Discussion 6 Worksheet Answers Tangent Planes and Linear Approximations

Date: 9/13/2021

MATH 53 Multivariable Calculus

1 Tangent Planes

Find the tangent planes to the graphs of each of the following functions at an arbitrary point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.

1. $f(x, y)=x^{2}+2 x y+y^{2}$

Solution: We have $f_{x}=2 x+2 y$ and $f_{y}=2 x+2 y$, so plugging these into the tangent plane equation

$$
z-f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right),
$$

we get

$$
z-x_{0}^{2}-2 x_{0} y_{0}-y_{0}^{2}=\left(2 x_{0}+2 y_{0}\right)\left(x-x_{0}\right)+\left(2 x_{0}+2 y_{0}\right)\left(y-y_{0}\right) .
$$

2. $f(x, y)=e^{x y}$.

Solution: We have $f_{x}=y e^{x y}$ and $f_{y}=x e^{x y}$, so plugging this into the tangent plane equation (above), we get

$$
z-e^{x_{0} y_{0}}=y_{0} e^{x_{0} y_{0}}\left(x-x_{0}\right)+x_{0} e^{x_{0} y_{0}}\left(x-x_{0}\right) .
$$

3. $f(x, y)=\sin x$.

Solution: We have $f_{x}=\cos x$ and $f_{y}=0$, so the tangent plane equation is

$$
z-\sin x_{0}=\left(\cos x_{0}\right)\left(x-x_{0}\right) .
$$

2 More Tangent Planes

1. Find an equation for the tangent plane to the graph of $f(x, y)=\cos (x y)$ passing through the point ($\pi / 2,1,0$).

Solution: We have $f_{x}=-y \sin (x y)$ and $f_{y}=-x \sin (x y)$, so the tangent plane at a general point $\left(x_{0}, y_{0}\right)$ is given by

$$
z-\cos \left(x_{0} y_{0}\right)=-y_{0} \sin \left(x_{0} y_{0}\right)\left(x-x_{0}\right)-x_{0} \sin \left(x_{0} y_{0}\right)\left(y-y_{0}\right) .
$$

Plugging in our point $(\pi / 2,1,0)$, this becomes

$$
z=-1 \cdot\left(x-\frac{\pi}{2}\right)-\frac{\pi}{2} \cdot(y-1)
$$

or equivalently

$$
x+\frac{\pi}{2} y+z=\pi .
$$

2. Find a parametric equation for a line contained in the tangent plane you found in the previous problem. (Any line will suffice.)

Solution: Note that the point $(\pi / 2,1,0)$ lies on this plane, and the plane has normal vector $\langle 1, \pi / 2,1\rangle$. Any vector orthogonal to the normal vector will point along this plane. By inspection, we see that $\langle 1,0,-1\rangle \cdot\langle 1, \pi / 2,1\rangle=0$, so the vector $\langle 1,0,-1\rangle$ points along the plane. Thus $\langle 1,0,-1\rangle$ is the direction vector of a line pointing along this plane. Combining this with the point on the plane that we have already found, we see that the line

$$
\vec{r}(t)=\left\langle t+\frac{\pi}{2}, 1,-t\right\rangle
$$

is contained in the tangent plane. We could find other lines contained in the plane by making different choices of direction vector.

3 Linear Approximations

1. Find the best linear approximation to each of the following functions near the corresponding input values.
a) $f(x, y)=y^{2}-x$ near the input $(3,0)$.

Solution: We have $f_{x}(x, y)=-1$ and $f_{y}(x, y)=2 y$, so $f_{x}(3,0)=-1$ and $f_{y}(3,0)=0$. Our formula for the best linear approximation near $(3,0)$ is

$$
f(x, y) \approx f(3,0)+f_{x}(3,0) \cdot(x-3)+f_{y}(3,0) \cdot(y-0)
$$

so we see

$$
f(x, y) \approx-3-(x-3)=-x
$$

for (x, y) near $(3,0)$.
b) $g(x, y)=e^{x} \cos y$ near the input $(5, \pi / 2)$.

