Review Problems:
For each integral state which theorems (Stokes, Divergence, Greens, Fund. Thm of Line Integrals, etc.) can be applied.

Problem 1: $\iint(x,-z, y) \cdot \mathbf{d S}$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=25, y \geq 0$.
Problem 2: $\int_{C}\left(y z, 2 x z, e^{x y}\right) \cdot d \mathbf{r}$ Where C is the curve $(4 \cos t, 4 \sin t, 5)$ for $0 \leq t \leq \pi$
Problem 3: $\quad \iint_{S} F \cdot \mathbf{d S}$ where $F(x, y, z)=\left(x^{2},-y, z\right)$ and S is the surface of the region $y^{2}+z^{2} \leq 9,0 \leq x \leq 2$

Problem 4: $\iint_{S} x z d S$ where S is the boundary of the region enclosed by the cylinder $y^{2}+z^{2}=$ 9 , and the planes $x=0$ and $x+y=5$

Problem 5: $\quad \iint_{S}(\nabla \times F) \cdot \mathbf{d S}$ where $F(x, y, z)=\left(2 y \tan (z), \cos (z), x e^{y}\right)$ and S is the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$, oriented upward.

Problem 6: $\quad \int_{C}\left(y z, 2 x z, e^{x y}\right) \cdot d \mathbf{r}$ Where C is the curve $(4 \cos t, 4 \sin t, 5)$ for $0 \leq t \leq 2 \pi$
Problem 7: $\iint_{S}\left(2 x+2 y+z^{2}\right) d S$ where S is the sphere of radius 1 centered at the origin.
Problem 8: $\quad \iint_{S}(\nabla \times F) \cdot \mathbf{d S}$ where $F(x, y, z)=\left(x^{3}, z \sin y, z x e^{y}\right)$ and S is the ellipsoid $16 x^{2}+9 y^{2}+z^{2}=9$.

