Discussion 4 Worksheet Answers Vectors

Date: 9/3/2021

MATH 53 Multivariable Calculus

1 Dot Products

1. If \vec{u} and \vec{v} are unit vectors in \mathbb{R}^{3} and $u \circ v=-1$, what is the angle between \vec{u} and \vec{v} ?

Solution: From the formula $\vec{u} \circ \vec{v}=|\vec{u}| \cdot|\vec{v}| \cos \theta$, it follows that $\cos \theta=-1$, so $\theta=\pi$. This may also be seen by showing directly that $|\vec{u}+\vec{v}|^{2}=0$, so $\vec{u}=-\vec{v}$.
2. Find three nonzero vectors in \mathbb{R}^{3} that are perpendicular to $\langle 1,3,2\rangle$.

Solution: A nonzero vector $\langle x, y, z\rangle$ will work if and only if $x+3 y+2 z=0$. Specifically $\langle-1,1,-1\rangle$ and $\langle 2,0,-1\rangle$, and $\langle 3,-1,0\rangle$ all work (alternatively, once one solution is found, it may be scaled to find others).
3. Let P be a vertex on a cube. Let Q be an adjacent vertex and let R be the vertex opposite to P. Using dot products, find the angle between the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.
Solution: Without loss of generality, take the cubic to lie in the first octant, with edges along the positive coordinate axes, and have edges of length 1 , so that $P=(0,0,0)$ and $Q=(1,0,0)$. Then $R=(1,1,1)$ and $\overrightarrow{P Q}=\langle 1,0,0\rangle$. Similarly $\overrightarrow{P R}=\langle 1,1,1\rangle$, so $\overrightarrow{P Q} \circ \overrightarrow{P R}=1=|\overrightarrow{P Q}| \cdot|\overrightarrow{P R}| \cos (\theta)=\sqrt{3}$, so $\theta=\arccos (1 / \sqrt{3})$
4. If \vec{u} and \vec{v} are unit vectors in \mathbb{R}^{3}, show that the vectors $\vec{u}+\vec{v}$ and $\vec{v}-\vec{v}$ are perpendicular.

Solution: We have $(\vec{u}+\vec{v}) \circ(\vec{u}-\vec{v})=|\vec{u}|^{2}-|\vec{v}|^{2}=1-1=0$.
5. Derive the polarization identity: if \vec{u} and \vec{v} are vectors in \mathbb{R}^{3}, then $\vec{u} \circ \vec{v}=\frac{1}{4}\left(|\vec{u}+\vec{v}|^{2}-|\vec{u}-\vec{v}|^{2}\right)$. Hint: it is simplest not to work straight from the definition of the dot product (although this will work too).
Solution: This follows from writing $|\vec{u}+\vec{v}|^{2}=(\vec{u}+\vec{v}) \circ(\vec{u}+\vec{v})$ (and similarly for the other term) and expanding.

2 Challenge: Parallelogram Law

Consider a parallelogram with side lengths a and b, and diagonals of lengths c and d. Show that $2 a^{2}+2 b^{2}=c^{2}+d^{2}$. Hint: use vector geometry and dot products.

Solution: Let P, Q, R, S be the vertices of the parallelogram, listed in cyclic order so that $a=|\overrightarrow{P Q}|$, etc. Then $\overrightarrow{P Q}+\overrightarrow{Q R}=\overrightarrow{P R}$. Taking length squared of both sides gives

$$
|\overrightarrow{P R}|^{2}=|\overrightarrow{P Q}|^{2}+|\overrightarrow{Q R}|^{2}+2 \overrightarrow{P Q} \circ \overrightarrow{Q R}
$$

Similarly,

$$
|\overrightarrow{R S}|^{2}=|\overrightarrow{P Q}|^{2}+|\overrightarrow{Q R}|^{2}-2 \overrightarrow{P Q} \circ \overrightarrow{Q R}
$$

Then add to get the desired result.

3 Vector and Scalar Projections

1. For each of the following pairs of vectors, find the vector projection of \vec{v} onto \vec{w} and the scalar projection of \vec{v} onto \vec{w}.
a) $\vec{v}=\langle 2,4\rangle, \vec{w}=\langle 3,1\rangle$.