Solution: We have $g_{x}(x, y)=e^{x} \cos y$ and $g_{y}(x, y)=-e^{x} \sin y$, so $g_{x}(5, \pi / 2)=0$ and $g_{y}(5, \pi / 2)=-e^{5}$. We also compute $g(5, \pi / 2)=0$. Plugging these into our formula for the best linear approximation gives

$$
g(x, y) \approx-e^{5}\left(y-\frac{\pi}{2}\right) .
$$

c) $h(x, y, z)=x y z$ near the input $(3,0,2)$.

Solution: We have $h_{x}(x, y, z)=y z, h_{y}(x, y, z)=x z$, and $h_{z}(x, y, z)=x y$. Thus, at the input $(3,0,2)$, we have $h=0, h_{x}=0, h_{y}=6$, and $h_{z}=0$. Using a formula similar to that for the 2 -dimensional case, we see that the best linear approximation is

$$
h(x, y, z) \approx 6(y-0)=6 y .
$$

d) $p(x, y, z, w)=x^{2}+y^{2}+z^{2}+w^{2}$ near the input $(0,1,0,-1)$.

Solution: Even though this is a function of four variables, our old methods still work! We just have to add a few more terms to our sums to account for the extra variables. At the input $(0,1,0,-1)$, we have $p=2, p_{x}=0, p_{y}=2, p_{z}=0$, and $p_{w}=-2$. Thus the best linear approximation is given by

$$
p(x, y, z, w) \approx 2+2(y-1)-2(w+1)=-2+2 y-2 w .
$$

2. Consider a differentiable function $f(x, y)$ with values given by the following table.

	$x=1.0$	$x=1.2$
$y=0.0$	5.2	5.4
$y=0.2$	6.0	6.2

a) Find the best linear approximation to $f(x, y)$ near the input value $(1.0,0.0)$.

Solution: We approximate

$$
\frac{\partial f}{\partial x}(1.0,0.0) \approx \frac{f(1.2,0.0)-f(1.0,0.0)}{0.2}=\frac{5.4-5.2}{0.2}=1
$$

and

$$
\frac{\partial f}{\partial y}(1.0,0.0) \approx \frac{f(1.0,0.2)-f(1.0,0.0)}{0.2}=\frac{6.0-5.2}{0.2}=4 .
$$

Furthermore, we have $f(1.0,0.0)=5.2$. So our best linear approximation is given by

$$
\begin{aligned}
f(x, y) & \approx f(1.0,0.0)+\frac{\partial f}{\partial x}(1.0,0.0)(x-1.0)+\frac{\partial f}{\partial y}(1.0,0.0)(y-0.0) \\
& \approx 5.2+x-1.0+4 y \\
& =4.2+x+4 y
\end{aligned}
$$

b) Use this linear approximation to compute approximate values for $f(1.0,0.1), f(1.1,0.0)$ and $f(1.1,0.1)$.

Solution: We just plug in the given values into our result from the first part. For example, we have

$$
f(1.0,0.1) \approx 4.2+1.0+4 \cdot 0.1=5.6
$$

Similarly, we see $f(1.1,0.0) \approx 5.3$ and $f(1.1,0.0) \approx 5.7$.

4 Implicit differentiation

1. Find $\partial z / \partial x, \partial z / \partial y$ and $\partial x / \partial y$ when x, y and z satisfy the relation $x^{2}+y^{2}+z^{2}=3 x y z$.

