mathematics faculty or a student
who is a mathematics major is chosen as a representative to a university
committee, How many different choices are there for this representative if
there are 37 mathematics faculty and 83 mathematics majors and no one
is both a faculty and a student?

I There are 37 ways to choose a math faculty.

I There are 83 ways to choose a math major.

Then there are 37 + 83 = 120 ways to pick this representative.
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Example 1.6
Suppose we are throwing two dice and we win a dollar if the sum is less
than or equal to 3. How many ways are there to win?

I There is 1 way to get a sum = 2. (1 dot on each)

I There are 2 ways get a sum = 3 (1 dot on one and 2 dots on the
other).

So there are in all 3 ways to win.

Example 1.7
Suppose a phenotype is expressed when the genotype is either
homozygous (AA) or heterozygous (Aa or aA).

I There is 1 way to be homozygous AA.

I There are 2 ways to be heterozygous.

There are 3 ways to have a specific phenotype.
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Example 1.8
You need to choose a password, which is 6 to 8 characters long, where
each character is a lowercase letter or a digit. How many possible
passwords are there?

I Let P = total number of passwords and P6, P7, P8 be the number
of passwords with 6, 7, 8 characters respectively.

I Sum Rule: P = P6 + P7 + P8

I Product Rule: P6 = 36 · 36 · · · 36 = 366 (26+10 choices for each
character)

I Similarly, P7 = 367 and P8 = 368

So P = 366 + 367 + 368
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Example 1.9
Same question as before, but now let’s count passwords which have at
least one digit.

I Need to subtract from P6, P7, P8, all the passwords with no digits.
This is simply using the fact that A = 1− Ac

I Number of passwords with with no digits for P6, P7, P8 respectively
are 266, 267 and 268

Thus P = (366 − 266) + (367 − 267) + (368 − 268)

Lior Pachter and Lawrence C. Evans, UC BerkeleyMATH 10B – METHODS OF MATHEMATICS: CALCULUS, STATISTICS AND COMBINATORICS16/98



C. More Counting: Tree diagrams

A visual that can help solve counting problems is a tree diagram.

A tree consists of a root, a number
of branches leaving the root, and
possible additional branches leaving
the endpoints of other branches. A
leaf of the tree is an endpoint of a
branch from which no other
branches begin.

To use the tree in counting, we use
a branch to represent each possible
choice. The possible outcomes are
then represented by the leaves.
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0 0 1
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Example 1.10
A playoff between two teams consists of at most five games. The first
team that wins three games wins the playoff. In how many different ways
can the playoff occur?
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We count the leaves to find that there are 20 different possibilities.
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Section 2

Inclusion-Exclusion Principle
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Suppose that a task can be done in n1 or in n2 ways, but that some of
the set of n1 ways to do the task are the same as some of the n2 ways to
do the task. We cannot just use the Sum Rule here because it will lead
to an overcount. Instead, we subtract out the number of ways n1 and n2

are in common.

THEOREM (Inclusion-Exclusion Principle)

If A1 and A2 are finite sets, then the number of elements in the union of
these sets is the sum of the number of elements in each set minus the
number of elements in both sets.

Therefore
|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|.
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Example 2.1
A computer company receives 350 applicants from new graduates.
Suppose that 220 of these majored in computer science, 147 majored in
business, and 51 majored in both. How many of these applicants majored
neither in CS or business?

I Total number who majored in either CS or business:
220 + 147− 51 = 316

I Total number who did not major in CS or business: 350− 316 = 34.
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We extend the previous counting principe to finitely many finite sets:

THEOREM (General Inclusion-Exclusion Principle)

We have ∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai | −
∑

1≤i<j≤n

|Ai ∩ Aj |

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak |

− · · ·+ (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|.
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We will prove the theorem by induction, which is a common type of
proof in discrete mathematics. There are two steps:

(1) Prove that the statement is true for n = 1.
(2) Prove that if the statement is true for some value n, then it
must also be true for n + 1.

This is enough to prove the statement for all n. Notice that if we prove
(1), then (2) implies that the statement holds for n = 2. Of course, we
can repeat step (2) as many times as we like to prove the the statement
is true for any value of n.

Proof.
Step (1) is easy, since when n=1, the statement reads

|A1| = |A1|

This obviously being true, we move on to step (2).
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Suppose next that the Theorem holds for some particular choice of n:
this is the induction hypothesis. We want to use this to find the
corresponding formula with n + 1 replacing n.