Solution: The vector projection is

$$
\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|^{2}} \vec{w}=\frac{2 \cdot 3+4 \cdot 1}{3^{2}+1^{2}}\langle 3,1\rangle=\frac{10}{10}\langle 3,1\rangle=\langle 3,1\rangle,
$$

and the scalar projection is

$$
\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|}=\frac{2 \cdot 3+4 \cdot 1}{\sqrt{3^{2}+1^{2}}}=\frac{10}{\sqrt{10}}=\sqrt{10} .
$$

b) $\vec{v}=\langle 5,-1\rangle, \vec{w}=\langle 2,9\rangle$.

Solution: The vector projection is

$$
\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|^{2}} \vec{w}=\frac{5 \cdot 2-1 \cdot 9}{2^{2}+9^{2}}\langle 2,9\rangle=\frac{1}{85}\langle 2,9\rangle=\left\langle\frac{2}{85}, \frac{9}{85}\right\rangle,
$$

and the scalar projection is

$$
\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|}=\frac{5 \cdot 2-1 \cdot 9}{\sqrt{2^{2}+9^{2}}}=\frac{2}{\sqrt{85}} .
$$

c) $\vec{v}=\langle-6,3,2\rangle, \vec{w}=\langle 1,-5,3\rangle$.

Solution: The vector projection is

$$
\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|^{2}} \vec{w}=\frac{-6 \cdot 1-3 \cdot 5+2 \cdot 3}{1^{2}+5^{2}+3^{2}}\langle 1,-5,3\rangle=-\frac{3}{7}\langle 1,-5,3\rangle=\left\langle-\frac{3}{7}, \frac{15}{7}, \frac{9}{7}\right\rangle,
$$

and the scalar projection is

$$
\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|}=\frac{-6 \cdot 1-3 \cdot 5+2 \cdot 3}{\sqrt{1^{2}+5^{2}+3^{2}}}=-3 \sqrt{\frac{5}{7}} .
$$

2. Find formulas for the vector and scalar projections of a vector \vec{v} onto \vec{w} involving the cosine of the angle θ between \vec{v} and \vec{w}.

Solution: Recall that we can write the dot product using

$$
\vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos \theta
$$

Substituting this into our formulas for vector and scalar projections, we see that the vector projection is

$$
\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|^{2}} \vec{w}=\frac{|\vec{v}||\vec{w}| \cos \theta}{|\vec{w}|^{2}} \vec{w}=\frac{|\vec{v}|}{|\vec{w}|} \cos \theta \vec{w}
$$

and the scalar projection is

$$
\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|}=\frac{|\vec{v}||\vec{w}| \cos \theta}{|\vec{w}|}=|\vec{v}| \cos \theta .
$$

Both of these formulas can also be derived from thinking hard enough about the geometry of the situation.

4 Cross Product Computations

Find the cross products $\vec{v} \times \vec{w}$ of the following pairs of vectors.

1. $\vec{v}=\langle 2,3,1\rangle, \vec{w}=\langle-1,2,3\rangle$.

Solution: We use the determinant formula:

$$
\begin{aligned}
\vec{v} \times \vec{w} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & 1 \\
-1 & 2 & 3
\end{array}\right| \\
& =\left|\begin{array}{ll}
3 & 1 \\
2 & 3
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
2 & 1 \\
-1 & 3
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
2 & 3 \\
-1 & 2
\end{array}\right| \vec{k} \\
& =\left(3^{2}-1 \cdot 2\right) \vec{i}-(2 \cdot 3-1 \cdot(-1)) \vec{j}+(2 \cdot 2-3 \cdot(-1)) \vec{k} \\
& =7 \vec{i}-8 \vec{j}+7 \vec{k} .
\end{aligned}
$$

2. $\vec{v}=6 \vec{i}-4 \vec{j}-3 \vec{j}, \vec{w}=4 \vec{i}+\vec{j}$.

