Discussion 5 Worksheet Answers Vector-valued functions and partial derivatives

Date: 9/10/2021
MATH 53 Multivariable Calculus

1 Integrals of Vector Functions

1. Evaluate $\int_{1}^{2}\left\langle\frac{\ln (t)}{t}, e^{-t}\right\rangle d t$.

Solution: In the first component, $\int_{1}^{2} \frac{\ln (t)}{t} d t=\int_{0}^{\ln (2)} u d u=\frac{1}{2} \ln ^{2}(2)$ (with the substitution $u=\ln (t)$.
In the second component, $\int_{1}^{2} e^{-t} d t=e^{-1}-e^{-2}$.
So, altogether, we get $\left\langle\frac{1}{2} \ln ^{2}(2), \frac{1}{e}-\frac{1}{e^{2}}\right\rangle$.
2. Suppose that $\overrightarrow{r^{\prime \prime}}(t)=\langle 6 t, \sin (t)\rangle$ and it is known that $\overrightarrow{r^{\prime}}(0)=\langle 1,-1\rangle$ and $\vec{r}(0)=\langle 0,1\rangle$. Find a formula for $\vec{r}(t)$.

Solution:

We integrate: $\overrightarrow{r^{\prime}}(t)=\int_{0}^{t} \overrightarrow{r^{\prime \prime}}(s) d s+\overrightarrow{r^{\prime}}(0)=\int_{0}^{t}\langle 6 t, \sin (t)\rangle d t+\langle 1,-1\rangle=\left\langle 3 t^{2}+1,-\cos (t)\right\rangle$, and by the same process, $\vec{r}(t)=\left\langle t^{3}+t,-\sin (t)+1\right\rangle$.

2 Vector Function Basics

(a) Find the limit

$$
\lim _{t \rightarrow 0}\left\langle e^{-3 t}, \frac{t^{2}}{\sin ^{2} t}, \cos 2 t\right\rangle .
$$

Solution: By applying L'Hospital's rule twice, we obtain $\langle 1,1,1\rangle$.
(b) Find the limit

$$
\lim _{t \rightarrow \infty}\left\langle\frac{1+t^{2}}{1-t^{2}}, \arctan t, \frac{1-e^{-2 t}}{t}\right\rangle .
$$

Solution: By applying L'Hospital's rule twice, we obtain $\left\langle-1, \frac{\pi}{2}, 0\right\rangle$.
(c) Find a vector equation and parametric equations for the line segment that joins $(2,0,0)$ to $(6,2,-2)$.

Solution: We have $\mathbf{r}(t)=(1-t)\langle 2,0,0\rangle+t\langle 6,2,-2\rangle, 0 \leq t \leq 1$ which simplifies to $\mathbf{r}(t)=\langle 2+4 t, 2 t,-2 t\rangle, 0 \leq t \leq 1$. The parametric equations are $x=4+2 t, y=2 t, z=$ $-2 t, 0 \leq t \leq 1$.
(d) Find a vector equation and parametric equations for the line segment that joins $(1,5,6)$ to $(3,1,8)$.
Solution: We have $\mathbf{r}(t)=(1-t)\langle 1,5,6\rangle+t\langle 3,1,8\rangle, 0 \leq t \leq 1$ which simplifies to $\mathbf{r}(t)=\langle 1+2 t, 5-4 t, 6+2 t\rangle, 0 \leq t \leq 1$. The parametric equations are $x=1+2 t, y=$ $5-4 t, z=6+2 t, 0 \leq t \leq 1$.
(e) Find a vector function that represents the curve of the intersection of the cone $z=\sqrt{x^{2}+y^{2}}$ and $z=1+y$.

Solution: We equate the two equations to obtain $\sqrt{x^{2}+y^{2}}=1+y$ so $x^{2}+y^{2}=$ $1+2 y+y^{2}$. Simplifying we get $y=\frac{1}{2}\left(x^{2}-1\right)$. We can form parametric equations for the curve of intersection C by setting $x=t$. Then $y=\frac{1}{2}\left(t^{2}-1\right)$ and $z=1+y=\frac{1}{2}\left(t^{2}+1\right)$. Hence, the vector function representing C is $\mathbf{r}(t)=\left\langle t, \frac{1}{2}\left(t^{2}-1\right), \frac{1}{2}\left(t^{2}+1\right)\right\rangle$.
(f) Suppose the trajectories of two particles are given by

$$
r_{1}(t)=\left\langle t^{2}, 7 t-12, t^{2}\right\rangle \quad r_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle
$$

for $t \geq 0$. Do the particles collide?
Solution: For the particles to collide, we need $r_{1}(t)=r_{2}(t)$. Equating components gives us $t^{2}=4 t-3,7 t-12=t^{2}, t^{2}=5 t-6$. From the first equation, $t^{2}-4 t+3=0$ has solutions at $t=1,3$. We see that $t=1$ does not satisfy the other two equations but $t=3$ does so the particles collide at $t=3$ at the point $(9,9,9)$.