First note that
⋃n+1

i=1 Ai =
(⋃n

i=1 Ai

)⋃
An+1. So we can rewrite, using

our rule for the union of two events:∣∣∣∣∣
n+1⋃
i=1

Ai

∣∣∣∣∣ =

∣∣∣∣∣
n⋃

i=1

Ai

⋃
An+1

∣∣∣∣∣
=

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣+ |An+1| −

∣∣∣∣∣
(

n⋃
i=1

Ai

)⋂
An+1

∣∣∣∣∣
=

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣+ |An+1| −

∣∣∣∣∣
n⋃

i=1

(
Ai

⋂
An+1

)∣∣∣∣∣
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Now use the induction hypothesis to rewrite the first and third terms:∣∣∣∣∣
n+1⋃
i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai | −
∑

1≤i<j≤n

|Ai ∩ Aj |+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak |

− · · ·+ (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|
+ |An+1|

−
[ n∑

i=1

|Ai ∩ An+1| −
∑

1≤i<j≤n

|Ai ∩ Aj ∩ An+1|

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak ∩ An+1|

− · · ·+ (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An ∩ An+1|
]
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Rearranging (left as an exercise), we have∣∣∣∣∣
n+1⋃
i=1

Ai

∣∣∣∣∣ =
n+1∑
i=1

|Ai | −
∑

1≤i<j≤n+1

|Ai ∩ Aj |+∑
1≤i<j<k≤n+1

|Ai ∩ Aj ∩ Ak |

− · · ·+ (−1)n|A1 ∩ A2 ∩ · · · ∩ An+1|.

This is precisely the expression that we would generate from the formula
for the union of n + 1 events.

Thus, if the statement holds for n events, it holds for n + 1 events. By
induction, the Theorem is proved.
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Section 3

Pigeonhole Principle
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THEOREM (Pigeonhole Principle)

If k is a positive integer and k + 1 or more objects are placed into k
boxes, then there is at least one box containing two or more of the
objects.

This assertion is of course obvious, but we will give a formal proof to
illustrate the mathematical idea of the contrapositive.

Notation
The contrapositive of a conditional statement

If P, then Q

is the statement
If not Q, then not P.

If the original statement is true, then the contrapositive is true,
and vice-versa.
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Proof.
First, we assume that none of the k boxes contains more than one object
(the opposite of ’at least one box contains two or more’). Now, we will
show that the number of objects placed into k boxes has to be less than
k + 1. If no more than one object is in a box, then the total number of
objects would be at most k . We have shown the contrapositive.

Example 3.1

I Among any group of 367 people, there must be at least two with the
same birthday, because there are only 366 possible birthdays.

I If an exam is graded on a scale from 0 to 100 points, then among
102 students, there must be at least 2 students with the same score.
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Notation
Let x be a real number.

(i) The largest integer less than or equal to x is denoted

bxc.

We sometimes call bxc the floor of x.

(ii) The smallest integer greater than or equal to x is denoted

dxe.

We sometimes refer to dxe as the ceiling of x.

Note that
bxc ≤ x ≤ dxe

and
bxc ≤ x ≤ bxc+ 1, dxe − 1 ≤ x ≤ dxe.
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THEOREM (Generalized Pigeonhole Principle)

If N objects are placed into k boxes, then there is at least one box
containing at least dN/ke objects.

We will use a proof by contradiction. First, we assume that the
statement is not true, but rather the opposite is true. Then we will find a
contradiction.

Proof.
Suppose that none of the boxes contains more than dN/ke-1 objects.
Then, the total number of objects is at most

k

(⌈
N

k

⌉
− 1

)
< k

((
N

k
+ 1

)
− 1

)
= N

where the inequality dN/ke < (N/k) + 1 has been used. This is a
contradiction because there are a total of N objects.
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Example 3.2

I Among 100 people, there are at least d100/12e = 9 who were born
in the same month.

I 9 cards must be selected from a standard deck of 52 cards to
guarantee that at least 3 cards of the same suit are chosen.

I Choose smallest integer N such that dN/4e ≥ 3. So,
N/4 + 1 > dN/4e ≥ 3 and N > 8.

I If there are 30 students in a class, then at least d30/26e = 2 have
last names that begin with the same letter.
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Example 3.3
Ten people of different heights line up in a row. Show that it is always
possible to select four of them to step sideways to form a shorter row in
which their heights from left to right are either increasing or decreasing.

SOLUTION. Let ak denote the height of the k-th person from the left,
for k = 1, . . . , 10. We will show that we can select subindices

k1 < k2 < k3 < k4

from among {1, 2, . . . , 10} such that either

ak1 < ak2 < ak3 < ak4 (Case 1: increasing heights)

or else
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ak1 > ak2 > ak3 > ak4 (Case 2: decreasing heights).

To see this, assume that there do not exist 4 subindices giving increasing
heights (Case 1). We will show we can then find 4 subindices giving Case
2.

Define mk to be the length of the longest increasing subsequence of
increasing heights, starting at position k . Then 1 ≤ mk ≤ 3, since Case 1
never holds. So we have 10 integers {m1,m2, . . . ,m10}, each of which is
1, 2 or 3. Consequently the Extended Pigeonhole Principle implies that at
least 4 of them are equal, say

mk1 = mk2 = mk3 = mk4 .

But this implies that Case 2 is valid for these indices. To see this, note
for instance that mk1 = mk2 implies ak1 > ak2 , since otherwise mk1 would
be strictly greater than mk2 .
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Section 4

Permutations and Combinations
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Introduction

I Many problems can be solved by finding the number of ways to
arrange a specified number of distinct elements of a set of a
particular size, where the order of the elements matters. Such
arrangements are called permutations.