Solution: We use the determinant formula:

$$
\begin{aligned}
\vec{v} \times \vec{w} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
6 & -4 & -3 \\
4 & 1 & 0
\end{array}\right| \\
& =\left|\begin{array}{cc}
-4 & -3 \\
1 & 0
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
6 & -3 \\
4 & 0
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
6 & -4 \\
4 & 1
\end{array}\right| \vec{k} \\
& =3 \vec{i}-12 \vec{j}+22 \vec{k} .
\end{aligned}
$$

3. \vec{v} pointing a distance 5 units in the positive x-direction, \vec{w} a unit vector lying in the first quadrant of the $x y$-plane and making an angle of $\pi / 4$ with the x-axis.

Solution: The right-hand rule tells us that the cross product will point in the positive z direction. To compute its magnitude, we use the formula

$$
|\vec{v} \times \vec{w}|=|\vec{v}||\vec{w}| \sin \theta .
$$

Here $|\vec{v}|=5,|\vec{w}|=1$, and $\theta=\pi / 4$, so we obtain

$$
|\vec{v} \times \vec{w}|=5 \sin \frac{\pi}{4}=\frac{5 \sqrt{2}}{2},
$$

and thus

$$
\vec{v} \times \vec{w}=\frac{5 \sqrt{2}}{2} \vec{k} .
$$

5 Cross Product Concepts and Applications

1. Given vectors \vec{v} and \vec{w}, find an identity which relates the four quantities $|\vec{v}|,|\vec{w}|,|\vec{v} \times \vec{w}|$, and $|\vec{v} \cdot \vec{w}|$. (Hint: Consider any relevant trigonometric identities.)
Solution: If θ is the angle between the vectors, we can write

$$
|\vec{v} \times \vec{w}|=|\vec{v}||\vec{w}| \sin \theta
$$

and

$$
|\vec{v} \cdot \vec{w}|=|\vec{v}||\vec{w}| \cos \theta .
$$

Since $\cos ^{2} \theta+\sin ^{2} \theta=1$, we can square and add the above equations to get

$$
|\vec{v} \times \vec{w}|^{2}+|\vec{v} \cdot \vec{w}|^{2}=|\vec{v}|^{2}|\vec{w}|^{2} \sin ^{2} \theta+|\vec{v}|^{2}|\vec{w}|^{2} \cos ^{2} \theta=|\vec{v}|^{2}|\vec{w}|^{2} .
$$

Thus our identity is

$$
|\vec{v} \times \vec{w}|^{2}+|\vec{v} \cdot \vec{w}|^{2}=|\vec{v}|^{2}|\vec{w}|^{2} .
$$

2. Let \vec{u} and \vec{v} be nonzero vectors with $\vec{u} \times \vec{v}=\overrightarrow{0}$. What can you say about the relationship between \vec{u} and \vec{v} ?
Solution: Let θ be the angle between the two vectors; then we have

$$
0=|\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin \theta \text {. }
$$

This can only happen if $\sin \theta=0$, which implies that θ is an integer multiple of π. Thus we may conclude that \vec{u} and \vec{v} are collinear.
3. Find the area of the triangle with two sides given by the vectors $\vec{v}=\langle 1,2\rangle$ and $\vec{w}=\langle-3,4\rangle$.

Solution: We view this triangle as sitting within the $x y$-plane in \mathbb{R}^{3}. Then the quantity $|\vec{v} \times \vec{w}|$ gives the area of the parallelogram with two sides given by \vec{v} and \vec{w}. We compute

$$
\vec{v} \times \vec{w}=\langle 0,0,1 \cdot 4-2 \cdot(-3)\rangle=10 \vec{k},
$$

where we are justified in ignoring the \vec{i} and \vec{j} components because we know that $\vec{v} \times \vec{w}$ must be orthogonal to the $x y$-plane. So the area of this parallelogram is 10. The area of the triangle is half that of the parallelogram, so we see that the desired area is 5 .

6 Challenge: BAC-CAB

Prove the "BAC-CAB" / "double-crossing" rule:

$$
\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})
$$

(NOTE: Typically scalars such as $\vec{a} \cdot \vec{c}$ are written on the left in scalar multiplication. This formula is a rare exception and is written this way because "BAC-CAB" is easier to remember than "ACBABC.")

