
Discussion 5 Worksheet Answers
Vector-valued functions and partial derivatives

Date: 9/10/2021

MATH 53 Multivariable Calculus

1 Integrals of Vector Functions

1. Evaluate
∫ 2
1 〈

ln(t)
t , e−t〉dt.

Solution: In the first component,
∫ 2
1

ln(t)
t dt =

∫ ln(2)
0 udu = 1

2 ln2(2) (with the substi-
tution u = ln(t).
In the second component,

∫ 2
1 e−tdt = e−1 − e−2.

So, altogether, we get 〈12 ln2(2), 1e −
1
e2
〉.

2. Suppose that ~r′′(t) = 〈6t, sin(t)〉 and it is known that ~r′(0) = 〈1,−1〉 and ~r(0) = 〈0, 1〉. Find
a formula for ~r(t).

Solution:
We integrate: ~r′(t) =

∫ t
0
~r′′(s)ds+ ~r′(0) =

∫ t
0 〈6t, sin(t)〉dt+ 〈1,−1〉 = 〈3t2 + 1,− cos(t)〉,

and by the same process, ~r(t) = 〈t3 + t,− sin(t) + 1〉.

2 Vector Function Basics

(a) Find the limit

lim
t→0

〈
e−3t,

t2

sin2 t
, cos 2t

〉
.

Solution: By applying L’Hospital’s rule twice , we obtain 〈1, 1, 1〉.

(b) Find the limit

lim
t→∞

〈
1 + t2

1− t2
, arctan t,

1− e−2t

t

〉
.

Solution: By applying L’Hospital’s rule twice , we obtain 〈−1, π2 , 0〉.

(c) Find a vector equation and parametric equations for the line segment that joins (2, 0, 0) to
(6, 2,−2).

Solution: We have r(t) = (1 − t)〈2, 0, 0〉 + t〈6, 2,−2〉, 0 ≤ t ≤ 1 which simplifies to
r(t) = 〈2 + 4t, 2t,−2t〉, 0 ≤ t ≤ 1. The parametric equations are x = 4 + 2t, y = 2t, z =
−2t, 0 ≤ t ≤ 1.

(d) Find a vector equation and parametric equations for the line segment that joins (1, 5, 6) to
(3, 1, 8).

Solution: We have r(t) = (1 − t)〈1, 5, 6〉 + t〈3, 1, 8〉, 0 ≤ t ≤ 1 which simplifies to
r(t) = 〈1 + 2t, 5− 4t, 6 + 2t〉, 0 ≤ t ≤ 1. The parametric equations are x = 1 + 2t, y =
5− 4t, z = 6 + 2t, 0 ≤ t ≤ 1.
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(e) Find a vector function that represents the curve of the intersection of the cone z =
√
x2 + y2

and z = 1 + y.

Solution: We equate the two equations to obtain
√

x2 + y2 = 1 + y so x2 + y2 =
1+2y+y2. Simplifying we get y = 1

2(x2−1). We can form parametric equations for the
curve of intersection C by setting x = t. Then y = 1

2(t2− 1) and z = 1 + y = 1
2(t2 + 1).

Hence, the vector function representing C is r(t) = 〈t, 12(t2 − 1), 12(t2 + 1)〉.

(f) Suppose the trajectories of two particles are given by

r1(t) = 〈t2, 7t− 12, t2〉 r2(t) = 〈4t− 3, t2, 5t− 6〉

for t ≥ 0. Do the particles collide?

Solution: For the particles to collide, we need r1(t) = r2(t). Equating components
gives us t2 = 4t − 3, 7t − 12 = t2, t2 = 5t − 6. From the first equation, t2 − 4t + 3 = 0
has solutions at t = 1, 3. We see that t = 1 does not satisfy the other two equations
but t = 3 does so the particles collide at t = 3 at the point (9, 9, 9).

3 Challenge: Vector Orthogonality

(a) Show that if |r(t)| = c (a constant), then r′(t) is orthogonal to r(t) for all t.

