
Discussion 4 Worksheet Answers
Vectors

Date: 9/3/2021

MATH 53 Multivariable Calculus

1 Dot Products

1. If ~u and ~v are unit vectors in R3 and u ◦ v = −1, what is the angle between ~u and ~v?

Solution: From the formula ~u ◦~v = |~u| · |~v| cos θ, it follows that cos θ = −1, so θ = π.
This may also be seen by showing directly that |~u+ ~v|2 = 0, so ~u = −~v.

2. Find three nonzero vectors in R3 that are perpendicular to 〈1, 3, 2〉.

Solution: A nonzero vector 〈x, y, z〉 will work if and only if x+3y+2z = 0. Specifically
〈−1, 1,−1〉 and 〈2, 0,−1〉, and 〈3,−1, 0〉 all work (alternatively, once one solution is
found, it may be scaled to find others).

3. Let P be a vertex on a cube. Let Q be an adjacent vertex and let R be the vertex opposite

to P . Using dot products, find the angle between the vectors
−−→
PQ and

−→
PR.

Solution: Without loss of generality, take the cubic to lie in the first octant, with
edges along the positive coordinate axes, and have edges of length 1, so that P = (0, 0, 0)

and Q = (1, 0, 0). Then R = (1, 1, 1) and
−−→
PQ = 〈1, 0, 0〉. Similarly

−→
PR = 〈1, 1, 1〉, so

−−→
PQ ◦

−→
PR = 1 = |

−−→
PQ| · |

−→
PR| cos(θ) =

√
3, so θ = arccos(1/

√
3)

4. If ~u and ~v are unit vectors in R3, show that the vectors ~u+ ~v and ~v − ~v are perpendicular.

Solution: We have (~u+ ~v) ◦ (~u− ~v) = |~u|2 − |~v|2 = 1− 1 = 0.

5. Derive the polarization identity : if ~u and ~v are vectors in R3, then ~u◦~v = 1
4

(
|~u+ ~v|2 − |~u− ~v|2

)
.

Hint: it is simplest not to work straight from the definition of the dot product (although this
will work too).

Solution: This follows from writing |~u+~v|2 = (~u+~v) ◦ (~u+~v) (and similarly for the
other term) and expanding.

2 Challenge: Parallelogram Law

Consider a parallelogram with side lengths a and b, and diagonals of lengths c and d. Show that
2a2 + 2b2 = c2 + d2. Hint: use vector geometry and dot products.

Solution: Let P,Q,R, S be the vertices of the parallelogram, listed in cyclic order so

that a = |
−−→
PQ|, etc. Then

−−→
PQ+

−−→
QR =

−→
PR. Taking length squared of both sides gives

|
−→
PR|2 = |

−−→
PQ|2 + |

−−→
QR|2 + 2

−−→
PQ ◦

−−→
QR.

Similarly,

|
−→
RS|2 = |

−−→
PQ|2 + |

−−→
QR|2 − 2

−−→
PQ ◦

−−→
QR.

Then add to get the desired result.

1



3 Vector and Scalar Projections

1. For each of the following pairs of vectors, find the vector projection of ~v onto ~w and the scalar
projection of ~v onto ~w.

a) ~v = 〈2, 4〉, ~w = 〈3, 1〉.

Solution: The vector projection is

~v · ~w
|~w|2

~w =
2 · 3 + 4 · 1

32 + 12
〈3, 1〉 =

10

10
〈3, 1〉 = 〈3, 1〉,

and the scalar projection is

~v · ~w
|~w|

=
2 · 3 + 4 · 1√

32 + 12
=

10√
10

=
√

10.

b) ~v = 〈5,−1〉, ~w = 〈2, 9〉.

Solution: The vector projection is

~v · ~w
|~w|2

~w =
5 · 2− 1 · 9

22 + 92
〈2, 9〉 =

1

85
〈2, 9〉 =

〈
2

85
,

9

85

〉
,

and the scalar projection is

~v · ~w
|~w|

=
5 · 2− 1 · 9√

22 + 92
=

2√
85
.

c) ~v = 〈−6, 3, 2〉, ~w = 〈1,−5, 3〉.

