Discussion 9 Worksheet Answers Tangent planes (revisited) and optimization

Date: 9/22/2021

MATH 53 Multivariable Calculus

1 Tangent Plane

Find the equation of the tangent plane.
(a) $2(x-2)^{2}+(y-1)^{2}+(z-3)^{2}=10$ at $(3,3,5)$;

Solution: Let $F(x, y, z)=2(x-2)^{2}+(y-1)^{2}+(z-3)^{2}$ then $\nabla F(x, y, z)=\langle 4(x-$ 2), $2(y-1), 2(z-3)\rangle$ so $\nabla F(3,3,5)=\langle 4,4,4\rangle$, Hence, the tangent plane is $4(x-3)+$ $4(y-3)+4(z-5)=0$.
(b) $x y^{2} z^{3}=8$ at $(2,2,1)$;

Solution: Let $F(x, y, z)=x y^{2} z^{3}$. Then $\nabla F(x, y, z)=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$ so $\nabla F(2,2,1)=\langle 4,8,24\rangle$. Hence, the tangent plane is $4(x-2)+8(y-2)+24(z-1)=0$.
(c) $x+y+z=e^{x y z}$ at $(0,0,1)$.

Solution: Let $F(x, y, z)=x+y+z-e^{x y z}$. Then $\nabla F(x, y, z)=\left\langle 1-y z e^{x y z}, 1-\right.$ $\left.x z e^{x y z}, 1-x y e^{x y z}\right\rangle$ so $\nabla F(0,0,1)=\langle 1,1,1\rangle$. Hence, the tangent plane is $(x-0)+(y-$ $0)+(z-1)=0$.
(d) Show that the equation of the tangenet plane to the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as

$$
\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}+\frac{z z_{0}}{c^{2}}=1 .
$$

Solution: $\quad \nabla F\left(x_{0}, y_{0}, z_{0}\right)=\left\langle 2 x_{0} / a^{2}, 2 y_{0} / b^{2}, 2 z_{0} / c^{2}\right\rangle$. Then the tangent plane is

$$
\frac{2 x_{0}}{a^{2}}\left(x-x_{0}\right)+\frac{2 y_{0}}{b^{2}}\left(y-y_{0}\right)+\frac{2 z_{0}}{c^{2}}\left(z-z_{0}\right)=0 .
$$

Rearranging, we obtain

$$
\frac{2 x_{0}}{a^{2}} x+\frac{2 y_{0}}{b^{2}} y+\frac{2 z_{0}}{c^{2}} z=2\left(\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}+\frac{z_{0}^{2}}{c^{2}}\right)=2 .
$$

Dividing by 2 gives the desired result.
(e) Show that the sum of the $x-, y-$, and z-intercepts of any tangent plane to the surface $\sqrt{x}+$ $\sqrt{y}+\sqrt{z}=\sqrt{c}$ is a constant.

Solution: Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a point on the surface. The equation of the tangent plane is

$$
\frac{1}{2 \sqrt{x_{0}}}\left(x-x_{0}\right)+\frac{1}{2 \sqrt{y_{0}}}\left(y-y_{0}\right)+\frac{1}{2 \sqrt{z_{0}}}\left(z-z_{0}\right)=0 .
$$

Rearranging, we obtain

$$
\frac{x}{2 \sqrt{x_{0}}}+\frac{y}{2 \sqrt{y_{0}}}+\frac{z}{2 \sqrt{z_{0}}}=\frac{\sqrt{x_{0}}+\sqrt{y_{0}}+\sqrt{z_{0}}}{2}=\frac{\sqrt{c}}{2} .
$$

The intercepts are $\sqrt{c x_{0}}, \sqrt{c y_{0}}$, and $\sqrt{c z_{0}}$. The sum of the intercepts is $\sqrt{c x_{0}}+\sqrt{c y_{0}}+$ $\sqrt{c z_{0}}=c$.

