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MATH 53 Multivariable Calculus

1 Dot Products

1. If @ and ¥ are unit vectors in R? and wov = —1, what is the angle between @ and 7
Solution: From the formula %o ¥ = || - || cos 0, it follows that cos = —1, so 0 = .
This may also be seen by showing directly that |@ + #]? = 0, so @ = —4.

2. Find three nonzero vectors in R? that are perpendicular to (1,3,2).

Solution: A nonzero vector (z,y, z) will work if and only if z+3y+22z = 0. Specifically
(—=1,1,—1) and (2,0,—1), and (3,—1,0) all work (alternatively, once one solution is
found, it may be scaled to find others).

3. Let P be a vertex on a cube. Let () be an adjacent vertex and let R be the vertex opposite
to P. Using dot products, find the angle between the vectors ]@ and P—é

Solution: Without loss of generality, take the cubic to lie in the first octant, with
edges along the positive coordinate axes, and have edges of length 1, so that P = (0,0, 0)
and Q = (1,0,0). Then R = (1,1,1) and PQ = (1,0,0). Similarly PR = (1,1,1), so
]@ oPR=1= ]f@] . \ﬁ\ cos(f) = /3, so @ = arccos(1/+/3)

4. If @ and ¥ are unit vectors in R3, show that the vectors @ + ¢ and ¥ — ¢ are perpendicular.

Solution: We have (@ + ¥)o (@ — ) = |[a]?> — 7> =1—-1=0.

5. Derive the polarization identity: if @ and ¥ are vectors in R3, then @’ = 1 (|@ + 0> — i@ — 7]?).
Hint: it is simplest not to work straight from the definition of the dot product (although this
will work too).

Solution: This follows from writing |@ + #|? = (i + ¥) o (@ + ¥) (and similarly for the
other term) and expanding.

2 Challenge: Parallelogram Law

Consider a parallelogram with side lengths a and b, and diagonals of lengths ¢ and d. Show that
2a2 + 2b® = ¢® + d?. Hint: use vector geometry and dot products.

Solution: Let P,Q, R, S be the vertices of the parallelogram, listed in cyclic order so
that a = |]@\, etc. Then ]@ + Cﬁ = P—I)Z Taking length squared of both sides gives

PRI = |PQ® + |QRP> + 2PG o QF.
RS2 = |POP + |QR|> — 2PG o QE.

Then add to get the desired result.

Similarly,




3 Vector and Scalar Projections
1. For each of the following pairs of vectors, find the vector projection of ¥ onto @ and the scalar
projection of ¥ onto .
a) U= (2,4), W = (3,1).

Solution: The vector projection is

U-w 2-34+4-1 10
i= 3,1)=—(3,1) = (3,1
w|2w 32+12 <7> 10<’> <a >7

and the scalar projection is
v-w 2-3+4-1 10
A bk it V10,

@ VR Vi

b) ¥ =(5,—1), W = (2,9).
Solution: The vector projection is

U-w 5-2—-1-9 1 2 9
b= 2,0) = —(2,9) = { =, —
‘u‘)'|2w 22+92 < ) > < 9 > <85785>7

and the scalar projection is

¢) 7= (—6,3,2), @ = (1, -5,3).

Solution: The vector projection is

W, -6-1-3-5+2-3 3
b= 1,-5,3) = —2(1,-5,3) = ( =2, =2, 2
‘u—)‘| w 12+52+32 < ) ) > 7< Y ) > < 7? 777>7

and the scalar projection is

go@_ —6:-1-3.5+2.3 _ , [5

W~ V12+52+32 7

2. Find formulas for the vector and scalar projections of a vector ¥ onto @ involving the cosine

of the angle 6 between ¢ and .



Solution: Recall that we can write the dot product using
U - W = |U]|W] cos 6.

Substituting this into our formulas for vector and scalar projections, we see that the
vector projection is

v-d ,  |U||W]cosO _ |U 0
W= W = = cos 0w
| ] | ] |
and the scalar projection is
v-w |V cos®
] = 7] = |¥] cos 6.

Both of these formulas can also be derived from thinking hard enough about the geom-
etry of the situation.

4 Cross Product Computations

Find the cross products ¢ x @ of the following pairs of vectors.

1. 7=(2,3,1), @ = (—1,2,3).

Solution: We use the determinant formula:

i ik
ixw=|2 3 1
2 3

-1
By ]2 e |2 3
T2 3" =1 3l -1 2
=(32-1-2)7—(2:3-1-(-1))j+(2-2-3-(~1)k
= 71— 8 + Tk
2. T=06i—4) — 3], ¥ =4i+].
Solution: We use the determinant formula:
i ik
IXwWw=16 —4 -3
4 1 0
I P (s | E (A
1 0" |14 o Tl4 1
= 37 — 127 + 22k.

