Discussion 9 Worksheet Answers

Tangent planes (revisited) and optimization
Date: 9/22/2021

MATH 53 Multivariable Calculus

1 Tangent Plane

Find the equation of the tangent plane.
(a) 2(z —2)* + (y — 1)’ + (2 = 3)* = 10 at (3,3,5);

Solution: Let F(xz,y,2) =2(z —2)?+ (y — 1)2 + (2 — 3)2 then VF(z,y, 2) = (4(x —
2),2(y —1),2(2 — 3)) so VF(3,3,5) = (4,4,4), Hence, the tangent plane is 4(z — 3) +
Ay — 3) +4(z —5) = 0.

(b) xy?z3 =8 at (2,2,1);

Solution:  Let F(z,y,2z) = xy?z3. Then VF(x,y,2) = (y%23,2zy23,3xy%2%) so
VF(2,2,1) = (4,8,24). Hence, the tangent plane is 4(z —2) + 8(y — 2) +24(z — 1) = 0.

(c) x4+ y+z=e¢e"* at (0,0,1).

Solution: Let F(z,y,2) = x+y+ z — e™?. Then VF(z,y,z) = (1 — yze™* 1 —
xze™* 1 — zye™*) so VF(0,0,1) = (1,1,1). Hence, the tangent plane is (x —0) + (y —
0)+(z—1)=0.

(d) Show that the equation of the tangenet plane to the ellipsoid z2/a® + y?/b? + 22/c? = 1 at the
point (xg, Yo, 20) can be written as
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Solution: VF(zo, 0, 20) = (220/a?,2y0/b%,220/c?). Then the tangent plane is

2$0 2 220
?(l’ — xo) + 2 (y Yo) + —5 2 5 (2 —20) =0.

Rearranging, we obtain

2z 2y0 220 ?/0 2

Dividing by 2 gives the desired result.

(e) Show that the sum of the x—, y—, and z—intercepts of any tangent plane to the surface /z +

VY +/z = /cis a constant.
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Solution: Let (x0, Yo, 20) be a point on the surface. The equation of the tangent plane
is

1 1 1
2\/:70(x—x0)+27\/y70(y—y0)+27\/%

Rearranging, we obtain
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The intercepts are \/cxg, +/cyo, and /czg. The sum of the intercepts is /cxg + \/cyo +

\/czg = c.

(z —29) = 0.

Maxima and Minima

Find the local maximum and minimum values and saddle point(s) of the function.

(a)
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Suppose that the direction derivatives of f(z,y) are known at a given point in two nonparallel
directions given by unit vectors « and . Is it possible to find V f at this point? If so, how would

f(z,y) = 2%+ y* + 22y

Solution: We have f, = 2z + 2y, f, = 493 4+ 22, frw = Joy = 2, fyy = 12y2. Then
fz = 0 implies y = —x and substituting into f, yields 4y3 — 2y = 0. Either y = 0
or y = +1/4/2 so the critical points are (0,0), (1/v/2,—1/v2),(~1/v/2,1/v/2). Now
D(z,y) = 2(12y?%) — 22 = 24y* — 4.

D(0,0) = —4 < 0 so (0,0) is a saddle point. D(1/v2,—1/v/2) = D(—1/v2,1//2) =
12—-4 =8> 0 and f;; =2 > 0 so both points correspond to a local minima.

f(z,y) =zy +e™Y

Solution: We have f, =y —ye ™, f, = 2 — e, fo, = y?e™ %, fo, = 1 + (xy —
e~ f,, = x2e7%¥. Then f, = 0 implies y(1 — e ) = 0 so either y = 0 or z = 0.
If 2 = 0, then f, = 0 for all y so all points of the form (0,yo) are critical points. If
y =0, fy = 0 for all = values so any point of the form (z¢,0) is a critical point. We
have D(zp,0) =0 = D(0,yp) so the Second Derivative Test gives us no information.

If we let t = zy then f(z,y) = g(t) =t+et. Then ¢/(t) = 1—e~'. Then ¢'(t) = 0 only
for t =0 and ¢”(0) =1 > 0so g(0) = 1 is a local minimum. It is an absolute minimum
because ¢'(t) < 0 for t < 0 and ¢'(t) > 0 for ¢t > 0. Thus, f(z,y) = zy+e ™ > 1
for all (x,y) with equality iff z = 0 or y = 0. Hence, all the critical points we found
correspond to local (and absolute) minima.

Challenge

you do it?

Solution: Let @ = (a,b) and ¥ = (¢,d). Then Dyf = Vfoud = af, + bf,. Similarly
Dgf = cfy + dfy. Since @ and ¥ are not parallel, we can solve this system of linear
equations in the two unknowns f, and f,. In fact, Vf = ﬁ<dDﬁ f—=b0Dzf,aDzf —
cDg f).




4 True/False

(a) T F A point that makes Vf = 0 corresponds to a critical point.

Solution: TRUE. A critical point is obtained when f, = 0 and f, = 0 so Vf =
<fxvfy> = (0,0).

(b) T F 1If the second derivative test fails, it is impossible to say anything about the critical
point in regards to it being a maxima or minima.

| Solution: FALSE. See 3(b).

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.
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