
Discussion 6 Worksheet Answers
Tangent Planes and Linear Approximations

Date: 9/13/2021

MATH 53 Multivariable Calculus

1 Tangent Planes

Find the tangent planes to the graphs of each of the following functions at an arbitrary point
(x0, y0, f(x0, y0)).

1. f(x, y) = x2 + 2xy + y2

Solution: We have fx = 2x+ 2y and fy = 2x+ 2y, so plugging these into the tangent
plane equation

z − f(x0, y0) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0),

we get

z − x20 − 2x0y0 − y20 = (2x0 + 2y0)(x− x0) + (2x0 + 2y0)(y − y0).

2. f(x, y) = exy.

Solution: We have fx = yexy and fy = xexy, so plugging this into the tangent plane
equation (above), we get

z − ex0y0 = y0e
x0y0(x− x0) + x0e

x0y0(x− x0).

3. f(x, y) = sinx.

Solution: We have fx = cosx and fy = 0, so the tangent plane equation is

z − sinx0 = (cosx0)(x− x0).

2 More Tangent Planes

1. Find an equation for the tangent plane to the graph of f(x, y) = cos(xy) passing through the
point (π/2, 1, 0).
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Solution: We have fx = −y sin(xy) and fy = −x sin(xy), so the tangent plane at a
general point (x0, y0) is given by

z − cos(x0y0) = −y0 sin(x0y0)(x− x0)− x0 sin(x0y0)(y − y0).

Plugging in our point (π/2, 1, 0), this becomes

z = −1 ·
(
x− π

2

)
− π

2
· (y − 1),

or equivalently

x+
π

2
y + z = π.

2. Find a parametric equation for a line contained in the tangent plane you found in the previous
problem. (Any line will suffice.)

Solution: Note that the point (π/2, 1, 0) lies on this plane, and the plane has normal
vector 〈1, π/2, 1〉. Any vector orthogonal to the normal vector will point along this
plane. By inspection, we see that 〈1, 0,−1〉 · 〈1, π/2, 1〉 = 0, so the vector 〈1, 0,−1〉
points along the plane. Thus 〈1, 0,−1〉 is the direction vector of a line pointing along
this plane. Combining this with the point on the plane that we have already found, we
see that the line

~r(t) =
〈
t+

π

2
, 1,−t

〉
is contained in the tangent plane. We could find other lines contained in the plane by
making different choices of direction vector.

3 Linear Approximations

1. Find the best linear approximation to each of the following functions near the corresponding
input values.

a) f(x, y) = y2 − x near the input (3, 0).

Solution: We have fx(x, y) = −1 and fy(x, y) = 2y, so fx(3, 0) = −1 and fy(3, 0) = 0.
Our formula for the best linear approximation near (3, 0) is

f(x, y) ≈ f(3, 0) + fx(3, 0) · (x− 3) + fy(3, 0) · (y − 0),

so we see
f(x, y) ≈ −3− (x− 3) = −x

for (x, y) near (3, 0).

b) g(x, y) = ex cos y near the input (5, π/2).

Solution: We have gx(x, y) = ex cos y and gy(x, y) = −ex sin y, so gx(5, π/2) = 0 and
gy(5, π/2) = −e5. We also compute g(5, π/2) = 0. Plugging these into our formula for
the best linear approximation gives

g(x, y) ≈ −e5
(
y − π

2

)
.
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c) h(x, y, z) = xyz near the input (3, 0, 2).

Solution: We have hx(x, y, z) = yz, hy(x, y, z) = xz, and hz(x, y, z) = xy. Thus, at
the input (3, 0, 2), we have h = 0, hx = 0, hy = 6, and hz = 0. Using a formula similar
to that for the 2-dimensional case, we see that the best linear approximation is

h(x, y, z) ≈ 6(y − 0) = 6y.

d) p(x, y, z, w) = x2 + y2 + z2 + w2 near the input (0, 1, 0,−1).

Solution: Even though this is a function of four variables, our old methods still work!
We just have to add a few more terms to our sums to account for the extra variables.
At the input (0, 1, 0,−1), we have p = 2, px = 0, py = 2, pz = 0, and pw = −2. Thus
the best linear approximation is given by

p(x, y, z, w) ≈ 2 + 2(y − 1)− 2(w + 1) = −2 + 2y − 2w.

2. Consider a differentiable function f(x, y) with values given by the following table.

x = 1.0 x = 1.2

y = 0.0 5.2 5.4

y = 0.2 6.0 6.2

a) Find the best linear approximation to f(x, y) near the input value (1.0, 0.0).