Solution: The vector projection is

~v · ~w
|~w|2

~w =
−6 · 1− 3 · 5 + 2 · 3

12 + 52 + 32
〈1,−5, 3〉 = −3

7
〈1,−5, 3〉 =

〈
−3

7
,
15

7
,
9

7

〉
,

and the scalar projection is

~v · ~w
|~w|

=
−6 · 1− 3 · 5 + 2 · 3√

12 + 52 + 32
= −3

√
5

7
.

2. Find formulas for the vector and scalar projections of a vector ~v onto ~w involving the cosine
of the angle θ between ~v and ~w.
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Solution: Recall that we can write the dot product using

~v · ~w = |~v||~w| cos θ.

Substituting this into our formulas for vector and scalar projections, we see that the
vector projection is

~v · ~w
|~w|2

~w =
|~v||~w| cos θ

|~w|2
~w =

|~v|
|~w|

cos θ ~w

and the scalar projection is

~v · ~w
|~w|

=
|~v||~w| cos θ

|~w|
= |~v| cos θ.

Both of these formulas can also be derived from thinking hard enough about the geom-
etry of the situation.

4 Cross Product Computations

Find the cross products ~v × ~w of the following pairs of vectors.

1. ~v = 〈2, 3, 1〉, ~w = 〈−1, 2, 3〉.

Solution: We use the determinant formula:

~v × ~w =

∣∣∣∣∣∣
~i ~j ~k
2 3 1
−1 2 3

∣∣∣∣∣∣
=

∣∣∣∣3 1
2 3

∣∣∣∣~i− ∣∣∣∣ 2 1
−1 3

∣∣∣∣~j +

∣∣∣∣ 2 3
−1 2

∣∣∣∣~k
= (32 − 1 · 2)~i− (2 · 3− 1 · (−1))~j + (2 · 2− 3 · (−1))~k

= 7~i− 8~j + 7~k.

2. ~v = 6~i− 4~j − 3~j, ~w = 4~i+~j.

Solution: We use the determinant formula:

~v × ~w =

∣∣∣∣∣∣
~i ~j ~k
6 −4 −3
4 1 0

∣∣∣∣∣∣
=

∣∣∣∣−4 −3
1 0

∣∣∣∣~i− ∣∣∣∣6 −3
4 0

∣∣∣∣~j +

∣∣∣∣6 −4
4 1

∣∣∣∣~k
= 3~i− 12~j + 22~k.

3. ~v pointing a distance 5 units in the positive x-direction, ~w a unit vector lying in the first
quadrant of the xy-plane and making an angle of π/4 with the x-axis.
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Solution: The right-hand rule tells us that the cross product will point in the positive
z direction. To compute its magnitude, we use the formula

|~v × ~w| = |~v||~w| sin θ.

Here |~v| = 5, |~w| = 1, and θ = π/4, so we obtain

|~v × ~w| = 5 sin
π

4
=

5
√

2

2
,

and thus

~v × ~w =
5
√

2

2
~k.

5 Cross Product Concepts and Applications

1. Given vectors ~v and ~w, find an identity which relates the four quantities |~v|, |~w|, |~v× ~w|, and
|~v · ~w|. (Hint: Consider any relevant trigonometric identities.)

Solution: If θ is the angle between the vectors, we can write

|~v × ~w| = |~v||~w| sin θ

and
|~v · ~w| = |~v||~w| cos θ.

Since cos2 θ + sin2 θ = 1, we can square and add the above equations to get

|~v × ~w|2 + |~v · ~w|2 = |~v|2|~w|2 sin2 θ + |~v|2|~w|2 cos2 θ = |~v|2|~w|2.

Thus our identity is
|~v × ~w|2 + |~v · ~w|2 = |~v|2|~w|2.

2. Let ~u and ~v be nonzero vectors with ~u × ~v = ~0. What can you say about the relationship
between ~u and ~v?

Solution: Let θ be the angle between the two vectors; then we have

0 = |~u× ~v| = |~u||~v| sin θ.