Solution:

(a) Since r(t) · r(t) = |r(t)|2 = c2. Then taking derivatives yields,

r′(t) · r(t) + r(t) · r′(t) = 0

so r′(t) · r(t) = 0 so r′(t) is orthogonal to r(t).

4 Graphs of Multivariable Functions

Sketch the graph of the function.

(a) f(x, y) = y;

Solution: The graph of f has equation z = y which can be though of as a line in the
yz-plane and then extending that line across the x-axis giving us a plane.
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(b) f(x, y) = 10− 4x− 5y;

Solution: This is z = 10 − 4x − 5y so it is a plane with intercepts
(2.5, 0, 0), (0, 2, 0), (0, 0, 10).

(c) f(x, y) = sinx;

Solution: The graph of f has equation z = sinx so we first think of this as the regular
sin graph and then extend it along the entire y-axis.

(d) f(x, y) =
√

4− 4x2 − y2.
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Solution: This is z =
√

4− 4x2 − y2 so this is the top half of the ellipsoid x2 + y2

4 +
z2

4 = 1.

5 Evaluating Partial Derivatives

1. Compute the following partial derivatives:

∂
∂x(x2exy).

Solution: Applying the product rule, the answer is 2xexy + x2yexy.

∂10

∂x10

(
∂13

∂y13

(
x10y13

))
.

Solution: Since dn

dtn t
n = n! in general, in our case, we get 10!13!.

∂
∂w (sin(w sin(wv))).

Solution: Following the chain rule, the answer is
(sin(wv) + wv cos(wv)) cos(w sin(wv)).

∂
∂x

(
∂
∂y

(
exy sin(y)−x

y sin(y)−1

))
.Hint: Clairaut’s Theorem simplifies the calculation.

Solution: Differentiating with respect to x first gives

y sin(y)− 1

y sin(y)− 1
exy sin(y)−x = exy sin(y)−x.

Then differentiating with respect to y gives (x sin(y) + xy cos(y))) exy sin(y)−x.

2. In the equation PV = T , any one of the three variables can be solved for as a function of the
other two. Show that

(
∂P
∂T

) (
∂T
∂V

) (
∂V
∂P

)
= −1.

Solution: This product is
(
1
V

)
(P )

(−T
P 2

)
= −T

PV = −1.

6 More on Partial Derivatives

1. Suppose that the values of a function f(x, y) at four points are given by the following table:
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x=1.3 x=1.4

y=0.4 2.3 2.5

y=0.6 1.5 1.4

Estimate fx(1.3, 0.4) and fx(1.3, 0.6). Then estimate fxy(1.3, 0.4).

Solution: First of all fx(1.3, 0.4) ≈ f(1.4,0.4)−f(1.3,0.4)
(0.1) = 0.2

0.1 = 2. Also, fx(1.3, 0.6) ≈
f(1.4,0.6)−f(1.3,0.6)

0.1 = −0.1
0.1 = −1.

Next, fxy(1.3, 0.4) ≈ fx(1.3,0.6)−fx(1.3,0.4)
0.2 = −3

0.2 = −15.

2. Consider a smooth function f(x, y) of two variables. List all possible third order partial
derivatives of f . Your list should not contain two equivalent expressions. Here “smooth”
means that all relevant derivatives of f exist and are continuous.

Solution: By Clairaut’s theorem, only the total number of derivatives with re-
spect to x and y are relevant, since order does not matter. The possibilities are
fxxx, fxxy, fxyy, fyyy.

3. Suppose that the partial derivatives of a function f : R2 → R exist. If fx is the zero function,
show that f is a function of y only. More precisely, there exists a function g : R → R such
that f(x, y) = g(y) for all real numbers x and y.

Hint: For fixed y, consider the function h(t) = f(t, y) and differentiate.

Solution: As suggested, consider the function h(t) = f(t, y), Then h′(t) = fx(t, y) =
0, so h is a constant function. This means (for example) h(x) = h(0) for all x, so
f(x, y) = f(0, y) is a function of y only.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.
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