For example, in how many ways can we select three students from a
group of five students to stand in line for a picture?

I Many other problems can be solved by finding the number of ways
to select a particular number of elements from a set of a particular
size, where the order of the elements does not matter. These
sort of arrangements are called combinations.

For example, how many different committees of three students can
be formed from a group of four students?
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A. Permutations

DEFINITION

(i) A permutation of a set of distinct objects is an ordered
arrangement of these objects.

(ii) An ordered arrangement of r elements of a set is called an
r-permutation.

Example 4.1
Let A = {1, 2, 3}. The ordered arrangement 3, 1, 2 is a permutation of
A. The ordered arrangement 3, 2 is a 2-permutation of A.
In how many ways can we select three students from a group of five
students to stand in line for a picture?

I There are 5 ways to select the first student in line.

I There are 4 ways to select the second student in line.

I There are 3 ways to select the third student in line.

So there are 5 · 4 · 3 = 60 ways
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Example 4.2
How many permutations are there of an n element set?
We want to count the number of ways of putting n things in order:

I First, we must pick one thing to be the first in the list. There are n
ways of doing this.

I Next, we must pick the second thing. Since we used one object
already, there are n − 1 ways of doing this.

I Next, we pick the third thing. There are n − 2 ways of doing this.

I And so on...

I Finally, the pick the last element in the list. There is only 1 way to
do this.

Therefore the Product Rule implies that there are

n(n − 1)(n − 2) · · · 2 · 1 = n!

permutations of a set with n elements.
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DEFINITION

When n is a nonnegative integer, we define the factorial of n to be

n! =

{
n(n − 1)(n − 2) · · · 2 · 1 if n ≥ 1

0 if n = 0

Example 4.3
The set {A,B,C ,D,E} has 5 elements and thus there are 5! = 120
permutations of it.

Example 4.4
There are 52! permutations of a standard deck of cards. 52! ≈ 8× 1067,
an extraordinarily huge number. For reference, a 59-card deck would
have 59! permutations, which is more than the number of atoms in the
universe (≈ 1080).
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THEOREM

If n is a positive integer and r is an integer with 1 ≤ r ≤ n, then there are

P(n, r) = n(n − 1)(n − 2) · · · (n − r + 1)

r-permutations of a set with n distinct elements.

Proof.
The first element of the permutation can be chosen in n ways because
there are n elements in the set. There are n − 1 ways to choose the
second element of the permutation since there are n − 1 elements left.
Similarly, there are n − 2 ways to choose the third element and so on,
until there are exactly n − (r − 1) = n − r + 1 ways to choose the r th
element. By the Product Rule, there are

n(n − 1)(n − 2) · · · (n − r + 1)

r-permutations of the set.
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THEOREM

If n and r are integers with 0 ≤ r ≤ n, then

P(n, r) =
n!

(n − r)!

Proof.
Simply write out the product (by definition of the factorial) and cancel
terms.

Example 4.5
How many permutations of the letters ABCDEFGH contain the string
ABC ?

I The letters ABC must occur as a block.

I Find the number of permutations of six objects (ABC, D, E, F, G, H)

I 6!
0! = 6! = 720 permutations
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Example 4.6
How many words with three letters can be made from the English
alphabet with no repetition allowed?

Answer: A three letter word is just another name for the 3-permutation
of letters. There are 26 letters in the alphabet, so there are
26 · 25 · 24 = 15, 600 possible three letter words without any repeated
letters.
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B. Combinations

DEFINITION

A r-combination of elements of a set is an unordered selection of r
elements from the set.

In other words, an r-combination is simply a subset of the set with r
elements.

Example 4.7
Let A = {1, 2, 3, 4}. Then {1, 3, 4} is a 3-combination from A.

THEOREM

Let n be a nonnegative integer and r an integer with 0 ≤ r ≤ n. The
number of r -combinations of a set with n elements is

C (n, r) =
n!

r !(n − r)!
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Proof.
The r-permutations of the set can be obtained by forming the C (n, r)
r-combinations of the set, and then ordering the elements in each
r -combination, which can be done in P(r , r) ways. Consequently,

P(n, r) = C (n, r) · P(r , r)

This implies that

C (n, r) =
P(n, r)

P(r , r)
=

n!/(n − r)!

r !(r − r)!
=

n!

r !(n − r)!

Note that C (n, r) = n(n−1)···(n−r+1)
r ! .
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Example 4.8

I There are C (52, 5) = 52·51·50·49·48
5·4·3·2·1 = 2, 598, 960 possible poker hands

of five cards that can be dealt from a standard deck of 52 cards.

I There are C (52, 47) = 52!
47!5! = 2, 598, 960 different ways of selecting

47 cards from a standard deck of 52 cards.

THEOREM

Let n and r be nonnegative integers with r ≤ n. Then

C (n, r) = C (n, n − r) .

We will provide a combinatorial proof.
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A combinatorial proof of an identity is a proof that uses counting
arguments to prove that both sides of the identity count the same
objects, but in different ways.