2 Maxima and Minima

Find the local maximum and minimum values and saddle point(s) of the function.
(a) $f(x, y)=x^{2}+y^{4}+2 x y$

Solution: We have $f_{x}=2 x+2 y, f_{y}=4 y^{3}+2 x, f_{x x}=f_{x y}=2, f_{y y}=12 y^{2}$. Then $f_{x}=0$ implies $y=-x$ and substituting into f_{y} yields $4 y^{3}-2 y=0$. Either $y=0$ or $y= \pm 1 / \sqrt{2}$ so the critical points are $(0,0),(1 / \sqrt{2},-1 / \sqrt{2}),(-1 / \sqrt{2}, 1 / \sqrt{2})$. Now $D(x, y)=2\left(12 y^{2}\right)-2^{2}=24 y^{2}-4$.
$D(0,0)=-4<0$ so $(0,0)$ is a saddle point. $D(1 / \sqrt{2},-1 / \sqrt{2})=D(-1 / \sqrt{2}, 1 / \sqrt{2})=$ $12-4=8>0$ and $f_{x x}=2>0$ so both points correspond to a local minima.
(b) $f(x, y)=x y+e^{-x y}$

Solution: We have $f_{x}=y-y e^{-x y}, f_{y}=x-x e^{-x y}, f_{x x}=y^{2} e^{-x y}, f_{x y}=1+(x y-$ 1) $e^{-x y}, f_{y y}=x^{2} e^{-x y}$. Then $f_{x}=0$ implies $y\left(1-e^{-x y}\right)=0$ so either $y=0$ or $x=0$. If $x=0$, then $f_{y}=0$ for all y so all points of the form $\left(0, y_{0}\right)$ are critical points. If $y=0, f_{y}=0$ for all x values so any point of the form $\left(x_{0}, 0\right)$ is a critical point. We have $D\left(x_{0}, 0\right)=0=D\left(0, y_{0}\right)$ so the Second Derivative Test gives us no information.
If we let $t=x y$ then $f(x, y)=g(t)=t+e^{-t}$. Then $g^{\prime}(t)=1-e^{-t}$. Then $g^{\prime}(t)=0$ only for $t=0$ and $g^{\prime \prime}(0)=1>0$ so $g(0)=1$ is a local minimum. It is an absolute minimum because $g^{\prime}(t)<0$ for $t<0$ and $g^{\prime}(t)>0$ for $t>0$. Thus, $f(x, y)=x y+e^{-x y} \geq 1$ for all (x, y) with equality iff $x=0$ or $y=0$. Hence, all the critical points we found correspond to local (and absolute) minima.

3 Challenge

Suppose that the direction derivatives of $f(x, y)$ are known at a given point in two nonparallel directions given by unit vectors \vec{u} and \vec{v}. Is it possible to find ∇f at this point? If so, how would you do it?

Solution: Let $\vec{u}=\langle a, b\rangle$ and $\vec{v}=\langle c, d\rangle$. Then $D_{\vec{u}} f=\nabla f \circ \vec{u}=a f_{x}+b f_{y}$. Similarly $D_{\vec{v}} f=c f_{x}+d f_{y}$. Since \vec{u} and \vec{v} are not parallel, we can solve this system of linear equations in the two unknowns f_{x} and f_{y}. In fact, $\nabla f=\frac{1}{a d-b c}\left\langle d D_{\vec{u}} f-b D_{\vec{v}} f, a D_{\vec{v}} f-\right.$ $\left.c D_{\vec{u}} f\right\rangle$.

4 True/False

(a) T F A point that makes $\nabla f=\overrightarrow{0}$ corresponds to a critical point.

Solution: TRUE. A critical point is obtained when $f_{x}=0$ and $f_{y}=0$ so $\nabla f=$ $\left\langle f_{x}, f_{y}\right\rangle=\langle 0,0\rangle$.
(b) T F If the second derivative test fails, it is impossible to say anything about the critical point in regards to it being a maxima or minima.

Solution: FALSE. See 3(b).

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