3. ¥ pointing a distance 5 units in the positive z-direction, w a unit vector lying in the first
quadrant of the zy-plane and making an angle of 7w/4 with the x-axis.



Solution: The right-hand rule tells us that the cross product will point in the positive
z direction. To compute its magnitude, we use the formula

|7 % | = |5 sin 0.

Here |0] =5, || = 1, and 6 = w/4, so we obtain

and thus

5 Cross Product Concepts and Applications

1. Given vectors ¥ and o, find an identity which relates the four quantities |9|, |@|, | x @], and
|- @|. (Hint: Consider any relevant trigonometric identities.)

Solution: If # is the angle between the vectors, we can write
|U x | = |U]|wW] sin O

and
|- W] = |0]|wW] cos 6.

Since cos? # + sin? # = 1, we can square and add the above equations to get

15 x @2 + |5 @)% = |20 sin® 0 + |5)2]5)? cos? 0 = |22

|7 x B|% + |7 - b|* = |0)*|0)?.

2. Let @ and ¥ be nonzero vectors with @ x ¥ = 0. What can you say about the relationship
between « and U7
Solution: Let 6 be the angle between the two vectors; then we have

0= |i x 7] = |@]|7] sin 6.

This can only happen if sin § = 0, which implies that 8 is an integer multiple of 7. Thus
we may conclude that ¢ and ¢ are collinear.

3. Find the area of the triangle with two sides given by the vectors ¥ = (1,2) and @ = (—3,4).

Solution: ~We view this triangle as sitting within the zy-plane in R3. Then the
quantity | x @| gives the area of the parallelogram with two sides given by ¥ and .

We compute B
Uvxw=1(0,0,1-4—2-(-3)) = 10k,

where we are justified in ignoring the i and ; components because we know that ¢ x @
must be orthogonal to the zy-plane. So the area of this parallelogram is 10. The area
of the triangle is half that of the parallelogram, so we see that the desired area is 5.




6 Challenge: BAC-CAB
Prove the “BAC-CAB” / “double-crossing” rule:
ax(bxd) =0bG & —aa-b).

(NOTE: Typically scalars such as a- ¢ are written on the left in scalar multiplication. This formula
is a rare exception and is written this way because “BAC-CAB” is easier to remember than “ACB-
ABC.”)

Solution: We can write

BX c= (b263 — b302);+ (6361 — blcg)j-l- (6102 - bQCl)E,

SO

-

a x (5 X 5) :(ag(blcg — bgcl) — ag(bgcl — b103))7H‘
(as(bacs — byea) — a1 (biea — bacr))j+
(a1 (1)361 - b103) — ag(b203 — b302))]z.
Rearranging this gives
a X ([; X E) :(bl (CLQCQ + agcg) —C (a2b2 + a3b3));—i—
(ba(ages + arcr) — calagbs + arby))j+
(bs(arc1 + agea) — cz(arby + azb))k,

and adding / subtracting a copy of a1bjcy from the first component, asbacs from the
second component, and agbscs from the last component gives

a x (5 X 5) :(b1 (a1c1 + agco + agcg) —C (a1b1 + agby + agbg));—l-

(ba(azea + azes + arer) — ca(agby + agbs + arby))j+
(bg(a363 +aicy + CLQCQ) — 63((1353 +ai1b; + (Isz))/Z,

which can be written more succinctly as

S

ax (bxd) =

@ &) —a@-b).

7 True/False

Supply convincing reasoning for your answer.

(a) T F If you take a cross product of two vectors lying in the zy-plane, your result will point
along the z-axis.

Solution: = TRUE. The cross product produces a result that is orthogonal to both
inputs, and the z-axis is the space of vectors orthogonal to the xy-plane.

(b) T F The cross product makes sense for vectors in any number of dimensions.



(¢ T F

Solution: FALSE. The cross product only makes sense for vectors in R? (and tech-
nically R”, though people don’t really use that much). The formula you use to define
the cross product doesn’t adapt well to other numbers of dimensions.

The absolute value of the scalar projection of a vector ¢ onto another vector w is equal
to the norm of the vector projection of ¥ onto 0.

Solution: = TRUE. The vector projection is given by

ORE VN
@
and taking the norm of this gives
vow, L, U-wW
|| = i

]

which is just the absolute value of the scalar projection.

—

The cross product is associative: @ X (b x &) = (@ x b) x €.

Solution: FALSE. For example, we have

(ixi)yxj=0xj=0,

but

The dot and cross products satisfy @ - (b x &) = (@ - b) X €.

Solution: FALSE. The right-hand side of the purported equation is not even well-
defined, as @ - b is a scalar, and you cannot take the cross product of a scalar and a
vector.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.
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