Proof.
Let S be a set with n elements. LHS (left hand side) counts k-element
subsets of S . RHS (right hand side) counts (n− k)-element subsets of S .
Are these numbers the same? Yes, because there is a bijection between
k-element subsets and (n − k) element subsets that maps a set A to
S − A.

Example 4.9
How many ways are there to select five players from a 10-member tennis
team to make a trip to a match at another school?

I The number of 5-combinations of a set with 10 elements.

I C (10, 5) = 10!
5!5! = 252 number of ways

Lior Pachter and Lawrence C. Evans, UC BerkeleyMATH 10B – METHODS OF MATHEMATICS: CALCULUS, STATISTICS AND COMBINATORICS46/98



Section 5

Binomial Coefficients
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A. Binomial Theorem

Notation
We often denote the number of r -combinations from a set with n
elements by

C (n, r) =

(
n

r

)
=

n!

r !(n − r)!
.

We read this as “n choose r .”

We also call
(
n
r

)
a binomial coefficient, as it appears in the following

expansion, known as the Binomial Theorem:

THEOREM

Let x and y be variables, and let n be a nonnegative integer. Then

(x + y)n =
n∑

j=0

(
n

j

)
xn−jy j
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Proof.
The terms in the product when it is expanded are of the form xn−jy j for
j = 0, 1, 2, ..., n.

(x + y)n =

n︷ ︸︸ ︷
(x + y)(x + y) · · · (x + y)

= α0xn + α1xn−1y + α2xn−2y2 + · · ·+ αn−1xyn−1 + αnyn

To count the number of terms of the form xn−jy j , note that to obtain
such a term it is necessary to choose n − j x ’s from the n sums of
(x + y) (so that the other j terms in the product are y ’s). Therefore, the
coefficient of xn−jy j is

(
n

n−j
)
, which is equal to

(
n
j

)
.
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Example 5.1
What is the coefficient of x3y4 in the expansion of (x + y)7?(

7

3

)
=

7 · 6 · 5 · 4!

3!4!
=

7 · 6 · 5
3 · 2

= 35
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THEOREM

Let n be a nonnegative integer. Then

n∑
k=0

(
n

k

)
= 2n.

Proof.
1. First proof: Using the Binomial Theorem with x = 1 and y = 1, we
see that

2n = (1 + 1)n =
n∑

k=1

(
n

k

)
1k1n−k =

n∑
k=1

(
n

k

)
.

Second proof: The left hand side is the sum on k of the number of
subsets of size k of n-element set. The right hand side counts the
number of subsets of n-element set.
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THEOREM

Let n be a nonnegative integer. Then we have the identities

n∑
k=0

(−1)k
(

n

k

)
= 0,

n∑
k=0

2k

(
n

k

)
= 3n

Proof.
We have

0 = (1− 1)n =
n∑

k=1

(
n

k

)
(−1)k1n−k =

n∑
k=0

(−1)k
(

n

k

)
.

and

3n = (2 + 1)n =
n∑

k=1

(
n

k

)
2k1n−k =

n∑
k=0

2k

(
n

k

)
.
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THEOREM

Let n be a nonnegative integer. Then

n∑
k=1

k =

(
n + 1

2

)

Proof.
We will use a visual proof to show that there exists a bijection between a
set of

∑n
k=1 k objects and the set of 2-element subsets of a set with

n + 1 objects.
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1

2

3

.

.

.

n

n+1

∑n
k=1 k is the total number of balls above the line. You can identify any

ball above the line by choosing two balls below the line that make up the
bottom of a equilateral triangle.
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B. Pascal’s Triangle
Pascal’s triangle is a triangular array of integers, the first 4 rows of
which are:

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

We compute the entries of each row by adding the two entries in the
previous row, to the upper left and upper right of the current position.
So the n = 4 row reads

1 4 6 4 1

and the n = 5 row is

1 5 10 10 5 1.
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The next theorem shows that in working out Pascal’s triangle, we are
actually computing binomial coefficients.

THEOREM

Let n and k be positive integers with n ≥ k. Then(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)

We will give a combinatorial proof.
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Proof.
Suppose that T is a set containing n + 1 elements. Let a be an element
in T , and let S = T − {a}. Note that there are

(
n+1
k

)
subsets of T

containing k elements. However, a subset of T with k elements either
contains a together with k − 1 elements of S , or contains k elements of
S and does not contain a.
Because there are

(
n

k−1
)

subsets of k − 1 elements of S , there are
(

n
k−1
)

subsets of k elements of T that contain a. And there are
(
n
k

)
subsets of

k elements of T that do not contain a, because there are
(
n
k

)
subsets of

k elements of S . Consequently, the Sum Rule gives the formula on the
previous page.
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Can calculate next line of the triangle by using the fact that(
n
0

)
=
(
n
n

)
= 1 and Pascal’s Identity.

n = 0:
(
0
0

)
n = 1:

(
1
0

) (
1
1

)
n = 2:

(
2
0

) (
2
1

) (
2
2

)
n = 3:

(
3
0

) (
3
1

) (
3
2

) (
3
3

)
n = 4: 1

(
3
0

)
+
(
3
1

) (
3
1

)
+
(
3
2

) (
3
2

)
+
(
3
3

)
1
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Can calculate next line of the triangle by using the fact that(
n
0