Solution: We can write

$$
\vec{b} \times \vec{c}=\left(b_{2} c_{3}-b_{3} c_{2}\right) \vec{i}+\left(b_{3} c_{1}-b_{1} c_{3}\right) \vec{j}+\left(b_{1} c_{2}-b_{2} c_{1}\right) \vec{k}
$$

so

$$
\begin{aligned}
\vec{a} \times(\vec{b} \times \vec{c})= & \left(a_{2}\left(b_{1} c_{2}-b_{2} c_{1}\right)-a_{3}\left(b_{3} c_{1}-b_{1} c_{3}\right)\right) \vec{i}+ \\
& \left(a_{3}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{1}\left(b_{1} c_{2}-b_{2} c_{1}\right)\right) \vec{j}+ \\
& \left(a_{1}\left(b_{3} c_{1}-b_{1} c_{3}\right)-a_{2}\left(b_{2} c_{3}-b_{3} c_{2}\right)\right) \vec{k} .
\end{aligned}
$$

Rearranging this gives

$$
\begin{aligned}
\vec{a} \times(\vec{b} \times \vec{c})= & \left(b_{1}\left(a_{2} c_{2}+a_{3} c_{3}\right)-c_{1}\left(a_{2} b_{2}+a_{3} b_{3}\right)\right) \vec{i}+ \\
& \left(b_{2}\left(a_{3} c_{3}+a_{1} c_{1}\right)-c_{2}\left(a_{3} b_{3}+a_{1} b_{1}\right)\right) \vec{j}+ \\
& \left(b_{3}\left(a_{1} c_{1}+a_{2} c_{2}\right)-c_{3}\left(a_{1} b_{1}+a_{2} b_{2}\right)\right) \vec{k},
\end{aligned}
$$

and adding / subtracting a copy of $a_{1} b_{1} c_{1}$ from the first component, $a_{2} b_{2} c_{2}$ from the second component, and $a_{3} b_{3} c_{3}$ from the last component gives

$$
\begin{aligned}
\vec{a} \times(\vec{b} \times \vec{c})= & \left(b_{1}\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right)-c_{1}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)\right) \vec{i}+ \\
& \left(b_{2}\left(a_{2} c_{2}+a_{3} c_{3}+a_{1} c_{1}\right)-c_{2}\left(a_{2} b_{2}+a_{3} b_{3}+a_{1} b_{1}\right)\right) \vec{j}+ \\
& \left(b_{3}\left(a_{3} c_{3}+a_{1} c_{1}+a_{2} c_{2}\right)-c_{3}\left(a_{3} b_{3}+a_{1} b_{1}+a_{2} b_{2}\right)\right) \vec{k}
\end{aligned}
$$

which can be written more succinctly as

$$
\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})
$$

7 True/False

Supply convincing reasoning for your answer.
(a) T F If you take a cross product of two vectors lying in the $x y$-plane, your result will point along the z-axis.
Solution: TRUE. The cross product produces a result that is orthogonal to both inputs, and the z-axis is the space of vectors orthogonal to the $x y$-plane.
(b) T F The cross product makes sense for vectors in any number of dimensions.

Solution: FALSE. The cross product only makes sense for vectors in \mathbb{R}^{3} (and technically \mathbb{R}^{7}, though people don't really use that much). The formula you use to define the cross product doesn't adapt well to other numbers of dimensions.
(c) T F The absolute value of the scalar projection of a vector \vec{v} onto another vector \vec{w} is equal to the norm of the vector projection of \vec{v} onto \vec{w}.
Solution: TRUE. The vector projection is given by

$$
\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|^{2}} \vec{w}
$$

and taking the norm of this gives

$$
\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|^{2}}|\vec{w}|=\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|}
$$

which is just the absolute value of the scalar projection.
(d) T F The cross product is associative: $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$.

Solution: FALSE. For example, we have

$$
(\vec{i} \times \vec{i}) \times \vec{j}=\overrightarrow{0} \times \vec{j}=\overrightarrow{0}
$$

but

$$
\vec{i} \times(\vec{i} \times \vec{j})=\vec{i} \times \vec{k}=-\vec{j}
$$

(e) T F The dot and cross products satisfy $\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{b}) \times \vec{c}$.

Solution: FALSE. The right-hand side of the purported equation is not even welldefined, as $\vec{a} \cdot \vec{b}$ is a scalar, and you cannot take the cross product of a scalar and a vector.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

