Discussion for midterm 2 Worksheet Answers Some past exam problems

Date: 11/3/2021

MATH 53 Multivariable Calculus

1. Find the maximum and minimum values of the function $(x+1)^{2}+y^{2}$ on the ellipse $x^{2}+y^{2} / 4=$ 1 , and say at what points these values occur.
2. Find the area of the region enclosed by the curve $x^{2}+x y+y^{2}=1$. (Hint: use the substitution $x=u+v \sqrt{3}, y=u-v \sqrt{3}$.)
3. Compute $\int_{C} \vec{F} \cdot d \vec{r}$, where C is the unit circle oriented counterclockwise, and \vec{F} is the vector field

$$
\vec{F}=\left(-y^{3}+\sin (\sin x), x^{3}+\sin (\sin y)\right) .
$$

4. Compute

$$
\int_{-2}^{2} \int_{y^{2}}^{4} y \sin \left(x^{2}\right) d x d y
$$

5. Calculate the volume of the region consisting of all points that are inside the sphere $x^{2}+y^{2}+$ $z^{2}=4$, below the cone $z=\sqrt{x^{2}+y^{2}}$, and above the cone $z=-\sqrt{x^{2}+y^{2}}$.

Solution:

1. Let $f(x, y)=(x+1)^{2}+y^{2}$ and $g(x, y)=x^{2}+y^{2} / 4$. Then our Lagrange multiplier equations $\nabla f=\lambda \nabla g$, together with our constraint equation, become

$$
\begin{aligned}
2(x+1) & =2 \lambda x \\
2 y & =\frac{\lambda}{2} y \\
x^{2}+\frac{y^{2}}{4} & =1 .
\end{aligned}
$$

So either $y=0$ or $\lambda=4$. If $y=0$, then $x= \pm 1$, and we have $f(1,0)=4$ and $f(-1,0)=0$. If $\lambda=4$, then we get $2(x+1)=8 x$, so $x=1 / 3$. Then $y= \pm \sqrt{32 / 9}= \pm 4 \sqrt{2} / 3$. We have $f(1 / 3, \pm 4 \sqrt{2} / 3)=32 / 9$. So the maximum of f is $32 / 9$, attained at $(1 / 3, \pm 4 \sqrt{2} / 3)$, and the minimum of f is 0 , attained at $(-1,0)$.
2. Applying this substitution gives the region enclosed by $3 u^{2}+3 v^{2}=1$, or equivalently $u^{2}+v^{2}=1 / 3$. The Jacobian of this transformation is $2 \sqrt{3}$. So our area is

$$
\iint_{x^{2}+x y+y^{2} \leq 1} d x d y=\iint_{u^{2}+v^{2} \leq 1 / 3} 2 \sqrt{3} d u d v=2 \sqrt{3} \cdot \pi \frac{1}{3}=\frac{2}{3} \pi \sqrt{3} .
$$

3. Write $\vec{F}=(P, Q)$, and let R be the inside of the circle. We have $P_{y}=-3 y^{2}$ and $Q_{x}=3 x^{2}$, so by Green's theorem, we have

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\iint_{D} 3 x^{2}+3 y^{2} d x d y \\
& =3 \int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cdot r d r d \theta \\
& =3 \int_{0}^{2 \pi} \frac{1}{4} d \theta=3 \cdot \frac{1}{4} \cdot 2 \pi=\frac{3}{2} \pi
\end{aligned}
$$

4. This is easiest to solve by rewriting the region as $0 \leq x \leq 4,-\sqrt{x} \leq y \leq \sqrt{x}$. The integral is then

$$
\int_{0}^{4} \int_{-\sqrt{x}}^{\sqrt{x}} y \sin \left(x^{2}\right) d y d x=\int_{0}^{4} \frac{1}{2}\left((\sqrt{x})^{2}-(\sqrt{x})^{2}\right) \sin \left(x^{2}\right) d x=\int_{0}^{4} 0 d x=0 .
$$

5. By sketching this out, you can see that it's the region given in polar coordinates by $0 \leq \rho \leq 2,0 \leq \theta \leq 2 \pi$, and $\pi / 4 \leq \phi \leq 3 \pi / 4$. So the volume is

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{2 \pi} \int_{\pi / 4}^{3 \pi / 4} \rho^{2} \sin \phi d \phi d \theta d \rho & =\int_{0}^{2} \rho^{2} d \rho \cdot \int_{0}^{2 \pi} d \theta \cdot \int_{\pi / 4}^{3 \pi / 4} \sin \phi d \phi \\
& =\left(\frac{1}{3} 2^{3}-\frac{1}{3} 0^{3}\right) \cdot 2 \pi \cdot\left(-\cos \frac{3 \pi}{4}+\cos \frac{\pi}{4}\right) \\
& =\frac{8}{3} \cdot 2 \pi \cdot \sqrt{2}=\frac{16}{3} \pi \sqrt{2}
\end{aligned}
$$

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