)
=
(
n
n

)
= 1 and Pascal’s Identity.

n = 0:
(
0
0

)
n = 1:

(
1
0

) (
1
1

)
n = 2:

(
2
0

) (
2
1

) (
2
2

)
n = 3:

(
3
0

) (
3
1

) (
3
2

) (
3
3

)
n = 4:

(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
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C. Stirling’s formula

Many interesting applications involve the binomial coefficients
(
n
k

)
for

large values of m and n. It is therefore sometimes useful to know
Stirling’s approximation

n! ∼ nn+ 1
2 e−n

√
2π

for large integers n, meaning that

lim
n→∞

n!

nn+ 1
2 e−n

√
2π

= 1.

As an application, we compute that(
2n

n

)
=

(2n)!

n!n!
∼ (2n)2n+

1
2 e−2n

√
2π

(nn+ 1
2 e−n

√
2π)2

=
22n

√
πn

for large n.
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Section 6

More Counting: Balls into Boxes
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Introduction: the 12-Fold Way

Now that we have talked about permutations and combinations, we will
discuss a general framework that gives structure to all of these counting
problems.

Imagine that you have a collection of boxes and a pile of balls. You want
to distribute the balls into the boxes.

We will study 3 different rules for the mapping assigning the balls to the
boxes.

I There must be at most 1 ball in each box: the mapping is injective.

I There must be at least 1 ball in each box: the mapping is surjective

I There are no restrictions on how many balls are in each box; the
mapping is unrestricted.

(“Injective” means one-to-one: “surjective” means onto.)
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Now, there are 2 possibilities regarding the collection of balls:

I The balls could be indistinguishable from each other (i.e. every ball
is exactly the same); or

I the balls could be distinguishable from each other (suppose e.g.
the balls are painted different colors).

Also, there are 2 possibilities for the boxes:

I The boxes could either be indistinguishable from each other, or

I Or, they could distinguishable from each other (say, there is a
number painted on the side of each box).

Consequently there are 3 · 2 · 2 = 12 distinct counting problems: we have
a 12-fold way!
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We will hereafter sometimes use the the term urn to refer to the boxes.
The advantage is that the words “ball” and “urn” start with different
letters.

So let B be a set of balls and let U be a set of boxes (or urns), with

|B| = b, |U| = u.

Here is a table that we will fill in, showing the number of ways to put the
balls into the bins under each circumstance.

Balls Urns Arbitrary Injective (≤ 1) Surjective (≥ 1)
Dist. Dist.

Indist. Dist.
Dist. Indist.

Indist. Indist.

The following 4 sections consider into the various cases as to whether the
balls and the urns are distinguishable or not.
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A. Distinguishable balls and urns

How many ways are there to put b distinguishable balls in the u
distinguishable urns with no restrictions on the mapping?

There are u choices of bins for 1st ball AND u choices for bins for 2nd
ball AND ... AND u choices for the bth ball. Using the Product Rule, we
can see that the number of ways is

ub.

Balls Urns Arbitrary Injective (≤ 1) Surjective (≥ 1)
Dist. Dist. ub

Indist. Dist.
Dist. Indist.

Indist. Indist.
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Example 6.1
Imagine that there are 10 possible pizza toppings and we need to choose
which ones to have on our pizza. How many possible different pizza
combinations are there? (Rephrase this in terms of balls and bins!)

The balls are the pizza toppings. Each topping can be on the pizza or
not on the pizza, so it goes in one of two “bins”. Since b = 10 and
u = 2, there are 210 different combinations.

Example 6.2
How many strings of six letters are there?

There are 26 letters (bins) and 6 characters in the string (balls). So there
are 266 different strings of 6 letters.
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Example 6.3
How many ways are there to assign three jobs to five employees if each
employee can be given more than one job?

There are 5 employees (bins) and 3 jobs (balls). So there are 53 different
ways.
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How many ways are there to put b distinguishable balls in the u
distinguishable bins with no more than 1 ball in each bin?

There are u choices of bins for 1st ball AND u − 1 choices for bins for
2nd ball AND ... AND u − (b − 1) choices for the bth ball. Using the
Product Rule, we can see that there are

(u)b = u · (u − 1) · · · (u − b + 1)

ways.

Balls bins Arbitrary Injective (≤ 1) Surjective (≥ 1)
Dist. Dist. ub (u)b

Indist. Dist.
Dist. Indist.

Indist. Indist.
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Example 6.4
There are five people and you need to put them in a line for a picture.
How many different ways could they line up?

Think of each person as a ball and each spot in the line as an bin. Since
b = 5 and u = 5, there are 5 · 4 · 3 · 2 · 1 = 5! ways.

Example 6.5
How many ways can you deal five cards from a deck of 52 (order
matters)?

Since b = 5 and u = 52, there are 52 · 51 · 50 · 49 · 48 ways.
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B. Indistinguishable balls, distinguishable urns

How many ways are there to put b indistinguishable balls in the u
distinguishable bins with no more than 1 ball in each bin?