Solution: We can write the equation as $F(x, y, z)=x^{2}+y^{2}+z^{2}-3 x y z=0$. We compute

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=2 x-3 y z \\
& \frac{\partial F}{\partial y}=2 y-3 x z \\
& \frac{\partial F}{\partial z}=2 z-3 x y
\end{aligned}
$$

Using the formulas $\frac{\partial x}{\partial y}=-\frac{\partial F / \partial y}{\partial F / \partial x}$ etc.

$$
\begin{aligned}
& \frac{\partial x}{\partial y}=-\frac{2 y-3 x z}{2 x-3 y z} \\
& \frac{\partial y}{\partial z}=-\frac{2 z-3 x y}{2 y-3 x z} \\
& \frac{\partial z}{\partial x}=-\frac{2 x-3 y z}{2 z-3 x y}
\end{aligned}
$$

2. (Challenge) Suppose that x, y, z are related by an equation $F(x, y, z)=0$ (this is the setup for implicit differentiation). Show that

$$
\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=-1
$$

Solution: From the definition $\frac{\partial x}{\partial y}=-\frac{\partial F / \partial y}{\partial F / \partial x}$ and analogous for other variables. So we immediately see

$$
\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=\left(-\frac{\partial F / \partial y}{\partial F / \partial x}\right)\left(-\frac{\partial F / \partial z}{\partial F / \partial y}\right)\left(-\frac{\partial F / \partial x}{\partial F / \partial z}\right)=-1
$$

5 Challenge

1. Let S be a sphere centered at the origin in \mathbb{R}^{3}, and consider any point P on S. Show that the vector $\overrightarrow{O P}$ is orthogonal to the tangent plane to S at P.

Solution: Let R be the radius of the sphere, and write $P=\left(x_{0}, y_{0}, z_{0}\right)$. Assume for the moment that P lies on the top half of the sphere (i.e. $z_{0}>0$). Note that the top half of the sphere is the same as the graph of the function $f(x, y)=\sqrt{R^{2}-x^{2}-y^{2}}$. We can compute

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right)=-\frac{x_{0}}{\sqrt{R^{2}-x_{0}^{2}-y_{0}^{2}}}
$$

and

$$
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}, z_{0}\right)=-\frac{y_{0}}{\sqrt{R^{2}-x_{0}^{2}-y_{0}^{2}}},
$$

so that the tangent plane to the graph at P (which is the same as the tangent plane to S at P) is given by

$$
z-z_{0}=-\frac{x_{0}}{\sqrt{R^{2}-x_{0}^{2}-y_{0}^{2}}}\left(x-x_{0}\right)-\frac{y_{0}}{\sqrt{R^{2}-x_{0}^{2}-y_{0}^{2}}}\left(y-y_{0}\right) .
$$

We can rewrite this as

$$
x_{0}\left(x-x_{0}\right)+y_{0}\left(y-y_{0}\right)+z_{0}\left(z-z_{0}\right)=0,
$$

where we use the fact that $z_{0}=\sqrt{R^{2}-x_{0}^{2}-y_{0}^{2}}$ to simplify things. From this we see that $\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ is a normal vector to the tangent plane. But $\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\overrightarrow{O P}$, so this is exactly what we needed to show.
A similar argument (with $-\sqrt{R^{2}-x^{2}-y^{2}}$ in place of $\sqrt{R^{2}-x^{2}-y^{2}}$) works when P is on the bottom half of the sphere (i.e. $z_{0}<0$). When $z=0$, we have to use a "sideways graph" of some function like $f(y, z)=\sqrt{R^{2}-y^{2}-z^{2}}$, but other than that, pretty much everything is the same.

6 True/False

Supply convincing reasoning for your answer.
(a) T F The vector $\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle$ is orthogonal to the tangent plane of the graph of $f(x, y)$ through the point $\left(x_{0}, y_{0}, z_{0}\right)$.
Solution: TRUE. This tangent plane is given by the equation

$$
z-f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right),
$$

and rewriting this equation as

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-f\left(x_{0}, y_{0}\right)\right)=0,
$$

we see that a normal vector to this plane is given by $\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle$.
(b) T F Any tangent plane to a graph must meet that graph in exactly one point.

Solution: FALSE. The tangent plane could meet the graph in many other points. For example, the tangent plane to the graph of the constant function $f(x, y)=1$ is the same as the graph itself, so meets the graph in infinitely many points.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

