Discussion 5 Worksheet Answers

Vector-valued functions and partial derivatives
Date: 9/10/2021

MATH 53 Multivariable Calculus

1 Integrals of Vector Functions

1. Evaluate ff(@,e_ﬂdt.

In(t) dt — 1n(2) udu

: In?(2) (with the substi-

Solution: In the first component, fl 3
tution u = In(¢).

In the second component, ff etdt =e 1 —e”

So, altogether, we get (% In?(2), % — e%>

2

2. Suppose that r(t) = (6t,sin(t)) and it is known that 7/(0) = (1, —1) and 7(0) = (0,1). Find
a formula for 7(t).

Solution:
We integrate: r/( fo (s)ds 417 (0) = f0t<6t, sin(t))dt + (1, —1) = (3t +1, — cos(t)),
and by the same process r( ) {3 +t,—sin(t) + 1).

2 Vector Function Basics

(a) Find the limit
12
lim e_St,ﬁ,COSQt .
t—0 sin“ ¢

’ Solution: By applying L’Hospital’s rule twice , we obtain (1,1, 1).

.1+t 1—e 2
thm — 5, arctant, ——— ).
—oo \ 1 —1t¢ t

Solution: By applying L’Hospital’s rule twice , we obtain (-1, 7,0).

(b) Find the limit

(c) Find a vector equation and parametric equations for the line segment that joins (2,0,0) to
(6,2, —2).

Solution: We have r(t) = (1 —¢)(2,0,0) + ¢(6,2,—2),0 < ¢ < 1 which simplifies to
r(t) = (2 +4¢,2t,—2t),0 <t < 1. The parametric equations are x =4 + 2t,y = 2t,z =
—2t,0<t<1.

(d) Find a vector equation and parametric equations for the line segment that joins (1,5,6) to
(3,1,8).

Solution: We have r(t) = (1 —¢)(1,5,6) + ¢(3,1,8),0 < t < 1 which simplifies to
r(t) = (1+2t,5—4t,6 + 2t),0 < t < 1. The parametric equations are x = 1 + 2t,y =
5—4t,z=6+2t0<t<1.




(e) Find a vector function that represents the curve of the intersection of the cone z = /22 + 32
and z =1+ y.

Solution: We equate the two equations to obtain \/z2 + 42 = 1 +y so 22 + y? =
142y +y?. Simplifying we get y = %(x2 —1). We can form parametric equations for the
curve of intersection C by setting  =t. Then y = 1(t*— 1) and z = 14y = 1(* +1).
Hence, the vector function representing C is r(t) = (¢, 1(#* — 1), 1(#* + 1)).

(f) Suppose the trajectories of two particles are given by
ri(t) = (2,7t —12,t%)  ro(t) = (4t — 3,1, 5t — 6)

for ¢t > 0. Do the particles collide?

Solution: For the particles to collide, we need ri(t) = ry(t). Equating components
gives us t? = 4t — 3,7t — 12 = t?,t> = 5t — 6. From the first equation, t> — 4t +3 = 0
has solutions at ¢t = 1,3. We see that ¢ = 1 does not satisfy the other two equations
but ¢ = 3 does so the particles collide at ¢t = 3 at the point (9,9,9).

3 Challenge: Vector Orthogonality

(a) Show that if |r(¢)| = ¢ (a constant), then r/(¢) is orthogonal to r(t) for all ¢.

Solution:
(a) Since r(t) - r(t) = |r(t)|> = ¢®. Then taking derivatives yields,
r'(t) - r(t) +r(t)-r'(t) =0

sor'(t) -r(t) =0 so r/(t) is orthogonal to r(t).

4 Graphs of Multivariable Functions

Sketch the graph of the function.

(a) flz,y) =y;
Solution: The graph of f has equation z = y which can be though of as a line in the
yz-plane and then extending that line across the z-axis giving us a plane.




(b) f(z,y) =10 — 4z — 5y;

Solution: This is z = 10 — 4z — by so it is a plane with intercepts
(2.5,0,0),(0,2,0),(0,0,10).
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(¢) flz,y) = sinz;

Solution: The graph of f has equation z = sin x so we first think of this as the regular
sin graph and then extend it along the entire y-axis.

(d) flz,y) = V442> —y?



Solution: This is z = 1/4 — 422 — 42 so this is the top half of the ellipsoid 22 + % +

2
z

5 Evaluating Partial Derivatives

1. Compute the following partial derivatives:
%(m%my).

‘ Solution: Applying the product rule, the answer is 2ze™¥ 4 x2ye™V.
10 13
o (s (9))

Solution: Since %t” = n! in general, in our case, we get 10!13!.

%(sin(w sin(wv))).

Solution: Following the chain rule, the answer is
(sin(wv) + wv cos(ww)) cos(w sin(ww)).

% (a% (%)) Hint: Clairaut’s Theorem simplifies the calculation.

Solution: Differentiating with respect to = first gives

ysin() =1 oysin)—z _ goysin)—
ysin(y) — 1 .

Then differentiating with respect to y gives (zsin(y) + zy cos(y))) e*¥sin) -z,

2. In the equation PV =T, any one of the three variables can be solved for as a function of the

other two. Show that (g—;) (g—%';) (g—g) =—1.

Solution: This product is (%) (P) (}—Z) = ;—5 = —1.

6 More on Partial Derivatives

1. Suppose that the values of a function f(z,y) at four points are given by the following table:



x=1.3 | x=1.4
y=0.4 2.3 2.5
y=0.6 1.5 1.4

Estimate f;(1.3,0.4) and f;(1.3,0.6). Then estimate f;,(1.3,0.4).

Solution: First of all f,(1.3,0.4) ~v LEA0D=JA304) _ 02 _ 9 Also £,(1.3,0.6) ~

(0.1) 1
f(140.6)=f(1306) _ —01 _ _4
o y 0'1(120 6);f (1.3,0.4) 3
Next, fzy(1.3,0.4) = o (1.3,0. pJelsnd) = =3 = 15,

2. Consider a smooth function f(z,y) of two variables. List all possible third order partial
derivatives of f. Your list should not contain two equivalent expressions. Here “smooth”
means that all relevant derivatives of f exist and are continuous.

Solution: By Clairaut’s theorem, only the total number of derivatives with re-
spect to x and y are relevant, since order does not matter. The possibilities are

f;wc:pa fzxya f:tyya fyyy~

3. Suppose that the partial derivatives of a function f : R? — R exist. If f, is the zero function,
show that f is a function of y only. More precisely, there exists a function g : R — R such
that f(z,y) = g(y) for all real numbers x and y.

Hint: For fixed y, consider the function h(t) = f(¢,y) and differentiate.

Solution: As suggested, consider the function h(t) = f(¢,y), Then h'(t) = f.(t,y) =
0, so h is a constant function. This means (for example) h(xz) = h(0) for all z, so
f(z,y) = f(0,y) is a function of y only.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.
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