When the balls are distinguishable, there are
(u)b = u · (u− 1) · · · (u− b + 1) · (u− b + 1) ways. Let N be the number
of ways in the indistinguishable ball case. Then, by the Product Rule,
(u)b = b!N since there are b! different ways of permuting the b balls.

Hence, we can see that there are N = (u)b/b! = u·(u−1)···(u−b+1)
b! =

(
u
b

)
ways.

Balls bins Arbitrary Injective (≤ 1) Surjective (≥ 1)
Dist. Dist. ub (u)b

Indist. Dist.
(
u
b

)
Dist. Indist.

Indist. Indist.
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Example 6.6
A factory makes auto parts. Sometimes the machines make defective
parts. Imagine that in an hour, the factory produces 100 parts (bins) of
which 5 are defective (balls). How many different orderings of defective
and non-defective parts are there on the assembly line?

Imagine those 100 parts as spots (bins) that could be defective (have a
ball). Then u = 100 and b = 5. Since the defective parts are
indistinguishable, the number of orderings is

(
100
5

)
.
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Example 6.7
How many ways are there to distribute hands of 5 cards to each of four
players from the standard deck of 52 cards?

The first person can be dealt 5 cards in
(
52
5

)
ways and the second can be

dealt 5 cards in
(
47
5

)
ways and the third can be dealt 5 cards in

(
42
5

)
ways

and finally the fourth can be dealt 5 cards in
(
37
5

)
ways.

In total there are
(
52
5

)(
47
5

)(
42
5

)(
37
5

)
ways.
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How many ways are there to put b indistinguishable balls in the u
distinguishable bins with no restrictions on the mapping ?

We need to choose b bins with replacement since the b balls are the
same. To think about this problem, we will introduce a tool such that
there is a bijection to the balls and bins. Imagine that we represent each
ball with ?. We need divide the balls into specific bins using a vertical
line |.

For example, let b = 5 and u = 3. The balls can be represented by

? ? ? ? ?

For the particular partition into 3 boxes, we only need 2 vertical lines,

? | | ? ? ? ?

In this case, there is 1 ball in the first box, 0 in the second, and 4 in the
third box.
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To imagine all possible configurations, we can see that there are u + b− 1
places to put b stars and the rest will automatically be vertical lines.

? — — ? ? ? ?

Now, we are back to the framework with b indistinguishable balls and
u∗ = u + b − 1 distinguishable bins with no more than 1 ball in each bin.

There are therefore (
u∗

b

)
=

(
u + b − 1

b

)
ways to divide up the balls into the bins.
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Balls Urns Arbitrary Injective (≤ 1) Surjective (≥ 1)
Dist. Dist. ub (u)b

Indist. Dist.
(
u+b−1

b

) (
u
b

)
Dist. Indist.

Indist. Indist.
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Example 6.8
When expand out the expression (a + b + c)20, how many terms does it
contain?

When expanded, all terms can be written as apbqc r with p + q + r = 20.
The number of terms is the number of solutions of the equation
p + q + r = 20 with p, q, r as positive integer unknowns.
Think of p, q, r as the three bins; we have 20 balls that need to go into
the bins. The values of p, q, r will be the number of balls in each of the
labeled bins. The number of solutions to p + q + r = 20 is equivalent to
the number of ways you can put 20 indistinguishable balls into 3
distinguishable bins. Thus the number of ways is

(
3+20−1

20

)
=
(
22
20

)
.
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Example 6.9
A bagel shop has 8 types of bagels: onion, poppy seed, egg, salty,
pumpernickel, sesame seed, raisin, and plain. How many ways are there
to choose six bagels? There are 8 types of bagels (bins) and there are

room for 6 in your order (balls) (the order of the bagels doesn’t matter).
Thus, there are

(
8+6−1

6

)
ways to choose six bagels.
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How many ways are there to put b indistinguishable balls in the u
distinguishable bins with at least one ball in each bin?

Put one ball in each bin. Now you have b − u balls that can be
distributed without restriction.
We already know that there are

(
u+b−1

b

)
ways of putting b balls into u

bins without restriction. Let b∗∗ = b − u, then the number of ways is(
u + b∗∗ − 1

b∗∗

)
=

(
u + (b − u)− 1

b − u

)
=

(
b − 1

b − u

)
.
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Balls Urns Arbitrary Injective (≤ 1) Surjective (≥ 1)
Dist. Dist. ub (u)b

Indist. Dist.
(
u+b−1

b

) (
u
b

) (
b−1
b−u
)

Dist. Indist.
Indist. Indist.
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Example 6.10
How many terms are contained in (a + b + c)20 that contain a, b, and c?

This is similar to the a previous example, except that p, q, r > 0. The
number of ways is

(
20−1
20−3

)
=
(
19
17

)
.

Example 6.11
A bagel shop has 8 types of bagels: onion, poppy seed, egg, salty,
pumpernickel, sesame seed, raisin, and plain. How many ways are there
to choose a dozen bagels such that you have at least one of each?