This can only happen if sin θ = 0, which implies that θ is an integer multiple of π. Thus
we may conclude that ~u and ~v are collinear.

3. Find the area of the triangle with two sides given by the vectors ~v = 〈1, 2〉 and ~w = 〈−3, 4〉.

Solution: We view this triangle as sitting within the xy-plane in R3. Then the
quantity |~v × ~w| gives the area of the parallelogram with two sides given by ~v and ~w.
We compute

~v × ~w = 〈0, 0, 1 · 4− 2 · (−3)〉 = 10~k,

where we are justified in ignoring the ~i and ~j components because we know that ~v× ~w
must be orthogonal to the xy-plane. So the area of this parallelogram is 10. The area
of the triangle is half that of the parallelogram, so we see that the desired area is 5.
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6 Challenge: BAC-CAB

Prove the “BAC-CAB” / “double-crossing” rule:

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b).

(NOTE: Typically scalars such as ~a ·~c are written on the left in scalar multiplication. This formula
is a rare exception and is written this way because “BAC-CAB” is easier to remember than “ACB-
ABC.”)

Solution: We can write

~b× ~c = (b2c3 − b3c2)~i+ (b3c1 − b1c3)~j + (b1c2 − b2c1)~k,

so

~a× (~b× ~c) =(a2(b1c2 − b2c1)− a3(b3c1 − b1c3))~i+
(a3(b2c3 − b3c2)− a1(b1c2 − b2c1))~j+

(a1(b3c1 − b1c3)− a2(b2c3 − b3c2))~k.

Rearranging this gives

~a× (~b× ~c) =(b1(a2c2 + a3c3)− c1(a2b2 + a3b3))~i+

(b2(a3c3 + a1c1)− c2(a3b3 + a1b1))~j+

(b3(a1c1 + a2c2)− c3(a1b1 + a2b2))~k,

and adding / subtracting a copy of a1b1c1 from the first component, a2b2c2 from the
second component, and a3b3c3 from the last component gives

~a× (~b× ~c) =(b1(a1c1 + a2c2 + a3c3)− c1(a1b1 + a2b2 + a3b3))~i+

(b2(a2c2 + a3c3 + a1c1)− c2(a2b2 + a3b3 + a1b1))~j+

(b3(a3c3 + a1c1 + a2c2)− c3(a3b3 + a1b1 + a2b2))~k,

which can be written more succinctly as

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b).

7 True/False

Supply convincing reasoning for your answer.

(a) T F If you take a cross product of two vectors lying in the xy-plane, your result will point
along the z-axis.

Solution: TRUE. The cross product produces a result that is orthogonal to both
inputs, and the z-axis is the space of vectors orthogonal to the xy-plane.

(b) T F The cross product makes sense for vectors in any number of dimensions.
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Solution: FALSE. The cross product only makes sense for vectors in R3 (and tech-
nically R7, though people don’t really use that much). The formula you use to define
the cross product doesn’t adapt well to other numbers of dimensions.

(c) T F The absolute value of the scalar projection of a vector ~v onto another vector ~w is equal
to the norm of the vector projection of ~v onto ~w.

Solution: TRUE. The vector projection is given by

~v · ~w
|~w|2

~w,

and taking the norm of this gives

~v · ~w
|~w|2
|~w| = ~v · ~w

|~w|
,

which is just the absolute value of the scalar projection.

(d) T F The cross product is associative: ~a× (~b× ~c) = (~a×~b)× ~c.

Solution: FALSE. For example, we have

(~i×~i)×~j = ~0×~j = ~0,

but
~i× (~i×~j) =~i× ~k = −~j.

(e) T F The dot and cross products satisfy ~a · (~b× ~c) = (~a ·~b)× ~c.

Solution: FALSE. The right-hand side of the purported equation is not even well-
defined, as ~a · ~b is a scalar, and you cannot take the cross product of a scalar and a
vector.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.
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