# Discussion 3 Worksheet Answers Polar coordinates 

Date: 9/1/2021

## MATH 53 Multivariable Calculus

## 1 Computing Tangents to Polar Curves

Compute the slopes of the following curves. Find the points where the tangents are vertical and horizontal.
(a) $r=3 \cos \theta$;
(b) $r=1-\sin \theta$;
(c) $r=\sec \theta$;
(d) $r=e^{\theta}$.

## Solution:

(a) $d y / d \theta=-3 \sin ^{2} \theta+3 \cos ^{2} \theta$ and $d x / d \theta=-6 \sin \theta \cos \theta$ so the slope is $\frac{d y}{d x}=$ $\frac{3 \cos (2 \theta)}{-3 \sin (2 \theta)}=-\tan (2 \theta)$. The horizontal tangents are where $3 \cos (2 \theta)=0$ which occurs at $\pi / 4+k \pi / 2, k \in \mathbb{Z}$ and the vertical tangents are where $-3 \sin (2 \theta)=0$ which occurs at $k \pi / 2, k \in \mathbb{Z}$.
(b) $d y / d \theta=\cos \theta-\sin (2 \theta)$ and $d x / d \theta=-\sin \theta-\cos (2 \theta)$ so the slope is $\frac{d y}{d x}=$ $\frac{\cos \theta-\sin (2 \theta)}{-\sin \theta-\cos (2 \theta)}$. The horizontal tangents are where $\cos \theta(1-2 \sin \theta)=0$ which occurs at $\theta=\pi / 2+k \pi, k \in \mathbb{Z}$ and $\theta=\pi / 6+2 k \pi, 5 \pi / 6+2 l \pi, k, l \in \mathbb{Z}$. The vertical tangents are where $1+\sin \theta-2 \sin ^{2} \theta=(1+2 \sin \theta)(1-\sin \theta)=0$ which occurs at $\pi / 2+2 k \pi, k \in \mathbb{Z}$ and $\theta=7 \pi / 6+2 k \pi, 11 \pi / 6+2 l \pi, k, l \in \mathbb{Z}$. Notice there is overlap at $\theta=\pi / 2+2 k \pi$ so we must take a limit to verify the slope. We see that

$$
\lim _{\theta \rightarrow \pi / 2} \frac{\cos \theta-\sin (2 \theta)}{-\sin \theta-\cos (2 \theta)}=\lim _{\theta \rightarrow \pi / 2} \frac{-\sin \theta-2 \cos (2 \theta)}{-\cos \theta+2 \sin (2 \theta)}=\frac{1}{0}
$$

so the horizontal tangents only occur at $\theta=\pi / 2+(2 k+1) \pi, k \in \mathbb{Z}$ and $\theta=$ $\pi / 6+2 k \pi, 5 \pi / 6+2 l \pi, k, l \in \mathbb{Z}$.
(c) $d y / d \theta=\sec \theta \tan \theta \sin \theta+\tan \theta$ and $d x / d \theta=\tan \theta-\sin \theta \sec \theta=0$. The slope $\frac{d y}{d x}$ is undefined. So for all $\theta$ we have a vertical tangent and no horizontal tangents.
(d) $d y / d \theta=e^{\theta}(\sin \theta+\cos \theta)$ and $d x / d \theta=e^{\theta}(\cos \theta-\sin \theta)$ so the slope is $\frac{d y}{d x}=\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}$. The horizontal tangents are where $\tan \theta=-1$ which occurs at $3 \pi / 4+k \pi, k \in \mathbb{Z}$ and the vertical tangents are where $\tan \theta=1$ which occurs at $\pi / 4+k \pi, k \in \mathbb{Z}$.

## 2 Computing Areas

(a) Find the area of the region that lies inside $r=3 \cos \theta$ and outside $r=1+\cos \theta$.
(b) Find the area of the region that lies inside both curves $r=\sin 2 \theta$ and $r=\cos 2 \theta$.

## Solution:

(a) First we find where these two curves intersect. Notice that if $3 \cos \theta=1+\cos \theta \Leftrightarrow$ $\cos \theta=1 / 2$ so $\theta=-\pi / 3, \pi / 3$. Then by symmetry, the area is

$$
\begin{aligned}
2 \int_{0}^{\pi / 3} \frac{1}{2}\left[(3 \cos \theta)^{2}-(1+\cos \theta)^{2}\right] d \theta & =\int_{0}^{\pi / 3} 8 \cos ^{2} \theta-2 \cos \theta-1 \\
& =\int_{0}^{\pi / 3} 3+4 \cos 2 \theta-2 \cos \theta d \theta \\
& =\pi
\end{aligned}
$$

(b) Again we first see where they intersect. $\sin 2 \theta=\cos 2 \theta \Rightarrow \tan 2 \theta=1 \Rightarrow 2 \theta=$ $\pi / 4 \Rightarrow \theta=\pi / 8$. Notice we have 16 such regions are indicated in the picture. Hence the area is

$$
16 \int_{0}^{\pi / 8} \frac{1}{2} \sin ^{2} 2 \theta d \theta=4 \int_{0}^{\pi / 8}(1-\cos 4 \theta) d \theta=4\left[\theta-\frac{\sin 4 \theta}{4}\right]_{0}^{\pi / 8}=\pi / 2-1
$$



## 3 Computing Arc Lengths

Using the appropriate formula, find the length of the curve.
(a) $r=2 \cos \theta, 0 \leq \theta \leq \pi$.
(b) $r=\theta^{2}, 0 \leq \theta \leq 2 \pi$.

## Solution:

(a) Applying the polar formula we have

$$
L=\int_{0}^{\pi} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta=\int_{0}^{\pi} \sqrt{4 \cos ^{2} \theta+4 \sin ^{2} \theta} d \theta=2 \pi
$$

(b) Applying the polar formula we have

$$
L=\int_{0}^{2 \pi} \sqrt{\theta^{4}+4 \theta^{2}} d \theta=\int_{0}^{2 \pi} \theta \sqrt{\theta^{2}+4} d \theta=\left.\frac{1}{3}\left(\theta^{2}+4\right)^{3 / 2}\right|_{0} ^{2 \pi}=\frac{8}{3}\left[\left(\pi^{2}+1\right)^{3 / 2}-1\right]
$$

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