There are 8 types of bagels (bins) and there are room for 12 in your order
(balls) (the order of the bagels doesn’t matter), but you need at least one
ball in each bin. Thus, there are

(
12−1
12−8

)
=
(
11
4

)
ways to choose six

bagels.
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C. Distinguishable balls, indistinguishable urns

How many ways are there to put b distinguishable balls in the u
indistinguishable bins? Since the bins are indistinguishable, this means
dividing the balls into unordered subsets.

DEFINITION

The Stirling numbers of the second kind S(b, u) count the number of
ways to partition a set of b elements into u nonempty (and nondistinct)
subsets.

THEOREM

The Stirling numbers satisfy the recurrence

S(b + 1, u) = uS(b, u) + S(b, u − 1), (1)

with S(0, 0) = 1 and S(b, 0) = S(0, u) = 0.

Lior Pachter and Lawrence C. Evans, UC BerkeleyMATH 10B – METHODS OF MATHEMATICS: CALCULUS, STATISTICS AND COMBINATORICS81/98



Proof.
It is easy to see that S(0, 0) = 1,S(b, 0) = S(0, u) = 0.

If we have a set with, say, b + 1 people, let us designate one particular
person.

1. We remove the designed person from the group, and then subdivide
the remaining b people into u − 1 nonempty subsets, in S(b, u − 1)
ways. We then have the designed person form her own singleton set
in addition.

2. Alternatively, we can subdivide the remaining b people into u
nonempty subsets, in S(b, u) ways. The designated person can then
join any of these u subsets. There are uS(b, u) ways to do this.

Therefore S(b + 1, u) = uS(b, u) + S(b, u − 1).

REMARK: The recurrence relation above can be solved, giving

S(b, u) =
1

u!

u∑
j=0

(−1)j
(

u

j

)
(u − j)n .
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Surjective: Partition b balls into u unordered, nonempty subsets.
Number of ways = S(b, u) (Stirling number of the second kind).

Arbitrary: Partition b balls into u unordered subsets.
Number of ways =

∑u
i=1 S(b, i)

Injective: Partition b balls into u unordered singleton subsets.
Number of ways = 1 if b ≤ u and 0 if b > u.

Balls Urns Arbitrary Injective (≤ 1) Surjective (≥ 1)
Dist. Dist. ub (u)b

Indist. Dist.
(
u+b−1

b

) (
u
b

) (
b−1
b−u
)

Dist. Indist.
∑u

i=1 S(b, i) 1 if b ≤ u, 0 if b > u S(b,u)
Indist. Indist.
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Example 6.12
How many ways are there to put four different employees into three
indistinguishable offices, when each office can contain any number of
employees?

We could put all four employees into 1 office {{A,B,C ,D}}.
We could 3 employees in one office and 1 in another {{A,B,C}, {D}},
{{A,B,D}, {C}}, {{A,C ,D}, {B}}, {{B,C ,D}, {A}}.
We could put 2 employees in 1 office and 2 in another {{A,B}, {C ,D}},
{{A,C}, {B,D}}, {{A,D}, {B,C}}.
Finally, we could put two employees in 2 office and the other two in the
own office {{A,B}, {C}, {D}}, {{A,C}, {B}, {D}},{{B,C}, {A}, {D}},
{{A,D}, {C}, {B}}, {{D,B}, {C}, {A}}, {{C ,D}, {A}, {B}}.
In total there are 14 ways to put 4 employees into 3 offices
(S(4, 1) + S(4, 2) + S(4, 3)).
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Example 6.13
How many ways are there to put four different employees into three
indistinguishable offices, when each office must contain at least one
employee?

The only solution is to put two employees in 2 office and the other two in
the own office {{A,B}, {C}, {D}}, {{A,C}, {B}, {D}},
{{B,C}, {A}, {D}}, {{A,D}, {C}, {B}}, {{D,B}, {C}, {A}},
{{C ,D}, {A}, {B}}.
In total there are 6 ways to put 4 employees into 3 offices with at least
one in each office (S(4, 3)).
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Next, assume bins are indistinguishable, then there are S(b, u) ways to
partition the b balls. We know that there are u! permutations of the
bins. Therefore, there are u!S(b, u) ways to put b balls in u bins with at
least one in each.

Balls Urns Arbitrary Injective (≤ 1) Surjective (≥ 1)
Dist. Dist. ub (u)b u!S(b, u)

Indist. Dist.
(
u+b−1

b

) (
u
b

) (
b−1
b−u
)

Dist. Indist.
∑u

i=1 S(b, i) 1 if b ≤ u, 0 if b > u S(b,u)
Indist. Indist.
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D. Indistinguishable balls and urns

How many ways are there to put b indistinguishable balls in the u
indistinguishable boxes?
As the balls and bins are indistinguishable, this is equivalent partitioning
a natural number b into a sum of u natural numbers.

DEFINITION

The partition function pu(b) counts the number of partitions of b into
u parts (the number of distinct ways to write b as the sum of u positive
integers).
Note that

pu(b) = pu−1(b − 1) + pu(b − u)

where p1(b) = pb(b) = 1 and pu(b) = 0 if u > b.
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Surjective: Partition b into a sum of u positive integers.
Number of ways = pu(b).