Solution: We approximate

∂f

∂x
(1.0, 0.0) ≈ f(1.2, 0.0)− f(1.0, 0.0)

0.2
=

5.4− 5.2

0.2
= 1

and
∂f

∂y
(1.0, 0.0) ≈ f(1.0, 0.2)− f(1.0, 0.0)

0.2
=

6.0− 5.2

0.2
= 4.

Furthermore, we have f(1.0, 0.0) = 5.2. So our best linear approximation is given by

f(x, y) ≈ f(1.0, 0.0) +
∂f

∂x
(1.0, 0.0)(x− 1.0) +

∂f

∂y
(1.0, 0.0)(y − 0.0)

≈ 5.2 + x− 1.0 + 4y

= 4.2 + x+ 4y.

b) Use this linear approximation to compute approximate values for f(1.0, 0.1), f(1.1, 0.0)
and f(1.1, 0.1).

Solution: We just plug in the given values into our result from the first part. For
example, we have

f(1.0, 0.1) ≈ 4.2 + 1.0 + 4 · 0.1 = 5.6.

Similarly, we see f(1.1, 0.0) ≈ 5.3 and f(1.1, 0.0) ≈ 5.7.
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4 Implicit differentiation

1. Find ∂z/∂x, ∂z/∂y and ∂x/∂y when x, y and z satisfy the relation x2 + y2 + z2 = 3xyz.

Solution: We can write the equation as F (x, y, z) = x2 + y2 + z2 − 3xyz = 0. We
compute

∂F

∂x
= 2x− 3yz

∂F

∂y
= 2y − 3xz

∂F

∂z
= 2z − 3xy

Using the formulas
∂x

∂y
= −∂F/∂y

∂F/∂x
etc.

∂x

∂y
= −2y − 3xz

2x− 3yz

∂y

∂z
= −2z − 3xy

2y − 3xz

∂z

∂x
= −2x− 3yz

2z − 3xy

2. (Challenge) Suppose that x, y, z are related by an equation F (x, y, z) = 0 (this is the setup
for implicit differentiation). Show that

∂x

∂y

∂y

∂z

∂z

∂x
= −1

Solution: From the definition
∂x

∂y
= −∂F/∂y

∂F/∂x
and analogous for other variables. So

we immediately see

∂x

∂y

∂y

∂z

∂z

∂x
=

(
−∂F/∂y
∂F/∂x

)(
−∂F/∂z
∂F/∂y

)(
−∂F/∂x
∂F/∂z

)
= −1

5 Challenge

1. Let S be a sphere centered at the origin in R3, and consider any point P on S. Show that

the vector
−−→
OP is orthogonal to the tangent plane to S at P .
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Solution: Let R be the radius of the sphere, and write P = (x0, y0, z0). Assume for
the moment that P lies on the top half of the sphere (i.e. z0 > 0). Note that the top
half of the sphere is the same as the graph of the function f(x, y) =

√
R2 − x2 − y2.

We can compute
∂f

∂x
(x0, y0, z0) = − x0√

R2 − x20 − y20
and

∂f

∂y
(x0, y0, z0) = − y0√

R2 − x20 − y20
,

so that the tangent plane to the graph at P (which is the same as the tangent plane to
S at P ) is given by

z − z0 = − x0√
R2 − x20 − y20

(x− x0)−
y0√

R2 − x20 − y20
(y − y0).

We can rewrite this as

x0(x− x0) + y0(y − y0) + z0(z − z0) = 0,

where we use the fact that z0 =
√
R2 − x20 − y20 to simplify things. From this we see

that 〈x0, y0, z0〉 is a normal vector to the tangent plane. But 〈x0, y0, z0〉 =
−−→
OP , so this

is exactly what we needed to show.
A similar argument (with −

√
R2 − x2 − y2 in place of

√
R2 − x2 − y2) works when

P is on the bottom half of the sphere (i.e. z0 < 0). When z = 0, we have to use a
“sideways graph” of some function like f(y, z) =

√
R2 − y2 − z2, but other than that,

pretty much everything is the same.

6 True/False

Supply convincing reasoning for your answer.

(a) T F The vector 〈fx(x0, y0), fy(x0, y0),−1〉 is orthogonal to the tangent plane of the graph of
f(x, y) through the point (x0, y0, z0).

Solution: TRUE. This tangent plane is given by the equation

z − f(x0, y0) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0),

and rewriting this equation as

fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)− (z − f(x0, y0)) = 0,

we see that a normal vector to this plane is given by 〈fx(x0, y0), fy(x0, y0),−1〉.

(b) T F Any tangent plane to a graph must meet that graph in exactly one point.

Solution: FALSE. The tangent plane could meet the graph in many other points.
For example, the tangent plane to the graph of the constant function f(x, y) = 1 is the
same as the graph itself, so meets the graph in infinitely many points.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.
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