Discussion 8 Worksheet Answers
 Gradients and directional derivatives

Date: 9/17/2021
MATH 53 Multivariable Calculus

1 Gradients

Compute the gradients of the following functions.
(a) $f(\theta, \phi)=\cos \theta \cos \phi$

Solution:

$$
\nabla f=(-\sin \theta \cos \phi,-\cos \theta \sin \phi)
$$

(b) $f(x, y)=\arctan (y / x)$

Solution:

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{-y}{x^{2}\left(1+y^{2} / x^{2}\right)} \\
\frac{\partial f}{\partial y} & =\frac{1}{x\left(1+y^{2} / x^{2}\right)} \\
\nabla f & =\frac{1}{x^{2}+y^{2}}(-y, x)
\end{aligned}
$$

(c) $f(t, x, y)=\frac{1}{\sqrt{4 \pi t}} \exp \left(-(x-y)^{2} / 4 t\right)$). (Express everything as multiples of $f(t, x, y)$.)

Solution:

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =-\frac{1}{2 \sqrt{4 \pi} t^{3 / 2}} \exp \left(-\frac{(x-y)^{2}}{4 t}\right)+\frac{1}{\sqrt{4 \pi t}} \frac{(x-y)^{2}}{4 t^{2}} \exp \left(-\frac{(x-y)^{2}}{4 t}\right) \\
& =f(t, x, y)\left(\frac{(x-y)^{2}-2 t}{4 t^{2}}\right) \\
\frac{\partial f}{\partial x} & =\frac{y-x}{2 t} f(t, x, y) \\
\frac{\partial f}{\partial y} & =\frac{x-y}{2 t} f(t, x, y) \\
\nabla f & =\frac{f(t, x, y)}{4 t^{2}}\left(\left((x-y)^{2}-2 t\right),-2 t(x-y), 2 t(x-y)\right)
\end{aligned}
$$

2 Directional Derivatives

1. Consider $f(x, y)=e^{-r^{4}}$ where $r=\sqrt{x^{2}+y^{2}}$. Compute its directional derivative at $(0,0)$ w.r.t. the unit vectors in (polar) directions $\theta=0, \pi / 4, \pi / 2$. What about any other angle?

Solution: The function is symmetric with respect to rotations around the origin, so all the directional derivatives will be equal. Therefore it is sufficient to compute the derivative for $\theta=0$, i.e. $\partial / \partial x$:

$$
\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} e^{-\left(x^{2}+y^{2}\right)^{2}}=-2\left(x^{2}+y^{2}\right) \cdot 2 x e^{-\left(x^{2}+y^{2}\right)^{2}}
$$

Plugging in $x=y=0$ we see that this is zero.

3 Rate of Change

Find the maximum rate of change of f at the given point and direction in which it occurs.
(a) $f(x, y)=4 y \sqrt{x}$ and $(4,1)$;

Solution: $\quad \nabla f(x, y)=\langle 2 y / \sqrt{x}, 4 \sqrt{x}\rangle$. Then $\nabla f(4,1)=\langle 1,8\rangle$ is the direction of maximum rate of change and the maximum rate is $|\nabla f(4,1)|=\sqrt{65}$.
(b) $f(x, y)=\sin (x y)$ at $(1,0)$;

Solution: $\quad \nabla f(x, y)=\langle y \cos (x y), x \cos (x y)\rangle$ so $\nabla f(1,0)=\langle 0,1\rangle$. The maximum rate of change is $|\nabla f(1,0)|=1$ in the direction $\langle 0,1\rangle$.
(c) $f(x, y, z)=x /(y+z)$ at $(8,1,3)$.

Solution: $\quad \nabla f(x, y, z)=\left\langle 1 /(y+z),-x /(y+z)^{2},-x /(y+z)^{2}\right\rangle$ so $\nabla f(8,1,3)=$ $\langle 1 / 4,-1 / 2,-1 / 2\rangle$.
(d) Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is $\langle 1,1\rangle$.
Solution: The direction of fastest change is $\nabla f(x, y)=\langle 2 x-2,2 y-4\rangle$ so we need to find all points (x, y) such that $\nabla f(x, y)=k\langle 1,1\rangle$. Then $2 x-2=k$ and $2 y-4=k$ so $2 x-2=2 y-4 \Rightarrow y=x+1$. Hence, the direction of fastest change is $\langle 1,1\rangle$ at all points on the line $y=x+1$.

4 True/False

(a) T F Partial derivatives are just a special case of directional derivatives.

Solution: TRUE. $\partial f / \partial x$ is just the directional derivative in direction $(1,0)$ and $\partial f / \partial y$ is the derivative in direction $(0,1)$.
(b) T F Consider $f(x, y)=(\cos x+(1+x) \tan y) e^{x^{2}-1+y}$. Then $\frac{d}{d t} f\left(t^{2}, t^{3}\right)=0$ at $t=0$.

Solution: TRUE. Writing $x(t)=t^{2}$ and $y(t)=t^{3}$ we see that $\frac{d x}{d t}=0$ and $\frac{d y}{d t}=0$ at $t=0$. Now we see from the chain rule that $\frac{d}{d t} f(x(t), y(t))=0$ at $t=0$.
(c) T F Suppose you compute the gradient of $v(s, T)=s / T$, where s has units of miles and T has units of hours. Then the magnitude of ∇v is well-defined.
Solution: FALSE. The first component of ∇v is $\partial v / \partial s$ and has units of inverse hours and the second component is $\partial v / \partial T$, which has units of miles per hour squared. Hence $(\partial v / \partial s)^{2}$ and $(\partial v / \sigma T)^{2}$ have different units and cannot be added.
(d) T F When $\vec{u} \perp \nabla f$ at a point, then $D_{\vec{u}} f=0$ at that point.

Solution: TRUE. This is because $D_{\vec{u}} f=\nabla f \circ \vec{u}=0$.
(e) T F If $\vec{u}=\langle a, b\rangle$ is a unit vector and f has continuous second partials, then $D_{\vec{u}}^{2} f(x, y)=$ $f_{x x} a^{2}+2 f_{x y} a b+f_{y y} b^{2}$ where $D_{\vec{u}}^{2} f=D_{\vec{u}}\left[D_{\vec{u}} f(x, y)\right]$.
Solution: TRUE. We have that $D_{\vec{u}}^{2} f=D_{\vec{u}}\left[D_{\vec{u}} f(x, y)\right]=D_{\vec{u}}\left[a f_{x}+b f_{y}\right]$. This simplifies to

$$
\left\langle a f_{x x}+b f_{x y}, a f_{x y}+b f_{y y}\right\rangle \circ\langle a, b\rangle=f_{x x} a^{2}+2 f_{x y} a b+f_{y y} b^{2} .
$$

Note we needed f to have continous second partials to invoke Clairaut's Theorem.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