Arbitrary: Partition b into a sum of at most u positive integers.
Number of ways =

∑u
i=1 pi (b).

Injective: Partition b balls into u unordered singleton subsets.
Number of ways = 1 if b ≤ u and 0 if b > u.

Balls Urns Arbitrary Injective (≤ 1) Surjective (≥ 1)
Dist. Dist. ub (u)b u!S(b, u)

Indist. Dist.
(
u+b−1

b

) (
u
b

) (
b−1
b−u
)

Dist. Indist.
∑u

i=1 S(b, i) 1 if b ≤ u, 0 if b > u S(b,u)
Indist. Indist.

∑u
i=1 pi (b) 1 if b ≤ u, 0 if b > u pu(b)
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Example 6.14
How many ways are there to pack six copies of the same book into four
identical boxes, where a box can contain as many as six books?

We can enumerate all the ways to pack the books:
6
5,1
4,2
4,1,1
3,3
3,2,1
3,1,1,1
2,2,2
2,2,1,1
There are 9 ways to pack them (p1(6) + p2(6) + p3(6) + p4(6)).
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Example 6.15
How many ways are there to pack six copies of the same book into four
identical boxes, where a box can contain as many as six books and there
is at least one book in each box?

We can enumerate all the ways to pack the books:
3,1,1,1
2,2,1,1
There are 2 ways to pack them (p4(6)).
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Section 7

Algorithms
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A. Algorithms

DEFINITION

An algorithm is a finite sequence of precise instructions for performing a
computation or solving a problem, together with a proof or verification
that the instructions will produce the correct output.

Properties of algorithms

I Input: information supplied from outside.

I Output: information produced by algorithm (depends on input).

I Definiteness: each step is defined precisely.

I Correctness: each set of input values generates the correct output.

I Finiteness: output produced in a finite amount of time.

I Generality: applies to all problems of a certain form.
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Example 7.1
TASK: Tie a ribbon on the shortest tree in a row of experimentally
treated fir trees.

ALGORITHM:

1. Measure the tree at one end of the row and tie the ribbon to it.

2. Measure the next tree down. If it is shorter than the tree with the
ribbon, move the ribbon to the new tree. Otherwise, leave the
ribbon where it is.

3. Repeat step 2 until the end of the row is reached.
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Let’s see how our simple algorithm satisfies the properties of an
algorithm:

I The input is the row of trees.

I The output is the ribbon being tied to the shortest tree.

I Each step is clearly stated.

I It is easy to verify that this algorithm always places the ribbon
correctly.

I It is easy to see that the algorithm takes a finite number of steps
and thus finishes in finite time.

I The algorithm will work for any row of trees.
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B. Stable allocations

To illustrate an algorithm for a more substantial problem, we discuss now
stable allocations, in the context of the following example:

TASK: Suppose that N men and N women are to marry, and that each
person has his/her own preference rankings of those of the opposite sex,
as to their desirability as a partner.
In other words, each man has his own ordered list of this first choice for a
wife, second choice, etc; and each woman likewise has her own ordered
list of preferences for a husband.

Is it possible to find a assignment of each man to precisely one woman,
so that these marriages are all stable? “Stable” means that there are no
pairs of a man and a woman, who are not married to each other, but
both of whom would prefer the other to their own partners.
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ALGORITHM:1

1. Each man makes a proposal to his top ranked woman.

2. Each woman who has received at least one proposal, keeps her top
choice waiting and rejects the other proposals (if any)

3. Each man not now kept waiting makes a proposal to the next
highest ranked woman on his list.

4. Each woman selects her top choice amongst the new proposals and
any previous one kept waiting, and rejects all others.

5. Continue until each woman has precisely one suitor in waiting,
whom she now marries.

1D. Gale and L. S. Shapley: “College Admissions and the Stability of Marriage”,
American Math Monthly 69, 1962. Shapley shared the 2012 Nobel Memorial Prize in
Economic Sciences for this algorithm.
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Example

A 

2 
1 
3 
4 

B 

4 
3 
2 
1 

C 

2 
1 
4 
3 

D 

1 
2 
4 
3 

1 

A 
C 
D 
B 

2 

B 
C 
A 
D 

3 

D 
B 
C 
A 

4 

B 
C 
D 
A 

A 
2 
1 
3 
4 

B 
4 
3 
2 
1 

C 
2 
1 
4 
3 

D 
1 
2 
4 
3 

1 
A 
C 
D 
B 

2 
B 
C 
A 
D 

3 
D 
B 
C 
A 

4 
B 
C 
D 
A 
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The matching algorithm in action

Woman Round 1 Round 2 Round 3 Round 4 Round 5
1 D A,D A A A
2 A,C C C,D C C
3 D
4 B B B B,D B

I Woman 2 rejects A at the end of Round 1

I Woman 1 rejects D at the end of Round 2

I Woman 2 rejects D at the end of Round 3

I Woman 4 rejects D at the end of Round 4

Notice that the outcome of this process did not depend at all upon the
preferences of Woman 3.
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