Discussion 7 Worksheet Answers

Date: 9/15/2021

MATH 53 Multivariable Calculus

1 Chain Rule

(a) Compute $\frac{d}{d t} f(x(t), y(t))$ for $f(x, y)=x y^{3}-x^{2} y, x(t)=t^{2}+1, y(t)=t^{2}-1$. You don't need to express the final result in terms of t.

$$
\begin{aligned}
& \text { Solution: } \\
& \frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\left(y^{3}-2 x y\right) \cdot 2 t+\left(3 x y^{2}-x^{2}\right) \cdot 2 t=2 t\left(y^{3}-2 x y+3 x y^{2}-x^{2}\right)
\end{aligned}
$$

(b) Compute $\frac{d}{d t} f(x(t), y(t))$ for $f(x, y)=\sin x \cos y, x(t)=\sqrt{t}, y(t)=1 / t$. Express the final result in terms of t.

Solution:

$$
\begin{aligned}
\frac{d f}{d t} & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=(\cos x \cos y)\left(\frac{1}{2} t^{-1 / 2}\right)-(\sin x \sin y)\left(-t^{-2}\right) \\
& =\frac{1}{2 \sqrt{t}} \cos \sqrt{t} \cos \frac{1}{t}+\frac{1}{t^{2}} \sin \sqrt{t} \sin \frac{1}{t}
\end{aligned}
$$

(c) Compute the partial derivatives of f with respect to x, y for $f(s, t)=s^{2}-t^{2}, s=\frac{x+y}{2}, t=$ $\frac{x-y}{2}$ using both the chain rule and by plugging in s and t.
Solution: Using the chain rule:

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\partial f}{\partial s} \frac{\partial s}{\partial x}+\frac{\partial f}{\partial t} \frac{\partial t}{\partial x} \\
& =2 s \cdot \frac{1}{2}-2 t \cdot \frac{1}{2}=s-t=y \\
\frac{\partial f}{\partial y} & =\frac{\partial f}{\partial s} \frac{\partial s}{\partial y}+\frac{\partial f}{\partial t} \frac{\partial t}{\partial y} \\
& =2 s \cdot \frac{1}{2}+2 t \cdot \frac{1}{2}=s+t=x
\end{aligned}
$$

Plugging in we see $f(s(x, y), t(x, y))=\frac{1}{4}\left((x+y)^{2}-(x-y)^{2}\right)=x y$ and easily obtain the same partial derivatives.
(d) Compute the partial derivatives of $f(x, y)=\left(\sqrt{x^{2}+y^{2}}-\frac{1}{\sqrt{x^{2}+y^{2}}}\right) e^{\frac{x^{2}+y^{2}}{2}}$ by identifying an appropriate expression $r(x, y)$ such that $f(r)$ is a simpler expression. You can assume $(x, y) \neq$ $(0,0)$. It's fine to have r in the final expression.

Solution: It is useful to introduce $r=\sqrt{x^{2}+y^{2}}$ such that $f(r)=(r+1 / r) e^{-r^{2} / 2}$. It's not hard to see that $f^{\prime}(r)=-\left(r^{2}+r^{-2}\right) e^{-r^{2} / 2}$ and $\frac{\partial r}{\partial x}=x / r$ and $\frac{\partial r}{\partial y}=y / r$. Using the chain rule we now get

$$
\begin{align*}
& f_{x}(x, y)=-\left(r+r^{-3}\right) e^{-r^{2} / 2} x \tag{1}\\
& f_{y}(x, y)=-\left(r+r^{-3}\right) e^{-r^{2} / 2} y \tag{2}
\end{align*}
$$

(e) Suppose z is given by $z=e^{s+2 t}$, where $s=x / y$ and $t=y / x$. Compute $\partial z / \partial x$ and $\partial z / \partial y$. Express the result in x, y and z.

Solution:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\frac{\partial z}{\partial s} \frac{\partial s}{\partial x}+\frac{\partial z}{\partial t} \frac{\partial t}{\partial x}=z / y-2 y z / x^{2} \\
& \frac{\partial z}{\partial y}=\frac{\partial z}{\partial s} \frac{\partial s}{\partial y}+\frac{\partial z}{\partial t} \frac{\partial t}{\partial y}=-x z / y^{2}+2 z / x
\end{aligned}
$$

2 Challenge

Consider the function

$$
f(x, y)= \begin{cases}\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that $f_{x y}(0,0)$ and $f_{y x}(0,0)$ but exist, but are unequal. Warning: Since the second partial derivatives are discontinuous at (0,0), you will not get the right answer by evaluating $f_{x y}(a, b)$ and $f_{y x}(a, b)$ and taking the limit for $(a, b) \rightarrow(0,0)$.

Solution:

We have to use the definition of partial derivatives to find the mixed derivatives, for example: $f_{x y}(0,0)=\lim _{y \rightarrow 0} \frac{f_{x}(0, y)-f_{x}(0,0)}{y}$
First of all,

$$
\frac{\partial f}{\partial x}=\frac{\left(x^{2}+y^{2}\right)\left(3 x^{2} y-y^{3}\right)-\left(x^{3} y-x y^{3}\right)(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}} .
$$

We substitute $x=0$ in the above to find $f_{x}(0, y)=-y$ when $y \neq 0$.
Also, $f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(x)}{x}=0$ since f is zero.
Hence, altogether, $f_{x y}(0,0)=\lim _{y \rightarrow 0} \frac{-y}{y}=-1$.
Working similarly (or arguing by symmetry, noting that the function is antisymmetric in x, y) for the other mixed derivative, we will find that the answer is +1 instead.

3 True/False

(a) T F Consider $f(x, y)=(\cos x+(1+x) \tan y) e^{x^{2}-1+y}$. Then $\frac{d}{d t} f\left(t^{2}, t^{3}\right)=0$ at $t=0$.

Solution: TRUE. Writing $x(t)=t^{2}$ and $y(t)=t^{3}$ we see that $\frac{d x}{d t}=0$ and $\frac{d y}{d t}=0$ at $t=0$. Now we see from the chain rule that $\frac{d}{d t} f(x(t), y(t))=0$ at $t=0$.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