3 Challenge: Vector Orthogonality

(a) Show that if $|\mathbf{r}(t)|=c$ (a constant), then $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.

Solution:

(a) Since $\mathbf{r}(t) \cdot \mathbf{r}(t)=|\mathbf{r}(t)|^{2}=c^{2}$. Then taking derivatives yields,

$$
\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)+\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0
$$

so $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)=0$ so $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$.

4 Graphs of Multivariable Functions

Sketch the graph of the function.
(a) $f(x, y)=y$;

Solution: The graph of f has equation $z=y$ which can be though of as a line in the $y z$-plane and then extending that line across the x-axis giving us a plane.

(b) $f(x, y)=10-4 x-5 y$;
Solution: This is $z=10-4 x-5 y$ so it is a plane with intercepts
$(2.5,0,0),(0,2,0),(0,0,10)$.
(c) $f(x, y)=\sin x$;

Solution: The graph of f has equation $z=\sin x$ so we first think of this as the regular sin graph and then extend it along the entire y-axis.

(d) $f(x, y)=\sqrt{4-4 x^{2}-y^{2}}$.

Solution: This is $z=\sqrt{4-4 x^{2}-y^{2}}$ so this is the top half of the ellipsoid $x^{2}+\frac{y^{2}}{4}+$ $\frac{z^{2}}{4}=1$.

5 Evaluating Partial Derivatives

1. Compute the following partial derivatives:
$\frac{\partial}{\partial x}\left(x^{2} e^{x y}\right)$.
Solution: Applying the product rule, the answer is $2 x e^{x y}+x^{2} y e^{x y}$. $\frac{\partial^{10}}{\partial x^{10}}\left(\frac{\partial^{13}}{\partial y^{13}}\left(x^{10} y^{13}\right)\right)$.

Solution: Since $\frac{d^{n}}{d t^{n}} n^{n}=n!$ in general, in our case, we get $10!13!$.

$$
\frac{\partial}{\partial w}(\sin (w \sin (w v))) .
$$

| Solution:
 $(\sin (w v)+w v \cos (w v))$
 $\cos (w \sin (w v))$. | the chain rule, the answer | is |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}\left(\frac{e^{x y \sin (y)-x}}{y \sin (y)-1}\right)\right)$.Hint: Clairaut's Theorem simplifies the calculation.

Solution: Differentiating with respect to x first gives

$$
\frac{y \sin (y)-1}{y \sin (y)-1} e^{x y \sin (y)-x}=e^{x y \sin (y)-x} .
$$

Then differentiating with respect to y gives $(x \sin (y)+x y \cos (y))) e^{x y \sin (y)-x}$.
2. In the equation $P V=T$, any one of the three variables can be solved for as a function of the other two. Show that $\left(\frac{\partial P}{\partial T}\right)\left(\frac{\partial T}{\partial V}\right)\left(\frac{\partial V}{\partial P}\right)=-1$.
Solution: This product is $\left(\frac{1}{V}\right)(P)\left(\frac{-T}{P^{2}}\right)=\frac{-T}{P V}=-1$.

6 More on Partial Derivatives

1. Suppose that the values of a function $f(x, y)$ at four points are given by the following table:

	$\mathrm{x}=1.3$	$\mathrm{x}=1.4$
$\mathrm{y}=0.4$	2.3	2.5
$\mathrm{y}=0.6$	1.5	1.4

Estimate $f_{x}(1.3,0.4)$ and $f_{x}(1.3,0.6)$. Then estimate $f_{x y}(1.3,0.4)$.
Solution: First of all $f_{x}(1.3,0.4) \approx \frac{f(1.4,0.4)-f(1.3,0.4)}{(0.1)}=\frac{0.2}{0.1}=2$. Also, $f_{x}(1.3,0.6) \approx$ $\frac{f(1.4,0.6)-f(1.3,0.6)}{0.1}=\frac{-0.1}{0.1}=-1$.
Next, $f_{x y}(1.3,0.4) \approx \frac{f_{x}(1.3,0.6)-f_{x}(1.3,0.4)}{0.2}=\frac{-3}{0.2}=-15$.
2. Consider a smooth function $f(x, y)$ of two variables. List all possible third order partial derivatives of f. Your list should not contain two equivalent expressions. Here "smooth" means that all relevant derivatives of f exist and are continuous.
Solution: By Clairaut's theorem, only the total number of derivatives with respect to x and y are relevant, since order does not matter. The possibilities are $f_{x x x}, f_{x x y}, f_{x y y}, f_{y y y}$.
3. Suppose that the partial derivatives of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ exist. If f_{x} is the zero function, show that f is a function of y only. More precisely, there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(y)$ for all real numbers x and y.
Hint: For fixed y, consider the function $h(t)=f(t, y)$ and differentiate.
Solution: As suggested, consider the function $h(t)=f(t, y)$, Then $h^{\prime}(t)=f_{x}(t, y)=$ 0 , so h is a constant function. This means (for example) $h(x)=h(0)$ for all x, so $f(x, y)=f(0, y)$ is a function of y only.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

